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Abstract. In this paper we present some results related to the problem of finding peri-
odic representations for algebraic numbers. In particular, we analyze the problem for cubic
irrationalities. We show an interesting relationship between the convergents of bifurcating
continued fractions related to a couple of cubic irrationalities, and a particular generalization
of the Rédei polynomials. Moreover, we give a method to construct a periodic bifurcating
continued fraction for any cubic root paired with another determined cubic root.

1. Introduction

In 1839 Hermite [13] posed to Jacobi the problem of finding methods for writing numbers
that reflect special algebraic properties, i.e., finding periodic representations for algebraic
numbers. Continued fractions completely solve this problem for every quadratic irrationality.
This is the only known answer, indeed it has not yet been found a method in order to give
a periodic representation for every algebraic irrationality of order greater than two. It seems
natural to attempt the resolution of the Hermite problem researching some generalization of
continued fractions. The first effort in this sense is due to Euler [7] in 1749, whose algorithm
can provide periodic representations for cubic irrationalities. Successively, the algorithm was
modified by Jacobi [15] in 1868 and extended to any algebraic irrationalities by Perron [20] in
1907 (for a complete survey about the Jacobi–Perron algorithm see [4]). During the years this
generalization and some variations of the continued fractions have been deeply studied. For
example Daus [6] developed the Jacobi algorithm for a particular couple of cubic irrationalities,
connecting this study with the cubic Pell equation, and Lehmer [16] examined the convergence
of particular periodic expansions. Further developments on the Jacobi–Perron algorithm can
be found in [5, 8, 9, 11, 12, 14, 22].

In this paper, we focus only on the Jacobi algorithm and we study periodic representations
and approximations for cubic irrationalities. In particular, introducing a generalization of the

Rédei rational functions [21], we provide periodic representations for every couple (
3
√
d2, 3

√
d)

depending on a parameter z which can be any integer. Choosing different values for z, it is
possible to obtain different periodic expansions and approximations for these irrationalities.
Moreover, such representation has the advantage of having a small period making it easy to
handle. Indeed, a problem of continued fractions and their generalization is the length of
the period, which can be very large. Furthermore, in the case of the cubic irrationalities,
periodicity is not guaranteed. As pointed out in [23], it seems that the Jacobi algorithm is
not periodic for some couple of cubic irrationalities as, e.g., ( 3

√
3, 3

√
9) (however it would be

possible to find a cubic irrationality α such that the expansion of ( 3
√
3, α) is periodic). Thus,

the possibility to obtain a periodic expansion for every couple (
3
√
d2, 3

√
d) appears an important

result in order to overcome the problems concerning the periodicity of the Jacobi algorithm.
The Rédei rational functions, generalized in the next section, arise from the development

of (z +
√
d)n, where z is an integer and d is a nonsquare positive integer. One can write
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(z +
√
d)n = Nn(d, z) +Dn(d, z)

√
d, (1.1)

where

Nn(d, z) =

[n/2]
∑

k=0

(

n

2k

)

dkzn−2k, Dn(d, z) =

[n/2]
∑

k=0

(

n

2k + 1

)

dkzn−2k−1.

The Rédei rational functions Qn(d, z) are defined by

Qn(d, z) =
Nn(d, z)

Dn(d, z)
, for all n ≥ 1. (1.2)

Their multiplicative property is well-known,

Qnm(d, z) = Qn(d,Qm(d, z)),

for any couple of indexes n,m. Thus Rédei functions are closed with respect to composition
and satisfy the commutative property

Qn(d,Qm(d, z)) = Qm(d,Qn(d, z)).

The Rédei rational functions reveal their utility in several fields of number theory. Given a
finite field Fq, of order q, and

√
d 6∈ Fq, then Qn(d, z) is a permutation of Fq if and only

if (n, q + 1) = 1 [17, p. 44]. Another recent application of these functions provides a way
to find a new bound for multiplicative character sums of nonlinear recurring sequences [10].
Moreover, they can be used in order to generate pseudorandom sequences [24] and to create a
public key cryptographic system [18]. In a previous work [3] we have seen how Rédei rational
functions can be used in order to generate solutions of the Pell equation in an original way,
applying them in a totally new field with respect to the classic ones. Furthermore, in [1] we
have introduced these functions as convergents of certain periodic continued fractions which
always represent square roots. Here we generalize this construction for cubic roots, providing
a generalization of the Rédei rational functions in order to obtain periodic representations for
every cubic root.

