ESTIMATING THE APERY NUMBERS

MICHAEL D. HIRSCHHORN

ABSTRACT. We use a crude method to find the dominant term in the asymptotic expansion
of the nth Apéry number.

1. INTRODUCTION

In 1983, Apéry stunned the mathematical world by proving that {(3) is irrational. Alf van
der Poorten has given an entertaining account of Apéry’s presentation [1].
Apéry’s proof involves the eponymous numbers,
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that satisfy the recurrence
(n+1)3A,1 = (340> + 51n% + 2Tn 4+ 5) A, — n>A, 4
together with Ag =1, A; = 5.

The purpose of this note is to demonstrate how one can use a crude yet effective method to
find the dominant term in the asymptotic expansion of A,. Indeed, we will find that
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2. THE CALCULATION
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The maximum uy, is found by solving the equation uy = ugy1. This yields
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Let

or roughly speaking,
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Let N be the integer closest to % The maximum term, roughly speaking, is
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Nearby (think of k£ as up to n%), we have, again making small approximations,
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This calculation was carried out for k positive, but a similar calculation works for k& negative.
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FIGURE 1. n = 200 - Values of terms in the sum for the 200th Apéry number

and approximating function.

It follows that
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