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Abstract. Let Fn be the nth Fibonacci number. The Fibonomial coefficients
[

n

k

]

F
are

defined for n ≥ k > 0 as follows
[

n

k

]

F

=
FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk

,

with
[

n

0

]

F
= 1 and

[

n

k

]

F
= 0 for n < k. In this paper, we shall provide some interesting sums

among Fibonomial coefficients. In particular, we prove that

4m+2
∑

j=0

(−1)
j
2
(j+1)

[

4m + 2

j

]

F

Fn+4m+2−j = 0,

holds for all non-negative integers m and n.

1. Introduction

In 1915, Fontené published a one-page note [2] suggesting a generalization of binomial
coefficients, replacing the natural numbers by the terms of an arbitrary sequence {an} of real
or complex numbers. Thus the generalized binomial coefficients are defined by

[

n

k

]

a

=
anan−1 · · · an−k+1

a1a2 · · · ak
.

Setting an = n we recover the ordinary binomial coefficients, while an = qn−1 we obtain the
q-binomial coefficients studied by Gauss, Euler, and Cauchy and which were shortly called q-
Gaussian coefficients (Gauss q-binomial coefficients). The sequence {an} is essentially arbitrary
but we do require that an 6= 0 for n ≥ 1.

Since 1964 there has been an accelerated interest in Fibonomial coefficients, which corre-
spond to the choice an = Fn, where Fn is the nth Fibonacci number. During the last decades
several identities among these numbers have been found. Gould [3] derived the relation

n
∑

j=k

Fj − Fj−k

Fk

[

j − 1

k − 1

]

F

=

[

n

k

]

F

.

Lind [7], using a result from a paper of Jarden and Motzkin [4], obtained the identity

k
∑

j=0

(−1)
j

2
(j+1)

[

k

j

]

F

F k−1
n−j = 0,

where n, k are any positive integers such that n ≥ k, and further he found the formula
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k+1
∑

j=0

(−1)
j

2
(j+1)

[

k + 1

j

]

F

[

n− j

k

]

F

= 0.

Seibert and Trojovský [8] included identities
m
∑

i=0

(−1)
i
2
(m+i)

[

m

i

]

F

= 0,

m
∑

i=0

(−1)
i
2
(2l+i+1)F(k−i)(k−2l)

Fk−2l

[

k + 1

i

]

F

= 0

and

m
∑

i=0

(−1)
i
2
(2l+i+(−1)k)L(i+n)(k−2l)

[

k + 1

i

]

F

= 0

for any positive integers m, k, n and l, with m odd, l < (k − 1)/2 and m > k. Here, Ln

denotes the nth Lucas number. Kiliç et al. [5] proved the following formula

m−1
∑

j=0

(−1)
j

2
(j+3)

[

(m+ 1)k +m

j

]

F

[

(m+ 1)k +m− j − 1

m− j − 1

]

F

Fm+1
n+k+m−j

+(−1)
m
2
(m+3)Fm+1

n−mk = F(m+1)(n+m
2
)

m
∏

j=1

F(m+1)k+j ,

where m, n, and k are any integers. We refer the reader to [6] for related identities involving
generalized Fibonomial coefficients.

In 2007, as Problem B-1040 of the problem section of The Fibonacci Quarterly, Bruckman
[1] proposed the problem of finding a proof of identity

4m
∑

j=0

(−1)
k
2
(k+1)

[

4m

k

]

F

Fk = 0.

The aim of this paper is to provide some identities involving sums of Fibonomial coefficients.
In particular, we shall give a generalization of the previous formula. More precisely, our main
results are the following.

Theorem 1.1. Let m, n be any non-negative integer. Then

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

Fn+4m+2−j =
1

2
F2m+n+1

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j

and
4m
∑

j=0

(−1)
j

2
(j−1)

[

4m

j

]

F

Fn+4m−j =
1

2
F2m+n

4m
∑

j=0

(−1)
j

2
(j−1)

[

4m

j

]

F

L2m−j .

Theorem 1.2. Let m, n be any non-negative integers. Then

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

Fn+4m+2−j = 0. (1.1)
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and
4m
∑

j=0

(−1)
j

2
(j−1)

[

4m

j

]

F

Fn+4m−j = 0. (1.2)

2. A Key Auxiliary Result

Before proceeding further, we shall prove a fact which will be an essential ingredient in the
proof of Theorem 1.2.

Lemma 2.1. Let m and k be any non-negative integers. Then

4k+6
∑

j=4k+3

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j = −

[

4m+ 2

4k + 7

]

F

F4k+7

F2m+1
+

[

4m+ 2

4k + 3

]

F

F4k+3

F2m+1
. (2.1)

Proof. Using clear identities

[

4m+ 2

4k + 3 + i

]

F

=

[

4m+ 2

4k + 3

]

F

i−1
∏

j=0

F4m−4k−1−j

F4k+4+j

, i = 1, 2, 3, 4

we can rewrite formula (2.1) as the identity

F2m+1L2m−4k−2F4k+6F4k+5F4k+4

+ F4m−4k−1F2m+1L2m−4k−3F4k+6F4k+5

− F4m−4k−1F4m−4k−2F2m+1L2m−4k−4F4k+6

− F4m−4k−1F4m−4k−2F4m−4k−3F2m+1L2m−4k−5

= −F4m−4k−1F4m−4k−2F4m−4k−3F4m−4k−4 + F4k+6F4k+5F4k+4F4k+3,

which can be simplified by the identity Fn+hLn+k − FnLn+h+k = (−1)nFhLk (see [9, 19b]),
and well-known identity FnLn = F2n to the form

F4k+6F4k+5F4m−4k−1F4m−4k−2 − F4m−4k−1F4m−4k−2F4k+6F4k+5 = 0.

