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Abstract. Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural
number n is defined as the smallest natural number k such that n divides Fk. In this paper,
we prove that z(n) = n, if and only if n = 5k or 12 · 5k, for some k ≥ 0.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1+Fn, for n ≥ 0, where F0 = 0
and F1 = 1. These numbers are well-known for possessing amazing properties (consult [5]
together with its very extensive annotated bibliography for additional references and history).

The study of the divisibility properties of Fibonacci numbers has always been a popular
area of research. Let n be a positive integer number, the order (or rank) of appearance of n
in the Fibonacci sequence, denoted by z(n), is defined as the smallest positive integer k, such
that n | Fk (some authors also call it order of apparition, or Fibonacci entry point). There are
several results about z(n) in the literature. For instance, z(n) < ∞ for all n ≥ 1. The proof
of this fact is an immediate consequence of the Théorème Fondamental of Section XXVI in [7,
p. 300].

In recent papers, the author [8, 9, 10, 11] found explicit formulas for the order of appearance

of integers related to Fibonacci numbers, such as Fm±1, Ln±1, Fmk/Fk,
∏k

i=0 Fn+i, k = 1, 2, 3

and F k
n . In particular, it was proved that z(Fn ± 1) = n2

2 − 2, for 4 | n, z(FnFn+1Fn+2) =
n(n+1)(n+2)

2 , if 2 | n, and z(F 2
n) = nFn, if n ≡ 3 (mod 6).

In this paper, we continue this program and search for fixed points of z(n). Our main result
is the following.

Theorem 1.1. Let n be a positive integer. Then z(n) = n if and only if n = 5k or 12 · 5k, for
some k ≥ 0.

We remark that this assertion appears in the Formula section of the OEIS [12] sequence
A001177 and is due to Benoit Cloitre. However, according to Cloitre [1] his assertion is a
conjecture. Thus, to the best of the author’s knowledge, there is no proof for this fact in the
literature.

We organize the paper as follows. In Section 2, we will recall some useful properties of
Fibonacci numbers such as the d’Ocagne’s Identity and a result concerning the p-adic order
of Fn. Section 3 will be devoted to the proof of Theorem 1.1. In the last section, we close the
paper with a brief discussion about the equations z(n) = nk and z(n) = an/b.
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2. Auxiliary Results

Before proceeding further, we prove some facts on Fibonacci numbers for the convenience
of the reader.

Lemma 2.1. We have

(a) n | m if and only if Fn | Fm.
(b) (d’Ocagne’s Identity) (−1)nFm−n = FmFn+1 − FnFm+1.
(c) Fp−( 5

p
) ≡ 0 (mod p), for all primes p.

Here, as usual, (aq ) denotes the Legendre symbol of a with respect to a prime q > 2.

This lemma can be proved by using the well-known Binet’s formula:

Fn =
αn − βn

α− β
,

where α = (1 +
√
5)/2 and β = (1−

√
5)/2, together with induction (for (a) and (b)) and the

binomial theorem (for (c)). Note that (a) leads to the useful facts that 2 | Fn and 3 | Fn if
and only if 3 | n and 4 | n, respectively. We refer the reader to [4, 5, 13] for more details and
additional bibliography.

The second lemma is a consequence of the previous one.

Lemma 2.2. If n | Fm, then z(n) | m.

Proof. Write m = z(n)q + r, where q and r are integers, with 0 ≤ r < z(n). So, by Lemma
2.1 (b), we obtain

(−1)z(n)qFr = FmFz(n)q+1 − Fz(n)qFm+1.

Since n divides both Fm and Fz(n)q, then it also divides Fr implying r = 0 (keep in mind the
range of r). Thus, z(n)|m. �

Lemma 2.3. For all primes p 6= 5, we have that gcd(z(p), p) = 1.

Proof. By combining Lemma 2.1 (c) together with Lemma 2.2, we conclude that z(p) | p−(5p).

