LIMITS OF POLYNOMIAL SEQUENCES

CLARK KIMBERLING

ABSTRACT. Certain sequences of recursively defined polynomials have limiting power series. This fact is proved for a class of second-order recurrences, and the problem for higher order recurrences is stated.

We begin with an example and then generalize. Let $p_0(x) = 1$, $p_1(x) = 1 + x$, and

$$p_n(x) = -xp_{n-1}(x) + (x^2 + 2x)p_{n-2}(x) + x + 1$$
(1)

for $n \geq 2$. Polynomials determined by these conditions are shown here:

$$p_{0}(x) = 1$$

$$p_{1}(x) = 1 + x$$

$$p_{2}(x) = 1 + 2x$$

$$p_{3}(x) = 1 + 2x + x^{2} + x^{3}$$

$$p_{4}(x) = 1 + 2x + 3x^{2} + x^{3} - x^{4}$$

$$p_{5}(x) = 1 + 2x + 3x^{2} + x^{3} + 2x^{4} + 2x^{5}$$

$$p_{6}(x) = 1 + 2x + 3x^{2} + 5x^{3} + 4x^{4} - 3x^{5} - 3x^{6}$$

$$p_{7}(x) = 1 + 2x + 3x^{2} + 5x^{3} + x^{5} + 9x^{6} + 5x^{7}$$

$$p_{8}(x) = 1 + 2x + 3x^{2} + 5x^{3} + 8x^{4} + 13x^{5} - 3x^{6} - 18x^{7} - 8x^{8}.$$

The list suggests that the polynomials "approach" a limiting series. The purpose of this note is to examine such limiting behavior.

Throughout, all polynomials have integer coefficients. The expression " $\lim_{n\to\infty} p_n$ exists" is defined from (2) as follows: for every $k \ge 0$, there exists N such that if $n \ge N$, then p(n+1,k) = p(n,k). That is, the coefficient of x^k in $p_n(x)$ eventually becomes constant. Writing that common coefficient as s_k and putting

$$S(x) = s_0 + s_1 x + s_2 x^2 + \cdots$$

gives

$$\lim_{n \to \infty} p_n = S.$$

For the example above, the limiting coefficients are Fibonacci numbers, and

$$S(x) = \frac{1+x}{1-x-x^2}$$

To generalize, suppose that

$$p_n = p_n(x) = p(n,0) + p(n,1)x + \dots + p(n,n)x^n$$
 (2)

LIMITS OF POLYNOMIAL SEQUENCES

are polynomials given by $p_0(x) = r$, $p_1(x) = sx + t$, and

$$p_n(x) = (ax+b)p_{n-1}(x) + (cx^2 + dx + e)p_{n-2}(x) + fx + g$$
(3)

for $n \ge 2$, where $a \ne 0$. For each $n \ge 0$, we seek recurrence relations for the numerical sequence p(n,k), for $k = 0, 1, 2, \ldots$ These coefficients p(n,k) are related to derivatives of $p_n(x)$ by Cauchy's formula,

$$p(n,k) = p_n^{(k)}(0)/k!$$
(4)

First,

$$p'_{n} = ap_{n-1} + dp_{n-2} + bp'_{n-1} + ep'_{n-2} + f + x(ap'_{n-1} + 2cp_{n-2} + dp'_{n-2}) + cx^{2}p'_{n-2},$$
(5)

from which it follows inductively that

$$p_n^{(k)} = k(ap_{n-1}^{(k-1)} + dp_{n-2}^{(k-1)} + (k-1)cp_{n-2}^{(k-2)}) + bp_{n-1}^{(k)} + ep_{n-2}^{(k)} + x(ap_{n-1}^{(k)} + 2kcp_{n-2}^{(k-1)} + dp_{n-2}^{(k)}) + cx^2p_{n-1}^{(k)}$$
(6)

for $k \ge 2$. Putting x = 0 in (6) and applying (4),

$$p(n,k) = ap(n-1,k-1) + dp(n-2,k-1) + cp(n-2,k-2) + bp(n-1,k) + ep(n-2,k)$$

for $n \ge 2$ and $k \ge 2$. Initial values are given by

$$p(0,0) = r, \ p(1,0) = t, \ p(1,1) = s$$

$$p(2,0) = bt + er + g,$$

$$p(2,1) = at + dr + bs + f,$$

and, for $n \geq 3$,

$$p(n,1) = ap(n-1,0) + dp(n-2,0) + bp(n-1,1) + ep(n-2,1) + f.$$
(7)

Suppose now that b = e = 0 in (3). Then by (7),

$$p(n,1) = ap(n-1,0) + dp(n-2,0) + f.$$
(8)

Also, p(n,0) = g for all $n \ge 2$, by (3), and $p(n,1) = p'_n(0) = ag + dg + f$ for all $n \ge 4$, by (5). Consequently, by (8),

$$p(n,2) = (a+d)(ag+dg+f) + cg$$

for all $n \ge 6$. Inductively, therefore, by (8), the coefficient p(n, k) is constant for all $n \ge 2k+2$, for all $k \ge 0$. Accordingly, $\lim_{n \to \infty} p_n$ exists, and substituting S(x) for each of $p_n(x)$, $p_{n-1}(x)$, and $p_{n-2}(x)$ in (3) yields

$$S(x) = \frac{g + fx}{1 - (a + d)x - cx^2}.$$

We close with questions.

- (1) Can $\lim_{n\to\infty} p_n$ exist when b and e are not both 0?
- (2) Do these results generalize for recurrences of higher order? Specifically, if $m \ge 3$ and polynomials $p_n(x)$ satisfy a recurrence

$$p_n(x) = q_1(x)p_{n-1}(x) + \dots + q_m(x)p_{n-m}(x) + r_m(x),$$

NOVEMBER 2012

THE FIBONACCI QUARTERLY

where $q_i(x)$ is a polynomial of degree *i* for $1 \leq i \leq m$ and $r_m(x)$ is a polynomial of degree m-1, then what conditions on the polynomials $q_i(x)$ ensure that $\lim_{n \to \infty} p_n$ exists?

MSC2010: 11B39

Department of Mathematics, University of Evansville, 1800 Lincoln Avenue, Evansville, IN 47722

 $E\text{-}mail \ address: \ \texttt{ck6@evansville.edu}$