�

Lemma 2.2. Let m be any non-negative integer. Then

−2

[

4m+ 2

3

]

F

+

[

4m+ 2

2

]

F

F2m+1L2m−1 +

[

4m+ 2

1

]

F

F2m+1L2m = F4m+2.

Proof. After overwriting the Fibonomial coefficients using their definition, we get

−F4m+2F4m+1F4m + F4m+2F4m+1F2m+1L2m−1 + F4m+2F2m+1L2m = F4m+2.

On dividing through by F4m+2, a straight calculation gives

F4m+1F2m+1L2m−1 + F2m+1L2m = F4m+1F4m + 1.

Now we use the formulas F4m+1F4m+1 = F4m−1F4m+2, F4m+1−1 = F2mL2m+1, F4m−1−1 =
F2mL2m−1 (they are special cases of identities (20a) and (15b) in [9]), to obtain the clear
equality F2mL2m+1L2m−1 = F2mL2m+1L2m−1. �

MAY 2012 157



THE FIBONACCI QUARTERLY

Lemma 2.3. Let m and n be any non-negative integers. Then

4n+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j = −

[

4m+ 2

4n+ 3

]

F

F4n+3

F2m+1

and
4n
∑

j=0

(−1)
j

2
(j−1)

[

4m

j

]

F

L2m−j =

[

4m

4n+ 1

]

F

F4n+1

F2m
.

Proof. We shall prove the first identity, because the proofs of both identities are very similar.
For that, we use induction on n. For n = 0 the assertion is implied by Lemma 2.2. Let us
consider that the identity holds for n = k and prove it for n = k + 1. The left-hand side can
be written as

4k+6
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j =
4k+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j

+
4k+6
∑

j=4k+3

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j

and the identity follows from Lemma 2.1. �

Now, we are ready to deal with the proof of the theorems.

3. The Proof of Theorems

3.1. The proof of Theorem 1.1. Again, we shall prove only the first identity, since the
proof of the second one can be handled in much the same way (we use the identity Fn+4m−j +
(−1)j Fn+j = F2m+nL2m−j).

2

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

Fn+4m+2−j

=

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

Fn+4m+2−j +

4m+2
∑

k=0

(−1)
4m+2−k

2
(4m+2−k+1)

[

4m+ 2

4m+ 2− k

]

F

Fn+k

=

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

Fn+4m+2−j −

4m+2
∑

k=0

(−1)k (−1)
k
2
(k+1)

[

4m+ 2

k

]

F

Fn+k

=
4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

(

Fn+4m+2−j − (−1)j Fn+j

)

= F2m+n+1

4m+2
∑

j=0

(−1)
j

2
(j+1)

[

4m+ 2

j

]

F

L2m+1−j ,

where we use the identity Fn+4m+2−j − (−1)j Fn+j = F2m+n+1L2m+1−j , which follows from

the identity Fa+b − (−1)bFa−b = FbLa (see [9, 15b],). �
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3.2. The proof of Theorem 1.2. Identity (1.1) follows from the first formula in Theorem

1.1 and Lemma 2.3 (with m = n). Here we have used the fact that
[4m+2
4m+3

]

F
= 0. Similarly,

identity (1.2) follows from the second formula in Theorem 1.1 and Lemma 2.3. �

4. Further Comments, a Conjecture and Its Consequence

In this section, we shall discuss several sums related to identities (1.1) and (1.2).

Theorem 4.1. The following formulas are equivalent

(i)

4m
∑

j=0

(−1)
j(j+1)

2

[

4m+ 2

j

]

F

Fn+4m+2−j = 0.

(ii) Fn =

2m
∑

j=0

(−1)
j(j+1)

2

([

4m+ 2

j

]

F

Fn+4m+2−j −

[

4m+ 2

j + 1

]

F

Fn+j+1

)

.

(iii) 2 =
2m
∑

j=0

(−1)
j(j+1)

2

([

4m+ 2

j

]

F

L4m+2−j −

[

4m+ 2

j + 1

]

F

Lj+1

)

.

Proof. We rewrite (i) as

Fn =

2m
∑

j=0

(−1)
j(j+1)

2

[

4m+ 2

j

]

F

Fn+4m+2−j +

4m+1
∑

j=2m+1

(−1)
j(j+1)

2

[

4m+ 2

j

]

F

Fn+4m+2−j .

