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Abstract. This paper generalizes a result of Gerdemann to show (with slight variations in
some special cases) that, for any real number m and Horadam function Hn(A,B, P,Q),

mHn(A,B, P,Q) =
k∑

i=h

tiHn+i(A,B, P,Q),

for two consecutive values of n, if and only if,

m =

k∑

i=h

tia
i =

k∑

i=h

tib
i

where a =
P+

√

P2
−4Q

2
and b =

P−

√

P2
−4Q

2
. (Horadam functions are defined by: H0(A,B, P,Q) =

A, H1(A,B, P,Q) = B, Hn+1(A,B, P,Q) = PHn(A,B, P,Q)−QHn−1(A,B, P,Q).) Further
generalizations to the solutions of arbitrary linear recurrence relations are also considered.

1. Introduction and Notation

Horadam functions were first studied by Horadam in [6] and [7]. They can be defined by
the following definition.

Definition 1.1. Let H0(A,B,P,Q) = A, H1(A,B,P,Q) = B, and for n ≥ 1 let

Hn+1(A,B,P,Q) = PHn(A,B,P,Q) −QHn−1(A,B,P,Q).

Special cases include the Lucas functions

Un(P,Q) = Hn(0, 1, P,Q) and Vn(P,Q) = Hn(2, 1, P,Q),

the Pell polynomials Pn(x) = Un(2x,−1), the modified Pell polynomials qn(x) = Hn(1, x, 2x,−1)
and q∗n(x) = Hn(1, 1, 2x,−1) as well as the Pell numbers Un(1,−2), the Lucas numbers
Vn(1,−1), the Jacobstahl numbers Un(1,−2) and, of course, the Fibonacci numbers Fn =
Un(1,−1).

Often Hn(A,B,P,Q) will be abbreviated to Hn and Un(P,Q) to Un.
There are 84 pages on Horadam functions in OEIS, however most of the functions men-

tioned specifically have Hn = Un or Un+1. Two exceptions are Hn(1, 3,−1, 1), (A048739) and
Hn(1, 4, 2,−1), (A048654).

Usually A,B,P and Q are taken to be integers. Lehmer in [8] does allow P to be the square
root of an integer. In most of this paper A,B,P and Q can be arbitrary complex numbers.

Two important functions of P and Q, which appear in the explicit forms of Hn and Un are
now defined.

Definition 1.2. a(P,Q) and b(P,Q) are the roots of the equation x2 − Px+Q = 0.

304 VOLUME 50, NUMBER 4



HORADAM FUNCTIONS AND POWERS OF IRRATIONALS

These will usually be written as a and b. If P 2−4Q is real and positive these can be written
as:

a =
P +

√

P 2 − 4Q

2
, b =

P −
√

P 2 − 4Q

2
.

2. Some Properties of Horadam Functions

We now list some known results. These are as in Horadam [6], except that he only gives
some special cases of (ii).

Theorem 2.1.

(i) If n ≥ 0 and P 2 6= 4Q, Hn =
(

B−Ab
a−b

)

an +
(

B−Aa
b−a

)

bn.

(ii) If n ≥ 0, Hn(A,B,P, P 2/4) = nB(P/2)n−1 − (n − 1)A(P/2)n.
(iii) If n ≥ 0 and P 2 6= 4Q, Un = an−bn

a−b
.

(iv) If n ≥ 0, Un(P,P
2/4) = n(P/2)n−1.

We also list some obvious special cases.

Corollary 2.2.

(i) If P 2 6= 4Q, B = Ab and n ≥ 0,Hn = Abn.
(ii) If P 2 6= 4Q, B = Aa and n ≥ 0,Hn = Aan.
(iii) If B = (P/2)A, P 2 = 4Q and n ≥ 0,Hn = A(P/2)n = Aan = Abn.
(iv) If P = 0 and n ≥ 0, H2n = (−Q)nA and H2n+1 = (−Q)nB.
(v) If P 6= 0, Q = 0 and n > 0, Hn = BPn−1.
(vi) If P = Q = 0 and n > 1, Hn = 0.

The next theorem relates Horadam functions to Lucas and other Horadam functions. The
q = 0 case of (i) also appears in Horadam [6].

Theorem 2.3.