2. The Jacobi Algorithm and Bifurcating Continued Fractions

In this section we briefly recall the Jacobi algorithm. It is a generalization of the Euclidean
algorithm used for constructing the classic continued fractions. In this generalization instead
of representing a real number by an integer sequence, a couple of real numbers are represented
by a couple of integer sequences. The algorithm that provides such integer sequences is



































an = [xn]

bn = [yn]

xn+1 =
1

yn − [yn]

yn+1 =
xn − [xn]

yn − [yn]
,

(2.1)
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n = 0, 1, 2, . . ., for any couple of real numbers x = x0 and y = y0. We can retrieve x and y
from the sequences (an)

+∞

n=0 and (bn)
+∞

n=0 using















xn = an +
yn+1

xn+1

yn = bn +
1

xn+1

(2.2)

n = 0, 1, 2, . . ., indeed by equations (2.1) it follows

an +
yn+1

xn+1
= an +

xn − an

yn − bn
1

yn − bn

= an + xn − an = xn, for all n ≥ 0

bn +
1

xn+1
= bn +

1

1

yn − bn

= bn + yn − bn = yn, for all n ≥ 0.

Therefore, the real numbers x and y are represented by the sequences as follows:

x = a0 +

b1 +
1

a2 +

(

b3 +
1

.. .

)



a3 +

.. .

. . .





a1 +

b2 +
1



a3 +

.. .

. . .





a2 +

(

b3 +
1

. . .

)



a3 +

.. .

. . .





and y = b0 +
1

a1 +

b2 +
1



a3 +

.. .

. . .





a2 +

(

b3 +
1

. . .

)



a3 +

.. .

. . .





(2.3)

Two objects representing the numbers x and y are called ternary or bifurcating continued
fractions. We call partial quotients the integers ai and bi, for i = 0, 1, 2, . . .. We can briefly
write the bifurcating continued fraction (2.3) with the notation [{a0, a1, a2, . . .}, {b0, b1, b2, . . .}]
and we can introduce the notion of convergent-like for the classic continued fraction. (For a
complete survey of the Jacobi–Perron algorithm see [4]). The finite bifurcating continued
fraction

[{a0, a1, . . . , an}, {b0, b1, . . . , bn}] =
(

An

Cn
,
Bn

Cn

)

, for all n ≥ 0
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is called nth convergent, where the integers An, Bn, Cn are defined by the following recurrent
relations (see, e.g., [11, 12]) for every n ≥ 3:











An = anAn−1 + bnAn−2 +An−3

Bn = anBn−1 + bnBn−2 +Bn−3

Cn = anCn−1 + bnCn−2 + Cn−3.

(2.4)

We can introduce the convergents of a bifurcating continued fraction using a matricial descrip-
tion, like for the classic continued fractions. It is easy to prove by induction that





a0 1 0
b0 0 1
1 0 0



 · · ·





an 1 0
bn 0 1
1 0 0



 =





An An−1 An−2

Bn Bn−1 Bn−2

Cn Cn−1 Cn−2



 (2.5)

m
(

An

Cn
,
Bn

Cn

)

= [{a0, . . . , an}, {b0, . . . , bn}].

Remark 2.1. We observe that the algorithm (2.1) does not provide every bifurcating continued
fraction expansion (2.3). Indeed, it is easy to prove that using equations (2.1) we always obtain
ai ≥ bi for all i ≥ 1. However, a bifurcating continued fraction can represent a couple of real
numbers (i.e., the limit of the convergents exists and it is finite), although it is not obtained
starting from the Jacobi algorithm.

Every periodic bifurcating continued fraction converges to a couple of cubic irrationalities,
but the viceversa is unproved. We do not know if, given any cubic irrationality, another cubic
irrationality ever exists such that their bifurcating continued fraction expansion is periodic.
Therefore, the Hermite problem is still open for any algebraic irrationalities, except for the
quadratic case.

The properties of the Jacobi algorithm can be studied by using the characteristic polynomial
of the matrices (2.5). For instance, if we consider the purely periodic bifurcating continued
fraction (α, β) = [{a0, . . . , an}, {b0, . . . , bn}], such fraction converges to cubic irrationalities
related to the roots of the polynomial

det





An − x An−1 An−2

Bn Bn−1 − x Bn−2

Cn Cn−1 Cn−2 − x



 = 0.