Thus, when p 6= 5, one has that (5p) = ±1 and so z(p) | p± 1. This yields that z(p) = p+1 or

z(p) ≤ p− 1 and in any case gcd(z(p), p) = 1. �

The p-adic order (or valuation) of r, νp(r), is the exponent of the highest power of a prime p
which divides r. Throughout the paper, we shall use the known facts that νp(ab) = νp(a)+νp(b)
and that a | b if and only if νp(a) ≤ νp(b), for all primes p.

We remark that the p-adic order of Fibonacci numbers was completely characterized, see
[3, 6]. For instance, from the main results of Lengyel [6], we extract the following result.

Lemma 2.4. For n ≥ 1, we have

ν2(Fn) =















0, if n ≡ 1, 2 (mod 3);
1, if n ≡ 3 (mod 6);
3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12),

ν5(Fn) = ν5(n), and if p is prime 6= 2 or 5, then

νp(Fn) =

{

νp(n) + νp(Fz(p)), if n ≡ 0 (mod z(p));
0, if n 6≡ 0 (mod z(p)).

A proof for this result can be found in [6].
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3. Proof of Theorem 1.1

For the “if” part, we have two cases to consider:
Case 1: n = 5k.

Since ν5(F5k) = ν5(5
k) = k (Lemma 2.4), we have that 5k | F5k and so z(5k) | 5k. Now,

suppose that 5k | Fj , then k ≤ ν5(Fj) = ν5(j) leading to j = 5km, for some positive integer.

Thus, j ≥ 5k and then 5k ≤ z(5k) | 5k. This yields z(5k) = 5k.

Case 2: n = 12 · 5k.
We claim that 12 · 5k | F12·5k . In fact, note that ν5(12 · 5k) = k = ν5(F12·5k) and it suffices

to consider the p-adic order for p = 2 and 3. For these cases, we have

νp(F12·5k ) = νp(12 · 5k) + 1 + δp > νp(12 · 5k),
where δ2 = 1 and δ3 = 0. Thus the assertion is proved and therefore, by Lemma 2.2, z(12 ·5k) |
12 · 5k.

Suppose that 12 · 5k | Fj , then ν5(12 · 5k) ≤ ν5(Fj) = ν5(j). Thus k ≤ ν5(j) yielding that

5k | j. Also, 1 = ν3(12 · 5k) ≤ ν3(Fj), but this implies that 3 | Fj , that is, 4 | j. Finally, from
ν2(12 · 5k) ≤ ν2(Fj), we infer that 2 | Fj, that is, 3 | j. Summarizing 12 · 5k = 3 · 4 · 5k | j. In
conclusion, j ≥ 12 · 5k and hence, z(12 · 5k) = 12 · 5k. This completes the proof of the first
part.

For the “only if” part, we need the following key lemma.

Lemma 3.1. If n | Fn and n > 1, then the smallest prime factor of n is 2 or 5. In particular,
5 | n or 12 | n.
Proof. Let q be the smallest prime factor of n. Suppose, towards a contradiction, that q > 5.
Thus, q | n | Fn and then z(q) | n (by Lemma 2.2). Since q 6= 5, then z(q) ≤ q − 1 or
z(q) = q + 1. By the minimality of q (as a prime divisor of n), we have that z(q) = q + 1
must be a prime, so q = 2 which is a contradiction. Therefore, we deduce that q = 2, 3 or 5.
If 3 = q | n | Fn, then 2 divides n leading to an absurd (since 3 is the minimal prime factor of
n). Hence, q = 2 or 5. Note that when q = 2, then 2 | n | Fn yielding 3 | n | Fn and so 4 | n.
In conclusion, 12 | n. �

We refer the reader to [2, 14] (and references therein) for results on terms of linear recurrence
sequences divisible by their indexes.

We now turn back to our main proof.
Suppose that z(n) = n and n > 1. In particular, n | Fn and the previous result allows us

to write n = 12a · 5km, with a + k ≥ 1 and gcd(5 · 12,m) = 1. So it suffices to prove that
a ∈ {0, 1} and m = 1.

In a few words, our approach is the following. Suppose, by contradiction, that either a ≥ 2
or m > 1. In these cases, we shall exhibit an integer j ∈ {1, . . . , n − 1}, such that n | Fj .
However, this contradicts z(n) = n.

