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Abstract. Two proofs, one using generating functions, the other bijective, are given for
the following theorem: The number of compositions of n into parts congruent to 1 (mod k)
equals the number of compositions of n+ k − 1 into parts greater than k − 1. This bijection
is then proven to hold for palindromic compositions. A more general theorem is presented in
conclusion.

1. Introduction

A composition of an integer n is a representation of n as a sum of strictly positive integers
called parts. For example consider the compositions of 4 listed below:

4, 3 + 1, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1

Definition 1.1. A composition, µ, with parts x1, x2, . . . , xi is represented by µ : x1 + x2 +
· · ·+ xi.

Definition 1.2. Let C(n, S) denote the number of compositions of n with parts taken from

the set S.

Definition 1.3. Let Zj be the set of all integers greater than j.

Definition 1.4. Let Ma,b the set of all positive integers congruent to a (mod b).

Now consider the proof of the following theorem using generating functions.

Theorem 1.5. Let the integer k ≥ 2. The number of compositions of n into parts congruent

to 1 (mod k) equals the number of compositions of n+ k − 1 into parts greater than k − 1.

Proof.
∞
∑

n=1

C(n,Zk−1)x
n =

∞
∑

m=1

(

xk + xk+1 + xk+2 + · · ·
)m

=

∞
∑

m=1

(

xk

1− x

)m

=
xk

1− x− xk

= xk−1 ·
x

1− x− xk

= xk−1 ·
∞
∑

m=1

(

x

1− xk

)m

= xk−1 ·

∞
∑

m=1

(

x+ xk + x2k + · · ·
)m
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= xk−1 ·
∞
∑

m=1

C(n,M1,k)x
m

=

∞
∑

m=1

C(n,M1,k)x
m+k−1

=

∞
∑

n=k

C(n+ k − 1,M1,k)x
n.

�

A bijective proof for Theorem 1.5 is presented in Section 3. We will then examine the
bijective map created in the proof of Theorem 1.5 to show that it preserves palindromicity
and thereby prove the theorem for palindromic compositions. We will conclude with a more
general theorem which encouraged the discovery of the presented results.

2. Definitions

When studying compositions it is useful to write them using a form called binary rep-
resentation, an idea pioneered by MacMahon (see [2, Sec. IV, Ch. 1, p. 151]). The binary

representation of a composition is a way of representing the composition in a sequence of zeros
and ones. Consider the following composition of seven:

2 + 1 + 3 + 1.

We can easily represent this composition by the following collection of dots separated by
vertical lines:

• • | • | • • • | • .

If we place a zero between each pair of dots where there is no vertical line and a one in place of
each vertical line we have 011001 which is the binary representation of the given composition
of seven.

We can now discuss the conjugate of a composition, represented by µ̄. Let Bµ = b1b2 . . . bk
be the binary representation of a composition µ. The binary representation of the conjugate
composition is given by B̄µ = (1 − b1)(1 − b2) · · · (1 − bk). If we consider the composition of
seven given in the previous example we find that it has a conjugate composition with a binary
representation of 100110 which corresponds to 1 + 3 + 1 + 2 (see [2, Sec. IV, Ch. 1, p. 151]).

Finally, the length, L(µ), of a composition µ is the number of parts in µ.

3. Finding the Bijection

Lemma 3.1. Let µ be a composition of an integer n with parts congruent to 1 (mod k). Let

µ̄ : y1 + y2 + · · · + ym for some positive integer m. Then yi = 1 for every i 6≡ 1 (mod k) and

L(µ̄) ≡ 1 (mod k).

Proof. Let µ : x1 + x2 + · · · + xr for some positive integer r. Consider Bµ, the binary rep-
resentation of µ. As a guiding example consider the following composition of 12 with parts
congruent to 1 (mod 3):

1 + 1 + 4 + 1 + 1 + 4.
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Now convert this composition to its appropriate bit map representation:

µ −→ Bµ : 1 + 1 + 4 + 1 + 1 + 4 7−→ 11000111000.