Moreover, it is possible to directly study the convergence, considering that in this case we can
write (α, β) = [{a0, . . . , an, α}, {b0, . . . , bn, β}] and

α =
αAn + βAn−1 +An−2

αCn + βCn−1 + Cn−2
, β =

αBn + βBn−1 +Bn−2

αCn + βCn−1 +Cn−2
.

Similar considerations can be performed in the case of eventually periodic fractions.
The difficulties to prove an analog of the Lagrange Theorem (every quadratic irrational

has periodic continued fraction expansion) arise by the fact that there are no explicit forms
for cubic irrationalities. For this reason many different studies of the Jacobi algorithm has
been performed. For example, the discussion of bifurcating continued fractions is related to
the problem of finding units in cubic fields. Other ways involve the research of bound for the
partial quotients and the convergents.
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The Jacobi algorithm can also be approached studying a transformation of R2 into itself
(see [22]), defined as follows:

T (α, β) =

(

β

α
−
[

β

α

]

,
1

α
−
[

1

α

])

.

Using the following auxiliary maps over R2, defined by

τ(α, β) =

[

1

α

]

, η(α, β) =

[

β

α

]

,

the partial quotients of the Jacobi algorithm are determined by
{

ai = τ(αi, βi)

bi = η(αi, βi)
(2.6)

where (αi, βi) = T (αi−1, βi−1), for i = 0, 1, 2, . . .. Initializing the procedure with α0 =
1

x
and

β0 =
y

x
, for any couple of real numbers x and y, the sequence of partial quotients provided by

equation (2.6) coincides with the sequence provided by the Jacobi algorithm as presented in
(2.1). In this way periodicity, convergence and other properties of the Jacobi algorithm can
be found studying the transformation T which satisfies ergodic properties.

In the next section, we propose a different approach, studying the convergence properties
of some polynomials and exploiting the fact that they satisfy linear recurrent relations.

3. Generalized Rédei Rational Functions and Periodic Representations of

Cubic Roots

As we have seen in the introduction, Rédei rational functions are strictly connected to
square roots. In this paragraph we propose a generalization of the Rédei polynomials related
to every algebraic irrationality. Successively we will focus on cubic irrationalities, highlighting
a connection with bifurcating continued fractions and the Hermite problem.

Instead of considering the expansion of (z +
√
d)n, we start analyzing the expansion of

(z+
e

√
de−1)n, where d is not an eth power. We observe that in the expansion of (z+

e

√
de−1)n

we have coefficients for
e

√
d2,

e

√
d3, . . . ,

e

√
de−1. Thus, we use e polynomials in order to write its

expansion:

(z +
e

√
de−1)n = µn(e, 0, d, z) + µn(e, 1, d, z)

e

√
d+ · · ·+ µn(e, e − 1, d, z)

e

√
de−1, (3.1)

where

µn(k) = µn(e, k, d, z) =

n
∑

h=0

(

n

eh− k

)

d(e−1)h−kzn−eh+k. (3.2)

Using the e× e matrix














z d 0 . . . 0
0 z d . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 z d
1 0 0 . . . z















, (3.3)
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whose characteristic polynomial (x−z)e−de−1 has root of larger modulus z+d(e−1)/e, defining
µn(k) = µn(e, k, d, z) for k = 0, 1, . . . , e− 1, we have















z d 0 . . . 0
0 z d . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 z d
1 0 0 . . . z















n

=











µn(0) dµn(e− 1) . . . dµn(1)

µn(1)
. . .

. . .
...

...
. . .

. . . dµn(e− 1)
µn(e− 1) . . . µn(1) µn(0)











.

Example 3.1. When e = 3, we have




z d 0
0 z d
1 0 z





n

=





µn(0) dµn(2) dµn(1)
µn(1) µn(0) dµn(2)
µn(2) µn(1) µn(0)



 .

Remark 3.2. The sequences of polynomials µn are linear recurrent sequences. Indeed, they
correspond to the entries of a matrix power, and so they recur with the characteristic polyno-
mial of the resulting power matrix. In particular the sequence (µn(e, k, d, z))

∞

n=0 recurs with
polynomial (x− z)e − de−1.

We can observe the convergence of the polynomials µn:

lim
n→∞

µn(e, k, d, z)

µn(e, e− 1, d, z)
=

e

√
de−k−1, k = 0, . . . , e− 2.