(i) If n > q ≥ 0, Hn = Uq+1Hn−q −QUqHn−q−1.
(ii) Hn(A,B,P,Q) = Hn−1(B,BP −AQ,P,Q)

= Hn−i(Hi(A,B,P,Q),Hi+1(A,B,P,Q), P,Q).
(iii) Hn(A,AP,P,Q) = AUn+1(P,Q).
(iv) kHn(A,B,P,Q) = Hn(kA, kB,P,Q).
(v) knHn(A,B,P,Q) = Hn(A, kB, kP, k2Q).

Proof.

(i) By induction on q. If q = 0, Hn = 1 ·Hn −Q · 0 ·Hn−1. If the result holds for q, then
Hn = Uq+1(PHn−q−1 −QHn−q−2)−QUqHn−q−1 = Uq+2Hn−q−1 −QUq+1Hn−q−2. So
the result holds for all n > q ≥ 0.

(ii) By the recurrence relation for Un and (i),

Hn(A,B,P,Q) = (BP −AQ)Un−1 −BQUn−2

= Hn−1(H1,H2, P,Q)

= Hn−2(H2,H3, P,Q)

= . . .

= Hn−i(Hi,Hi+1, P,Q).
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(iii) By (i).
(iv) By Theorem 2.1(i) and (ii).
(v)

ka(P,Q) =
kP +

√

(kP )2 − 4k2Q

2

= a(kP, k2Q).

Similarly, kb(P,Q) = b(kP, k2Q). So if P 2 6= 4Q,

Hn(A, kB, kP, k2Q) =

(

kB −Akb(P,Q)

k(a(P,Q) − b(P,Q))

)

knan(P,Q)

−
(

kB −Aka(P,Q)

k(b(P,Q)− a(P,Q)

)

knbn(P,Q)

= knHn(A,B,P,Q).

Hn(A, kB, kP, k2P 2/4) = nBkn(P/2)n−1 − (n − 1)Akn(P/2)n

= knHn(A,B,P, P 2/4).

�

The recurrence relation for Fn can be used to define Fn for n < 0. We will do the same for
Hn when this is possible.

Theorem 2.4. Hn(A,B,P,Q) can be consistently defined for n < 0 using the recurrence
relation if and only if

(i) Q 6= 0, as in Theorem 2.1(i) or (ii), where also, H−n(A,B,P,Q) = Q−nHn(A,PA −
B,P,Q) = Hn(A,

PA−B
Q

, P/Q, 1/Q).

(ii) Q = 0, B = PA; if P 6= 0 by Hn = PnA, if P = A = 0 by Hn = 0.

Proof.

(i) If Q 6= 0, as P = a+ b and Q = ab, the recurrence relation gives, if P 2 6= 4Q,

Hn−1 =
Hn+1 − (a+ b)Hn

−ab
=

(

B −Ab

a− b

)

an−1 +

(

B −Aa

b− a

)

bn−1,

so, given Hn and Hn+1, Hm can be defined for all m < n, with the explicit expression
of Theorem 2.1(i).

By Q = ab and Theorem 2.1(i),

Q−nHn(A,PA−B,P,Q) =

(

PA−B −Ab

a− b

)

b−n +

(

PA−B −Aa

b− a

)

a−n

=

(

B −Ab

a− b

)

a−n +

(

B −Aa

b− a

)

b−n

= H−n(A,B,P,Q).

If P 2 = 4Q 6= 0, a = b = P/2 then, by the recurrence relation,

Hn−1 = 2nB(P/2)n−2 − 2(n− 1)A(P/2)n−1 − (n+ 1)B(P/2)n−2 + nA(P/2)n−1

= (n − 1)B(P/2)n−2 − (n− 2)A(P/2)n−1,
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so Hm can be defined for m < n, with the explicit representation of Theorem 2.1(ii).

Q−nHn(A,PA−B,P, P 2/4) = (P/2)−2n(n(PA−B)(P/2)n−1 − (n − 1)A(P/2)n)

= −nB(P/2)−n−1 + (n+ 1)A(P/2)−n

= H−n(A,B,P,Q).

By Theorem 2.3(v), Hn(A, (PA −B)/Q,P/Q, 1/Q) = Q−nHn(A,PA−B,P,Q).
(ii) If Q = 0 and Hn is to be defined for n < 0 by the recurrence relation, we must have

B = H1 = PH0 − 0H−1 = PA.