Since xi ≡ 1 (mod k) for every i, the zeros in Bµ are in blocks of length congruent to 0
(mod k). This is equivalent to saying that the number of zeros in Bµ is a multiple of k. Now
take the conjugate of Bµ. For our example this looks like:

Bµ −→ B̄µ : 11000111000 7−→ 00111000111.

Notice that since the zeros in Bµ were in blocks of length congruent to 0 (mod k), the ones
in B̄µ are in blocks of length congruent to 0 (mod k). We now convert B̄µ to its equivalent
composition, µ̄.

B̄µ −→ µ̄ : 00111000111 7−→ 3 + 1 + 1 + 4 + 1 + 1 + 1.

Note that blocks of zeros in B̄µ can be any possible size but these blocks are mapped to a
single integer in µ̄. Since the ones are guaranteed to be in blocks of length congruent to 0
(mod k) in B̄µ, ones will always appear in sequences of length k − 1 in µ̄. Thus yi is equal to
one for every i 6≡ 1 (mod k).

Finally, note that the number of ones in a binary representation plus one corresponds to the
length of a composition. Since the ones in B̄µ are in blocks congruent to 0 (mod k), the total
number of ones in B̄µ is a multiple of k. This implies that the composition corresponding to
B̄µ is of length congruent to 1 (mod k). Since B̄µ is the binary representation of µ̄, L(µ̄) ≡ 1
(mod k) . �

We will now find a bijection between C(n,Zk−1) and C(n+ k − 1,M1,k).

Bijective Proof of Theorem 1.5. Let µ be a composition of nwith parts congruent to 1 (mod k).
Map µ to its conjugate composition µ̄ through use of the binary representation. Let µ̄ :
y1 + y2 + · · · + ym. From Lemma 3.1 we have that L(µ̄) ≡ 1 (mod k). Now take the subse-
quence {yi}

m
i=1 for i ≡ 1 (mod k). We have:

{y1, yk+1, y2k+1, . . . , ym−k, ym}.

Now add the k − 1 right adjacent parts to each term in this sequence.

{y1 + (y2 + · · · + yk), . . . , ym−k + (ym−(k−1) + · · ·+ ym−1), ym}.

Since yi = 1 for every i 6≡ 1 (mod k) (result of Lemma 3.1), this is the same as adding k − 1
to every term of the sequence excluding ym because there are no terms right adjacent to ym.
We now have:

{y1 + (k − 1), yk+1 + (k − 1), . . . , ym−k + (k − 1), ym}.

We now add k − 1 to ym to ensure that ym is greater than k − 1:

{y1 + (k − 1), yk+1 + (k − 1), . . . , ym−k + (k − 1), ym + (k − 1)}.

Now each term in this sequence is greater than k − 1 and the sum of all the terms of the
sequence is equal to n + k − 1 because we only added an additional k − 1 to the original
sum which equaled n. For simplicity rename each term in the sequence z1, z2, . . . , zr. Now
z1 + z2 + · · · + zr is a composition of n+ k − 1 with parts greater than k − 1.

To map this composition back to the original one simply subtract k− 1 from each term and
the place k − 1 ones between each part. Then the conjugate of this composition will equal n
and will have parts congruent to 1 (mod k). �

This bijection was inspired by work done in a paper by A. Sills, [3, p. 351-352].
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4. Palindromic Compositions

A palindromic composition of n is a composition in which the parts are ordered such that
they are read the same forward and backwards. The parts of palindromic compositions satisfy
the following statement. Let µp : y1 + y2 + · · · + ym be a palindromic composition. Then
ym−j+1 = yj for any j = 1, 2, . . . ,m. The palindromic compositions of 4 are:

4, 2 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1.

These palindromic compositions possess an aesthetically pleasing appearance because of the
symmetry that is a direct result of their construction. As several beautiful aspects of nature
have been found to be riddled with the Fibonacci sequence one can only hope, or rather expect,
that these palindromic compositions may have a Fibonacci-like structure of their own.