Now, we focus our attention on the cubic case. In the next theorem we prove the convergence
of the polynomials µn (since these polynomials will be used in the next paragraph) when e = 3.

Theorem 3.3. Let d be a non-cube integer. Then

lim
n→∞

µn(3, 0, d, z)

µn(3, 2, d, z)
=

3
√
d2

lim
n→∞

µn(3, 1, d, z)

µn(3, 2, d, z)
=

3
√
d.

Proof. The sequence (µn(3, k, d, z))
∞

n=0 recurs with polynomial (x− z)3 − d2 having real root

α1 = z +
3
√
d2 of larger modulus than the remaining roots α2, α3. By the Binet formula











µn(3, 0, d, z) = a1α
n
1 + a2α

n
2 + a3α

n
3

µn(3, 1, d, z) = b1α
n
1 + b2α

n
2 + b3α

n
3

µn(3, 2, d, z) = c1α
n
1 + c2α

n
2 + c3α

n
3 .

Solving the systems










a1 + a2 + a3 = 1

a1α1 + a2α2 + a3α3 = z

a1α
2
1 + a2α

2
2 + a3α

2
3 = z2











b1 + b2 + b3 = 0

b1α1 + b2α2 + b3α3 = 0

b1α
2
1 + b2α

2
2 + b3α

2
3 = d











c1 + c2 + c3 = 0

c1α1 + c2α2 + c3α3 = 1

c1α
2
1 + c2α

2
2 + c3α

2
3 = 2z

we easily obtain

a1 =
1

3
, b1 =

1

3 3
√
d
, c1 =

1

3
3
√
d2
.
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Finally,
µn(3, 0, d, z)

µn(3, 2, d, z)
=

a1α
n
1 + a2α

n
2 + a3α

n
3

c1αn
1 + c2αn

2 + c3αn
3

→ a1

c1
=

3
√
d2

µn(3, 1, d, z)

µn(3, 2, d, z)
=

b1α
n
1 + b2α

n
2 + b3α

n
3

c1αn
1 + c2αn

2 + c3αn
3

→ b1

c1
=

3
√
d.

�

Now, we use the polynomials µn together with bifurcating continued fractions in order to
approximate cubic roots. In particular we provide a periodic bifurcating continued fraction
expansion for any cubic root, whose convergents are the ratios of these polynomials.

First of all, we study bifurcating continued fractions with rational partial quotients.

Remark 3.4. In [1] and [2], we have studied algebraic properties of continued fractions with
rational partial quotients. In this way, it is possible to obtain periodic expansions for quadratic
irrationalities more handily. Furthermore, these continued fractions have interesting properties
of approximations related to Rédei rational functions. At the same time, we proved that Newton
and Padé provide approximations of square roots. Thus, it seems natural to use rational partial
quotients with bifurcating continued fractions.

If we consider a bifurcating continued fraction
[{

a0

b0
,
a1

b1
, . . .

}

,

{

c0

d0
,
c1

d1
, . . .

}]

,

the sequences An, Bn, Cn in (2.4) are rational numbers. Therefore, we can study the recurrence
of numerators and denominators of such rational sequences. In the following theorem we
provide the result only for the sequence An. Similar results clearly hold for Bn, Cn.

Lemma 3.5. Given
[{

a0

b0
,
a1

b1
, . . .

}

,

{

c0

d0
,
c1

d1
, . . .

}]

,

let (An)
∞

n=0, (Bn)
∞

n=0, (Cn)
∞

n=0 be the sequences such that
[{

a0

b0
, . . . ,

an

bn

}

,

{

c0

d0
, . . . ,

cn

dn

}]

=

(

An

Cn
,
Bn

Cn

)

for all n ≥ 0. Then An =
sn

tn
for every n ≥ 0, where

{

s−1 = 1/d0, s0 = a0, s1 = a0a1d1 + b0b1c1

sn = andnsn−1 + bnbn−1cndn−1sn−2 + bnbn−1bn−2dndn−1dn−2sn−3, n ≥ 2

and
{

t0 = b0

tn = b0
∏n

i=1 bidi, n ≥ 1.

Proof. We prove the theorem by induction. The verification of the inductive basis is straight-
forward.