If P 6= 0, H0 = PH−1 − 0H−2 gives H−1 = P−1A. Similarly, for any n < 0, Hn = PnA. If
P = 0, H−i = A = PH−i−1 − 0H−i−2 = 0, for i ≥ 0, so A = B = 0 and Hn = 0 for n < 0. �

Horadam [6] also has the P 2 > 4Q and +∞ cases of the following, but gets different results!

Theorem 2.5. If P and Q are real,

(i) P 2 > 4Q and

(a) P > 0, lim
n→∞

Hn+1

Hn

= a, and if Q 6= 0 and either A 6= 0 or B 6= 0 is 0,

lim
n→−∞

Hn+1

Hn

= b.

(b) P < 0, lim
n→∞

Hn+1

Hn

= b, and if Q 6= 0 and either A 6= 0 or B 6= 0 is 0,

lim
n→−∞

Hn+1

Hn

= a.

(ii) If P 2 = Q > 0, lim
n→±∞

Hn+1

Hn

= P/2 = a = b.

(iii) If P = 0, H2n+1

H2n
= B

A
and H2n+2

H2n+1
= −QA

B
.

Proof.

(i) If P 2 > 4Q,

Hn+1

Hn

=

(

B−Ab
a−b

)

an+1 +
(

B−Aa
b−a

)

bn+1

(

B−Ab
a−b

)

an +
(

B−Aa
b−a

)

bn
.

(a) So if P > 0, |a| > |b| and lim
n→∞

Hn+1

Hn

= a, and, provided Hn for n < 0 is defined

and not identically 0, i.e. Q 6= 0 and either A 6= 0 or B 6= 0 is 0, lim
n→−∞

Hn+1

Hn

= b.

(b) If P < 0, |b| > |a| and lim
n→∞

Hn+1

Hn

= b, and, provided Hn for n < 0 is defined and

not identically 0, i.e. Q 6= 0 and either A 6= 0 or B 6= 0 is 0, lim
n→−∞

Hn+1

Hn

= a.

(ii) If P 2 = 4Q,

Hn+1

Hn

=
(n+ 1)B(P/2)n − nA(P/2)n+1

nB(P/2)n−1 − (n− 1)A(P/2)n
=

(n+ 1)BP/2− nA(P/2)2

nB − (n− 1)AP/2
.

So, lim
n→∞

Hn+1

Hn

= P/2.

(iii) By Corollary 2.2(iv).

�
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Note that Horadam [6] has, for P 2 > 4Q:

lim
n→∞

Hn+1

Hn

= a, if −1 ≤ b ≤ 1, which is equivalent to −P − 1 ≤ Q and either P < 2 or

P ≥ 2 and Q ≤ P − 1,
and

lim
n→∞

Hn+1

Hn

= b, if −1 ≤ a ≤ 1, which is equivalent to P − 1 ≤ Q and either P > −2 or

Q ≤ −P − 1 and P ≤ −2.

We can have both conditions holding, for example if P = 1 and Q = 0, a = 1, and b = 0, or

neither. Another example would be when P = 3 and Q = −5, a = 3+
√
29

2
, b = 3−

√
29

2
.

The following theorem is needed later.

Theorem 2.6.

(i) Hn − bHn−1 = (B −Ab)an−1.
(ii) Hn − aHn−1 = (B −Aa)bn−1.

Proof. (i) If P 2 6= 4Q, Hn − bHn−1 =
(

B−Ab
a−b

)

an +
(

B−Ab
b−a

)

an−1b = (B −Ab)an−1.

If P 2 = 4Q, a = b = P/2 and

Hn − bHn−1 = nB(P/2)n−1 − (n− 1)A(P/2)n − (n− 1)B(P/2)n−1 + (n − 2)A(P/2)n

= (B −Ab)an−1.

(ii) Similar.
�

3. Generalizing Gerdemann

Gerdemann’s Theorem 1.1 of [3] is a special case of the following theorem.

Theorem 3.1.