Table 1. Palindromic Compositions with Parts Equal to 1 and 2.

n Palindromic Compositions Number of Palindromic Compositions
1 1 1
2 2, 1 + 1 2
3 1 + 1 + 1 1
4 2 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1 3
5 2 + 1 + 2, 1 + 1 + 1 + 1 + 1 2

2 + 2 + 2, 2 + 1 + 1 + 2
6 1 + 2 + 2 + 1, 1 + 1 + 2 + 1 + 1 5

1 + 1 + 1 + 1 + 1 + 1
2 + 1 + 1 + 1 + 2

7 1 + 2 + 1 + 2 + 1 3
1 + 1 + 1 + 1 + 1 + 1 + 1

...
...

...

For example, consider Table 1. If we examine the column listing the number of palindromic
compositions it seems that it is lining up with two Fibonacci sequences that have been inter-
twined. One could easily show that this sequence and the interleaved Fibonacci numbers have
equivalent generating functions thereby verifying our observation (see Hoggatt [1, p. 352]).

Lemma 4.1. Let {ai} be a palindromic sequence for i = 1, 2, . . . ,m where m ≡ 1 (mod k).
Then {aj} for all j ≡ 1 (mod k) is a palindromic subsequence.

Proof. Since {ai} is a palindromic sequence, am−j+1 = aj. Remove all ai where i 6≡ 1 (mod k).
We now have the subsequence:

{a1, ak+1, a2k+1, . . . , am−k, am}.

Since m ≡ 1 (mod k), there exists some positive integer p such that m = pk+1. We can now
rewrite the sequence substituting in pk + 1 for m as follows:

{a1, ak+1, a2k+1, . . . , a(p−1)k+1, apk+1}.
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Now we need to show that the terms of this subsequence are palindromic. We do this by
choosing an arbitrary term in the subsequence, a(p−r)k+1, and showing it is equal to ark+1:

a(p−r)k+1 = apk−rk+1

= apk+1−(rk+1)+1

= am−(rk+1)+1

= ark+1.

Thus, each term of the subsequence satisfies the definition of palindromicity. �

Corollary 4.2. The number of palindromic compositions of n into parts congruent to 1
(mod k) equals the number of palindromic compositions of n + k − 1 into parts greater than

k − 1.

Proof. All we need to do is show that the bijective map given in the proof of Theorem 1.5
preserves palindromicity. The first step of the bijection was to take the conjugate composition
of µ. By simply examining the definition of the conjugate composition it is clear that µ̄ will
be palindromic if µ is palindromic. From Lemma 4.1 we have that the subsequence used in
the map is palindromic if µ is palindromic. The final step is equivalent to adding k − 1 to
each term of the subsequence which does not alter palindromicity. Thus the map preserves
palindromicity. �

5. Conclusion

Theorem 1.5 is one case of the following previously unpublished theorem found by Sills and
myself. Let C(n; a, b; c) denote the number of compositions of n into parts congruent to a

(mod b), where each part is greater than or equal to c.

Theorem 5.1. Suppose a ≤ b. The number of compositions of n into parts congruent to a

(mod b) equals the number of compositions of n + b − a into parts congruent to b (mod a)
where each part is greater than b− a.

Proof.

∞
∑

n=a

C(n; a, b; a)xn =
∞
∑

m=1

(xa + xa+b + xa+2b + · · · )m

=

∞
∑

m=1

(
xa

1− xb
)m

=

xa

1−xb

1− xa

1−xb

=
xa

1− xb − xa

= xa−b ·
xb

1− xa − xb

= xa−b ·

∞
∑

m=1

(
xb

1− xa
)m

364 VOLUME 50, NUMBER 4



A BIJECTION BETWEEN TWO CLASSES OF RESTRICTED COMPOSITIONS

= xa−b ·

∞
∑

m=1

(xb + xb+a + xb+2a + · · · )m

= xa−b ·

∞
∑

n=b

C(n; b, a; b)xn

=

∞
∑

n=b

C(n; b, a; b)xn+a−b

=

∞
∑

n=a

C(n+ b− a; b, a; b)xn.

�

Now it is clear that Theorem 1.5 is the case of Theorem 5.1 when a = 1. The search remains
to find a bijective proof for any such a and b.
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