LIMITS OF POLYNOMIAL SEQUENCES

CLARK KIMBERLING

Abstract

Certain sequences of recursively defined polynomials have limiting power series. This fact is proved for a class of second-order recurrences, and the problem for higher order recurrences is stated.

We begin with an example and then generalize. Let $p_{0}(x)=1, p_{1}(x)=1+x$, and

$$
\begin{equation*}
p_{n}(x)=-x p_{n-1}(x)+\left(x^{2}+2 x\right) p_{n-2}(x)+x+1 \tag{1}
\end{equation*}
$$

for $n \geq 2$. Polynomials determined by these conditions are shown here:

$$
\begin{aligned}
& p_{0}(x)=1 \\
& p_{1}(x)=1+x \\
& p_{2}(x)=1+2 x \\
& p_{3}(x)=1+2 x+x^{2}+x^{3} \\
& p_{4}(x)=1+2 x+3 x^{2}+x^{3}-x^{4} \\
& p_{5}(x)=1+2 x+3 x^{2}+x^{3}+2 x^{4}+2 x^{5} \\
& p_{6}(x)=1+2 x+3 x^{2}+5 x^{3}+4 x^{4}-3 x^{5}-3 x^{6} \\
& p_{7}(x)=1+2 x+3 x^{2}+5 x^{3}+x^{5}+9 x^{6}+5 x^{7} \\
& p_{8}(x)=1+2 x+3 x^{2}+5 x^{3}+8 x^{4}+13 x^{5}-3 x^{6}-18 x^{7}-8 x^{8} .
\end{aligned}
$$

The list suggests that the polynomials "approach" a limiting series. The purpose of this note is to examine such limiting behavior.

Throughout, all polynomials have integer coefficients. The expression " $\lim _{n \rightarrow \infty} p_{n}$ exists" is defined from (2) as follows: for every $k \geq 0$, there exists N such that if $n \geq N$, then $p(n+1, k)=$ $p(n, k)$. That is, the coefficient of x^{k} in $p_{n}(x)$ eventually becomes constant. Writing that common coefficient as s_{k} and putting

$$
S(x)=s_{0}+s_{1} x+s_{2} x^{2}+\cdots
$$

gives

$$
\lim _{n \rightarrow \infty} p_{n}=S .
$$

For the example above, the limiting coefficients are Fibonacci numbers, and

$$
S(x)=\frac{1+x}{1-x-x^{2}} .
$$

To generalize, suppose that

$$
\begin{equation*}
p_{n}=p_{n}(x)=p(n, 0)+p(n, 1) x+\cdots+p(n, n) x^{n} \tag{2}
\end{equation*}
$$

LIMITS OF POLYNOMIAL SEQUENCES

are polynomials given by $p_{0}(x)=r, p_{1}(x)=s x+t$, and

$$
\begin{equation*}
p_{n}(x)=(a x+b) p_{n-1}(x)+\left(c x^{2}+d x+e\right) p_{n-2}(x)+f x+g \tag{3}
\end{equation*}
$$

for $n \geq 2$, where $a \neq 0$. For each $n \geq 0$, we seek recurrence relations for the numerical sequence $p(n, k)$, for $k=0,1,2, \ldots$. These coefficients $p(n, k)$ are related to derivatives of $p_{n}(x)$ by Cauchy's formula,

$$
\begin{equation*}
p(n, k)=p_{n}^{(k)}(0) / k! \tag{4}
\end{equation*}
$$

First,

$$
\begin{equation*}
p_{n}^{\prime}=a p_{n-1}+d p_{n-2}+b p_{n-1}^{\prime}+e p_{n-2}^{\prime}+f+x\left(a p_{n-1}^{\prime}+2 c p_{n-2}+d p_{n-2}^{\prime}\right)+c x^{2} p_{n-2}^{\prime}, \tag{5}
\end{equation*}
$$

from which it follows inductively that

$$
\begin{align*}
p_{n}^{(k)}= & k\left(a p_{n-1}^{(k-1)}+d p_{n-2}^{(k-1)}+(k-1) c p_{n-2}^{(k-2)}\right)+b p_{n-1}^{(k)}+e p_{n-2}^{(k)} \\
& +x\left(a p_{n-1}^{(k)}+2 k c p_{n-2}^{(k-1)}+d p_{n-2}^{(k)}\right)+c x^{2} p_{n-1}^{(k)} \tag{6}
\end{align*}
$$

for $k \geq 2$. Putting $x=0$ in (6) and applying (4),

$$
\begin{aligned}
p(n, k)= & a p(n-1, k-1)+d p(n-2, k-1)+c p(n-2, k-2) \\
& +b p(n-1, k)+e p(n-2, k)
\end{aligned}
$$

for $n \geq 2$ and $k \geq 2$. Initial values are given by

$$
\begin{aligned}
& p(0,0)=r, p(1,0)=t, p(1,1)=s, \\
& p(2,0)=b t+e r+g \\
& p(2,1)=a t+d r+b s+f,
\end{aligned}
$$

and, for $n \geq 3$,

$$
\begin{equation*}
p(n, 1)=a p(n-1,0)+d p(n-2,0)+b p(n-1,1)+e p(n-2,1)+f . \tag{7}
\end{equation*}
$$

Suppose now that $b=e=0$ in (3). Then by (7),

$$
\begin{equation*}
p(n, 1)=a p(n-1,0)+d p(n-2,0)+f . \tag{8}
\end{equation*}
$$

Also, $p(n, 0)=g$ for all $n \geq 2$, by (3), and $p(n, 1)=p_{n}^{\prime}(0)=a g+d g+f$ for all $n \geq 4$, by (5). Consequently, by (8),

$$
p(n, 2)=(a+d)(a g+d g+f)+c g
$$

for all $n \geq 6$. Inductively, therefore, by (8), the coefficient $p(n, k)$ is constant for all $n \geq 2 k+2$, for all $k \geq 0$. Accordingly, $\lim _{n \rightarrow \infty} p_{n}$ exists, and substituting $S(x)$ for each of $p_{n}(x), p_{n-1}(x)$, and $p_{n-2}(x)$ in (3) yields

$$
S(x)=\frac{g+f x}{1-(a+d) x-c x^{2}} .
$$

We close with questions.
(1) Can $\lim _{n \rightarrow \infty} p_{n}$ exist when b and e are not both 0 ?
(2) Do these results generalize for recurrences of higher order? Specifically, if $m \geq 3$ and polynomials $p_{n}(x)$ satisfy a recurrence

$$
p_{n}(x)=q_{1}(x) p_{n-1}(x)+\cdots+q_{m}(x) p_{n-m}(x)+r_{m}(x),
$$

THE FIBONACCI QUARTERLY

where $q_{i}(x)$ is a polynomial of degree i for $1 \leq i \leq m$ and $r_{m}(x)$ is a polynomial of degree $m-1$, then what conditions on the polynomials $q_{i}(x)$ ensure that $\lim _{n \rightarrow \infty} p_{n}$ exists?

MSC2010: 11B39
Department of Mathematics, University of Evansville, 1800 Lincoln Avenue, Evansville, In 47722

E-mail address: ck6@evansville.edu