Let us suppose the thesis is true for all the integers less or equal to n − 1 and we prove it
for n. Considering the recurrences (2.4) and the inductive hypothesis, we have

An =
an

bn
An−1 +

cn

dn
An−2 +An−3 =

an

bn

sn−1

tn−1
+

cn

dn

sn−2

tn−2
+

sn−3

tn−3
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=
ansn−1

bnb0b1d1 · · · bn−1dn−1
+

cnsn−2

dnb0b1d1 · · · bn−2dn−2
+

sn−3

b0b1d1 · · · bn−3dn−3

=
andnsn−1 + bnbn−1cndn−1sn−2 + bnbn−1bn−2dndn−1dn−2sn−3

b0b1d1 · · · bndn
=

sn

tn
.

�

Remark 3.6. Even if we have posed the condition s−1 = 1/d0, the sequence (sn)
∞

n=0 is an
integer sequence, since

s2 = a2d2s1 + b2b1c2d1s0 + b2b1b0d2d1.

It is possible to prove similar results for (Bn) and (Cn):

Bn =
s′n
t′n

n ≥ 0,

where (s′n)
∞

n=0 recurs as the sequence (sn), but with initial conditions










s′0 = c0

s′1 = a1c0 + b1d0

s′2 = b1b2c0c2 + a1a2c0d2 + a2b1d0d2

and
{

t′0 = d0, t′1 = d0b1

t′n = d0b1
∏n

i=2 bidi, n ≥ 2.

Similarly we obtain

Cn =
s′′n
t′′n
, n ≥ 0,

where (s′′n)
∞

n=0 recurs as (sn) with initial conditions
{

s′′0 = 1, s′′1 = a1

s′′2 = b1b2c2 + a1a2d2

and
{

t′′0 = 1, t′′1 = b1

t′′n = b1
∏n

i=2 bidi, n ≥ 2.

We can conclude that we have the following expressions for the convergents of a bifurcating
continued fraction with rational partial quotients:

A0

C0
=

s0

b0s
′′

0

,
An

Cn
=

sn

b0d1s′′n
for all n ≥ 1

and
Bn

Cn
=

s′n
d0s′′n

for all n ≥ 0,

where the sequences (sn), (s
′

n), (s
′′

n) are integer sequences.
Now, we study the Hermite problem for cubic irrationalities, observing a connection between

the polynomials µn and the bifurcating continued fractions. By using rational partial quotients

we can give a periodic expansion for every couple of cubic irrationalities of the kind (
3
√
d2, 3

√
d),

whose approximations are provided by the polynomials µn. In order to do this, we recall that
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polynomials µn = µn(e, k, d, z), where now we consider e = 3, have the following matricial
representation:





z d 0
0 z d
1 0 z





n

=





µn(0) dµn(2) dµn(1)
µn(1) µn(0) dµn(2)
µn(2) µn(1) µn(0)



 , (3.4)

where we write the only dependence from k.

Theorem 3.7. The periodic bifurcating continued fraction
[{

z,
2z

d
,

3dz

z3 + d2
, 3z,

3z

d

}

,

{

0,−z2

d
,− 3z2

z3 + d2
,− 3dz2

z3 + d2
,−3z2

d

}]

(3.5)

converges for every integer z 6= 0 to the couple of irrationals (
3
√
d2, 3

√
d) and its convergents

are the couple of rationals
(

µn(3, 0, d, z)

µn(3, 2, d, z)
,
µn(3, 1, d, z)

µn(3, 2, d, z)

)

,

for µn(e, k, d, z) polynomials defined in (3.2), n ≥ 1.

Proof. By Theorem 3.3, we have only to prove that the convergents of (3.5) are
(

µn(3, 0, d, z)

µn(3, 2, d, z)
,
µn(3, 1, d, z)

µn(3, 2, d, z)

)

.

In this way the periodic bifurcating continued fraction (3.5) clearly converges to (
3
√
d2, 3

√
d).

For the sake of simplicity we specify only the dependence on k for the polynomials µn:

µn(3, k, d, z) = µn(k).

We will use the representation of the convergents showed in Lemma 3.5. We start by observing
that in this case we have

b0 = 1, d0 = 1, d1 = d

and

s0 = a0 = z = µ1(0), s1 = a0a1d1 + b0b1c1 = 2dz2 − dz2 = dz2 = dµ2(0),

s′0 = c0 = 0 = µ1(1), s′1 = a1c0 + b1d0 = d = µ2(1),

s′′0 = 1 = µ1(2), s′′1 = a1 = 2z = µ2(2).