By taking the change of indexes j = 4m− j + 1 in the second sum above, we get

Fn =

2m
∑

j=0

(−1)
j(j+1)

2

[

4m+ 2

j

]

F

Fn+4m+2−j

+

2m
∑

j=0

(−1)
(4m−j+1)(4m−j+2)

2

[

4m+ 2

4m− j + 1

]

F

Fn+j+1.

Since
[

4m+2
4m−j+1

]

F
=
[

4m+2
j+1

]

F
and (4m−j+1)(4m−j+2)

2 ≡ − j(j+1)
2 (mod 2), we obtain

Fn =

2m
∑

j=0

(−1)
j(j+1)

2

([

4m+ 2

j

]

F

Fn+4m+2−j −

[

4m+ 2

j + 1

]

F

Fn+j+1

)

which is the desired formula in (ii). Now, we apply the formula Fa+b = (FaLb +FbLa)/2 with
(a, b) = (n, 4m+ 2− j) and (n, j + 1), respectively, in order to get

[

4m+ 2

j

]

F

Fn+4m+2−j =
1

2

[

4m+ 2

j

]

F

FnL4m+2−j +
1

2

[

4m+ 2

j

]

F

F4m+2−jLn. (4.1)

[

4m+ 2

j + 1

]

F

Fn+j+1 =
1

2

[

4m+ 2

j + 1

]

F

FnLj+1 +
1

2

[

4m+ 2

j + 1

]

F

Fj+1Ln. (4.2)

Taking F4m+2−j

[4m+2
j

]

F
= Fj+1

[4m+2
j+1

]

F
, the identity (4.1) becomes

[

4m+ 2

j

]

F

Fn+4m+2−j =
1

2

[

4m+ 2

j

]

F

FnL4m+2−j +
1

2

[

4m+ 2

j + 1

]

F

Fj+1Ln. (4.3)
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We substitute (4.2) and (4.3) in (ii) yielding

Fn =
2m
∑

j=0

(−1)
j(j+1)

2

(

1

2

[

4m+ 2

j

]

F

FnL4m+2−j −
1

2

[

4m+ 2

j + 1

]

F

FnLj+1

)

.

Thus,

2 =

2m
∑

j=0

(−1)
j(j+1)

2

([

4m+ 2

j

]

F

L4m+2−j −

[

4m+ 2

j + 1

]

F

Lj+1

)

which completes the proof. �

Now, we denote

σ(n) =
4m
∑

j=0

(−1)
j

2
(j−1)

[

4m

j

]

F

Fn+4m−j

and the sum of positive summands and the sum of negative summands of σ(n), respectively,
by

σP (n) =
∑

j∈{0,...,4m}
j(j−1)≡0 (mod 4)

[

4m

j

]

F

Fn+4m−j ,

σN (n) =
∑

j∈{0,...,4m}
j(j−1)≡2 (mod 4)

[

4m

j

]

F

Fn+4m−j .

Hence,

σP (n) =
m
∑

l=0

[

4m

4l

]

F

Fn+4m−4l +
m−1
∑

l=0

[

4m

4l + 1

]

F

Fn+4m−(4l+1)

and

σN (n) =
m−1
∑

l=0

[

4m

4l + 2

]

F

Fn+4m−(4l+2) +
m−1
∑

l=0

[

4m

4l + 3

]

F

Fn+4m−(4l+3).

Further we denote

σP1(n) =
m
∑

l=0

[

4m

4l

]

F

Fn+4m−4l, σP2(n) =
m−1
∑

l=0

[

4m

4l + 1

]

F

Fn+4m−(4l+1),

σN1(n) =

m−1
∑

l=0

[

4m

4l + 2

]

F

Fn+4m−(4l+2), σN2(n) =

m−1
∑

l=0

[

4m

4l + 3

]

F

Fn+4m−(4l+3).

Corollary 1. Let m, n be any positive integers. Then

σP1(n) + σP2(n)− σN1(n)− σN2(n) = 0. (4.4)

Proof. Identity (4.4) follows from the fact that σ(n) = σP (n)− σN (n) and identity (1.1). �
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Conjecture 1. Let m, n be any positive integers. Then

σP1(n) + σP2(n) = F4m+n

2m−1
∏

i=1

L2i, (4.5)

σP1(n)− σN1(n) = (−1)mF2m+nL2m

2m−1
∏

i=1

L2
i ,

σP1(n)− σN2(n) = Fn

2m−1
∏

i=1

L2i.

Corollary 2. Let m, n be any positive integers. Then

σP1(n) =
1

2
F2m+nL2m

(

(−1)m
2m−1
∏

i=1

L2
i +

2m−1
∏

i=1

L2i

)

,

σP2(n) =
1

2

(

(−1)m+1F2m+nL2m

2m−1
∏

i=1

L2
i + L2m+nF2m

2m−1
∏

i=1

L2i

)

,

σN1(n) =
1

2
F2m+nL2m

(

(−1)m+1
2m−1
∏

i=1

L2
i +

2m−1
∏

i=1

L2i

)

,

σN2(n) =
1

2

(

(−1)mF2m+nL2m

2m−1
∏

i=1

L2
i + L2m+nF2m

2m−1
∏

i=1

L2i

)

.

Proof. Solving the system of linear equations in (4.4) and (4.5) we clearly obtain assertion. �
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