(i) If P,B 6= 0 and B = Aa,

mHn =

k
∑

i=h

tiHn+i (3.1)

for any one value of n, if and only if

m =

k
∑

i=h

tia
i. (3.2)

(ii) If P,B 6= 0 and B = Ab, equation (3.1) holds for any one value of n, if and only if

m =

k
∑

i=h

tib
i. (3.3)

(iii) If P,B 6= 0 and Q = 0, a = P and b = 0 or b = P and a = 0 and equation (3.1) holds
for any one value of n, if and only if equation (3.2) holds if a = P and equation (3.3)
holds if b = P .

(iv) If P,Q 6= 0 and equation (3.1) holds for any two values of n then equations (3.2) and
(3.3) hold.

(v) If P,Q 6= 0, P 2 − 4Q 6= 0 or B = AP/2, and equations (3.2) and (3.3) hold then
equation (3.1) holds.

308 VOLUME 50, NUMBER 4



HORADAM FUNCTIONS AND POWERS OF IRRATIONALS

Proof.

(i) If P,B 6= 0 and B = Aa, a 6= 0. If P 2 6= 4Q, by Corollary 2.2(ii) and Theorem 2.4(i)
and if P 2 = 4Q (as then a = b) by Corollary 2.2(iii) and Theorem 2.4(ii), Hr = Aar

whenever Hr is defined. Clearly equation (3.1) holds if and only if equation (3.2) holds.
(ii) As for (i) with Hr = Abr.
(iii) If P 6= 0 and Q = 0, a = P and b = 0 or a = 0 and b = P , so by Corollary 2.2(v) and

Theorem 2.4(ii), Hr = AP r−1. So equation (3.1) holds if and only if equation (3.2)
holds and if and only if a = P and b = 0 or if and only if equation (3.3) holds if b = P
and a = 0.

(iv) Assume that equation (3.1) holds for a particular n and also for some q < n. Applying
Theorem 2.3(i) to equation (3.1) gives

Un−qmHq+1 −QUn−q+1mHq =

k
∑

i=h

ji(Un−qHq+i+1 −QUn−q+1Hq+i). (3.4)

Adding QUn−q+1 times, equation (3.1), with q for n, to this and dividing by Un−q

(which is not 0 by Theorems 1(iii) and (iv)), gives equation (3.1) with q + 1 for n.
Similarly equation (3.1) can be derived whenever all the Horadam functions appearing
in it are definable. In particular we have equation (3.1) with n − 1 for n. and so, by
Theorem 2.6(i), as a 6= 0, equation (3.2) holds. Similarly by Theorem 2.6(ii), as b 6= 0,
equation (3.3) holds.

(v) If P,Q,P 2 − 4Q 6= 0, this follows by Theorem 2.1(i) and Theorem 2.4(i). If P,Q 6=
0, P 2 = 4Q and B = (AP )/2, it follows by Corollary 2.2(iii) and Theorem 2.4(i).

�

If any of the conditions in the parts of Theorem 3.1 fail, we show that the results will usually
fail.

If B = 0, H1 can be added to the right of equation (3.1), but the corresponding a1−n or
b1−n cannot be added to the right of equations (3.2) or (3.3). Also with h = k = 1 − n and
t1−n = a, equation (3.2) is m = aa1−n, while a2−nHn 6= aH1.

If P = 0, a =
√
−Q = −b, by Corollary 2.2(iv), equation (3.1) can be BH2n = AH2n+1.

Equations (3.2) and (3.3) fail as B need not equal ±A
√−Q. Also if −Q =

√−Qa is equation
(3.2) and equation (3.3) is Q =

√−Qb, then equation (3.1) fails as −QHn 6= ±√−QHn+1.
Now we give some more specific examples.

Examples.

1. Let P = 5, Q = 6, a = 3, b = 2. So if B = bA 6= aA and Hn = A2n, 14Hn =
3

∑

i=1

Hn+i,

while 14 =
3

∑

i=1

2i, but
3

∑

i=1

3i = 39 6= 14.

2. Let P = 1, Q = −1, a = 1+
√
5

2
, b = 1−

√
5

2
. So if B = bA 6= aA, Hn = Abn,

2Hn = Hn+1 +Hn−2, and 2 = a+ a−2 = b+ b−2.
3. Let P = Q = 4, A = 1 and B = 3, P 2 = 4Q, a = b = 2. So B 6= aP/2. We have

3H2 = H3 + H1 + H0 = 24, as equation (3.1) while equations (3.2) and (3.3) fail as
3 6= 2 + 2−1 + 2−2. Also equations (3.2) and (3.3) can hold as 4 = 2 + 2.2−1 + 4.2−2

while equation (3.1) fails as 4 = 4H0 6= H1 + 2H−1 + 4H−2 = 31/2.