Therefore, for the convergents of (3.5) we initially have

s0

b0s′′0
=

µ1(0)

µ1(2)
,

s′0
d0s′′0

=
µ1(1)

µ1(2)
,

s1

b0d1s′′1
=

s1

ds′′1
=

µ2(0)

µ2(2)
,

s′1
d0s′′1

=
µ2(1)

µ2(2)
.

Now, we prove by induction the following relation:

sn = d

[

2(n+1)
3

]

(d2 + z3)[
2n
3 ]µn+1(0), for all n ≥ 2. (3.6)

The inductive basis is straightforward, finding that

s2 = d2(d2 + z3)µ3(0).
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We now proceed with the induction, supposing true the thesis for every integer less or equal
to n− 1 and proving the thesis for n. Since the period of the fraction is 3, we have to discuss
3 cases for n, i.e.,

n ≡ 0 (mod 3), n ≡ 1 (mod 3), n ≡ 2 (mod 3).

In this proof we only consider the case n ≡ 0 (mod 3); for the other case the proof is similar.
By Lemma 3.5 we know that

sn = andnsn−1 + bnbn−1cndn−1sn−2 + bnbn−1bn−2dndn−1dn−2sn−3.

Since n ≡ 0 (mod 3), we have










an = 3z, bn = 1, cn = −3dz2, dn = z3 + d2,

an−1 = 3dz, bn−1 = z3 + d2, cn−1 = −3z2, dn−1 = z3 + d2,

an−2 = 3z, bn−2 = d, cn−2 = −3z2, dn−2 = d.

Thus, considering the inductive hypothesis, we have

sn = 3z(d2 + z3)d[
2n
3 ](d2 + z3)[

2n−2
3 ]µn(0)

− 3z2d(d2 + z3)2d

[

2(n−1)
3

]

(d2 + z3)[
2n−4

3 ]µn−1(0)

+ (d2 + z3)3d2d

[

2(n−2)
3

]

(d2 + z3)[
2n−6

3 ]µn−2(0),

i.e.,

sn = 3zd[
2n
3 ](d2 + z3)[

2n+1
3 ]µn(0)

− 3z2d[
2n+1

3 ](d2 + z3)

[

2(n+1)
3

]

µn−1(0)

+ (d2 + z3)d

[

2(n+1)
3

]

(d2 + z3)[
2n
3 ]µn−2(0).

Since n ≡ 0 (mod 3), i.e., n = 3k, we have the following identities
[

2n

3

]

=

[

2(n + 1)

3

]

=

[

2n + 1

3

]

.

Indeed,
[

2 · 3k
3

]

= 2k,

[

2(3k + 1)

3

]

=

[

2k +
2

3

]

= 2k,

[

2 · 3k + 1

3

]

=

[

2k +
1

3

]

= 2k.

Therefore, we have

sn = d

[

2(n+1)
3

]

(d2 + z3)[
2n
3 ](3zµn(0)− 3z2µn−1(0) + (d2 + z3)µn−2(0))

and remembering the recurrence relation involving the polynomials µn, the equation (3.6)
follows. It is possible to prove in a similar way the formulas

s′n = d[
2n−1

3 ](d2 + z3)[
2n
3 ]µn+1(1), for all n ≥ 2,

ds′′n = d

[

2(n+1)
3

]

(d2 + z3)[
2n
3 ]µn+1(2), for all n ≥ 2.

Hence, for the couple of convergents of the fraction (3.5) we obtain

sn

b0d1s′′n
=

sn

ds′′n
=

µn+1(0)

µn+1(2)
, for all n ≥ 2,

AUGUST 2012 261



THE FIBONACCI QUARTERLY

s′n
d0s′′n

=
s′n
s′′n

=
µn+1(1)

µn+1(2)
, for all n ≥ 2

and, considering what has been observed for indexes n = 0, 1, the proof is complete. �

In the previous theorem we saw an important result about cubic roots. Indeed, we found a
periodic representation in the sense of the Hermite problem providing rational approximations
for cubic roots related to a generalization of the Rédei rational functions. It is interesting to
note that the previous representation is valid for every choice of z integer, providing in this
way different rational approximations for the same cubic root. Moreover, the period of (3.5) is
really short and it is in general shorter than the period of the bifurcating continued fractions
obtained from the Jacobi algorithm. We highlight such considerations and the differences
between our representation and the Jacobi one in the next examples.

Example 3.8. Let us consider the cubic roots ( 3
√
16, 3

√
4). Choosing, for example, z = [ 3

√
16] =

2, by the previous theorem, we have

(
3
√
16,

3
√
4) =

[{

2, 1, 1, 6,
3

2

}

,

{

0,−1,−1

2
,−2,−3

}]

,

against the Jacobi algorithm which seems to have non–periodicity. Indeed, evaluating the first
1000 partial quotients of the expansion of ( 3

√
16, 3

√
4) no periodic patterns appear with the

Jacobi algorithm.

Example 3.9. Let us consider the cubic roots ( 3
√
25, 3

√
5). In this case the Jacobi algorithm

provides a periodic expansion of period 6 and pre-period 7, given by

[{2, 1, 3, 2, 1, 1, 7, 1, 1, 2, 3, 1, 6}, {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}]
against our representation of period 3 and pre-period 2, which, choosing for example, z =
[ 3
√
5] = 1, is

[{

1,
2

5
,
15

26
, 3,

3

5

}

,

{

0,−1

5
,− 3

26
,−15

26
,−3

5

}]

.

Finally, previous representation allow us to retrieve periodic representations and approxima-
tions by using linear recurrent sequences for a vast class of cubic irrationalities. The sequences
(An)

+∞

n=0, (Bn)
+∞

n=0, (Cn)
+∞

n=0 determine the convergents of the fraction (3.5), if we consider the
matrix





a00 a01 a02
a10 a11 a12
a20 a21 a22









An An−1 An−2

Bn Bn−1 Bn−2

Cn Cn−1 Cn−2



 =





Ãn Ãn−1 Ãn−2

B̃n B̃n−1 B̃n−2

C̃n C̃n−1 C̃n−2



 .

it is easy to study the convergence of
Ãn

C̃n

and
B̃n

C̃n

. In fact, we have

lim
n→∞

Ãn

C̃n

= lim
n→∞

a00An + a01Bn + a02Cn

a20An + a21Bn + a22Cn
= lim

n→∞

a00
An

Cn

+ a01
Bn

Cn

+ a02

a20
An

Cn

+ a21
Bn

Cn

+ a22
,

i.e.,

lim
n→∞

Ãn

C̃n

=
a00

3
√
d2 + a01

3
√
d+ a02

a20
3
√
d2 + a21

3
√
d+ a22

(3.7)
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and similarly

lim
n→∞

B̃n

C̃n

=
a10

3
√
d2 + a11

3
√
d+ a12

a20
3
√
d2 + a21

3
√
d+ a22

. (3.8)

Therefore, starting from the approximations of the previous theorem we can construct rational
approximations, connected to generalized Rédei polynomials, for all these cubic irrationalities.
However, we do not know if these approximations correspond to convergents of some bifurcat-
ing continued fraction. To make this happen, it is necessary to express the matrix





a00 a01 a02
a10 a11 a12
a20 a21 a22





as a product of matrices of type (2.5). The problem of the factorization of any matrix into a
product of the kind (2.5) is very difficult and we do not study it in this paper. However, we
can obtain another interesting result. If we consider the product

A =





a0 1 0
b0 0 1
1 0 0



 · · ·





a3 1 0
b3 0 1
1 0 0



 ,

the matrix A has first row with entries

a0 + a3 + a0a1a2a3 + a2a3b1 + a0a3b2 + a0a1b3 + b1b3, 1 + a0a1a2 + a2b1 + a0b2, a0a1 + b1

and third row with entries

1 + a1a2a3 + a3b2 + a1b3, a1a2 + b2, a1.

If these entries are matched with the entries of a generic matrix




a00 a01 a02
a10 a11 a12
a20 a21 a22





the system has rational solutions


































a0 = 1, a1 = a22

a2 =
1− a01 + a21

a22 − a02
, a3 =

a22 − a00a22 + a02a20 − a22

a02a21 − a01a22
b0 = 1, b1 = a02 − a22

b2 =
a01a22 − a22 − a02a21

a22 − a02
, b3 =

a21 − a00a21 + a01a20 − a01

a01a22 − a02a21
.

Using these choices for ai, bi, i = 0, 1, 2, 3, the second row of the matrix A cannot clearly be
any row, but it will be determined by these values. Therefore, we are able to construct a
periodic bifurcating continued fraction for any cubic irrationality (3.7) paired with another
determined cubic irrationality, starting from the fraction (3.5).
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