NOVEMBER 2012 309



THE FIBONACCI QUARTERLY

4. Let P = 2i, Q = 31

2
, a =

(

2+3
√
2

2

)

i, b =
(

2−3
√
2

2

)

i. So 71

2
Hn = −Hn+2 − 7iHn−1 and

71

2
= −a2 − 7ia−1 = −b2 − 7ib−1.

Gerdemann’s version of Theorem 3.1 was as follows:

mFn =
k

∑

i=h

Fn+ci <=> m =
k

∑

i=h

τ ci (3.5)

where τ = 1+
√
5

2
.

Gerdemann also showed that, for any integer m, integers h, k, and ch, . . . , ck, independent
of n, can be found so that the left of this equivalence holds. Hence, any positive integer m
can be expressed as a sum of powers of τ .

4. Further Generalization

The anonymous referee suggested that the result could perhaps be generalized to higher
order linear recurrences such as:

Gn =
n−1
∑

i=n−s

qn−iGi (4.1)

where Gi = Ai for 0 ≤ i < s.
Grabner, Tichy, Nemes and Petho [4], in fact, do just that, in the special case where Gn is

a Pisot recurrence. This requires G0 = 0 Gk = q1Gk−1 + · · · + qkG0 + 1 for 1 ≤ k < s and
q1 ≥ q2 · · · ≥ qs.

Their Lemma 1.1 states that if Gn is a Pisot recurrence,

mGn =
k

∑

i=h

jiGn+i (4.2)

if and only if

m =

k
∑

i=h

jix
i (4.3)

where x is the dominating root of the equation

xs = q1x
s−1 + · · ·+ qs−1x+ qs. (4.4)

Without Gn being a Pisot recurrence, we can prove the following generalization of Theorem
3.1(iv) and (v).

Theorem 4.1.

(i) If equation (4.2) is obtained by the recurrence relation (4.1), and x is any root of
equation (4.4), then equation (4.3) holds.

(ii) If the solutions x of equation (4.4) are all distinct and equation (4.3) holds for all of
them, equation (4.2) holds.

Proof.
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(i) By induction on the number p of uses of equation (4.1) in the proof of equation (4.2).
If p = 0, h = k = 0 and j0 = m, so equation (4.3) holds. If equation (4.2) is obtained
by p uses of equation (4.1), equation (4.3) holds, and one further use of the recurrence
relation, in the form

Gn+r =

n+r−1
∑

i=n+r−s

qn+r−iGi

is used, the corresponding version of equation (4.3) is true as the corresponding change
requires

xn+r = q1x
n+r−1 + · · ·+ qs−1x

n+r+1−s + qsx
n+r−s.

(ii) If equation (4.3) holds for all solutions x1, . . . , xs of equation (4.4) and these solutions
are distinct,

Gn = k1x
n
1 + k2x

n
2 + · · ·+ ksx

n
s (4.5)

where k1, . . . , ks are functions of only G0, . . . , Gs−1, q1, . . . qs. Then

mGn =

k
∑

i=h

ji(k1x
i+n
1

+ · · ·+ ksx
i+n
s )

which is equation (4.2).

�

We could also prove counterparts to Theorem 3.1(i), (ii), and (iii) (where not only equation
(4.1) is used in the derivation of equation (4.2)), in the case where all the ki’s in equation
(4.5), except one, are zero. In view of the examples in Section 3, it is unlikely that much more
can be proved, particularly when the roots of equation (4.4) are not all distinct.

There is a lot of literature on expressing integers as sums of (generalized) Horadam func-
tions or powers of rational or irrational numbers, for example Fraenkel [2], Ambroz, Frougny,
Masakova, and Pelantova [1] and Hamlin and Webb [5], but only Gerdemann [3] and Grabner,
Tichy, Nemes, and Petho [4] have results such as those in Theorems 3.1 and 4.1. The referee
provided equation (4.2) for m = 1 to 100, for Padovan numbers Pn = Gn, as defined above,
with s = 3, q1 = 0, q2 = q3 = A0 = A1 = A2 = 1.
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