Case 1: If a ≥ 2.

In this case, we shall prove that 12a · 5km | F12a−1·5km arriving at a contradiction. In fact,
since νp(12

a · 5km) ≤ νp(F12a·5km), for all primes p, then νp(12
a · 5km) ≤ νp(F12a−1·5km), for

all primes p 6= 2 and 3. Now, we prove that the previous inequality also holds for p = 2 and
3. For p = 2, since 12 | 12a−1, we get

ν2(F12a−1·5km) = ν2(12
a−1 · 5km) + 2 = 2a = ν2(12

a · 5km).
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For p = 3, since 4 = z(3) | 12a−1,

ν3(F12a−1·5km) = ν3(12
a · 5km) + 1 = a+ 1 > a = ν3(12

a · 5km).

Thus, a = 0 or 1 as desired.

Case 2: If m > 1.

Suppose that q is a prime factor of m and write m = qt, for some positive integer t. Since
gcd(60,m) = 1, then q 6= 2, 3, 5. Thus, the hypothesis z(n) = n implies that z(12a · 5kqt) =
12a · 5kqt. We claim that the last equality is not true. More precisely, we shall prove that
12a · 5kqt | F12a·5kt. Since νp(12

a · 5kqt) ≤ νp(12
a · 5kqt), for all primes p, we infer that

νp(12
a · 5kqt) ≤ νp(F12a·5kt), for all primes p 6= q. Thus, we must only treat the case p = q.

Note that 12a · 5kqt | F12a·5kqt yields q | F12a·5kqt and so z(q) | 12a · 5kqt. However, Lemma 2.3

gives that q and z(q) are coprime leading to z(q) | 12a · 5kt. Hence, we get

νq(F12a·5kt) = νq(12
a · 5kt) + νq(Fz(q)) ≥ νq(t) + 1 = νq(12

a · 5kqt).

In conclusion, we get an absurdity as 12a · 5kqt = z(12a · 5kqt) | 12a · 5kt. This completes
the proof. �

4. Further Results and Comments

It seems tempting to search for solutions to the equation z(n) = nk, for some integers k ≥ 2
and n > 1. However, this equation has no solution. This fact is an immediate consequence
of the below result (which is a slight improvement of the proof of the theorem on page 52 of
[15]).

Proposition 4.1. If n > 2, then z(n) < (n − 1)2 + 1. In particular, z(n) = nk, for some
k ≥ 2 if and only if n = 1.

Proof. First, we consider the sequence S = {(Fk, Fk+1) (mod n)}k∈N. Note that there are at
most (n − 1)2 distinct pairs in S, such that n does not divide Fk or Fk+1. Thus if we take
(n − 1)2 + 1 terms of S we have that either n divides some Fk (and we are done) or there
exist m > s > 0 such that Fm+1 ≡ Fs+1 (mod n) and Fm ≡ Fs (mod n). In the last case,
by subtracting the previous congruences and using the recurrence pattern of (Fn)n, we get
Fm−1 ≡ Fs−1 (mod n). Repeating this procedure s times, we obtain Fm−s ≡ F2 − F1 ≡ 0
(mod n). Since m− s > 0, we get the desired n | Fm−s. �

We remark that the sequence A023172 of OEIS is dedicated to numbers n dividing Fn. A
few terms of this sequence are

1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, . . . .

As one can see, there are many terms in this list which are not of the form 5k or 12 · 5k (the
fixed points of z(n)). So a natural question arises: for which n and k > 1, does nk | Fn hold?
The answer lies in the result below.

Proposition 4.2. If nk | Fn for positive integers n > 1 and k > 1, then (n, k) = (12, 2).

Proof. It suffices to consider the case k = 2 (because 12k | F12 = 144, only for k = 1, 2). Since
n > 1, then Lemma 3.1 implies that 5 | n or 12 | n. Note that n2 | Fn yields 2ν5(n) ≤ ν5(Fn) =
ν5(n) (by Lemma 2.4). Thus, 5 - n and then n = 12am, for some positive integers n and a,
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with gcd(m, 12) = 1. So we shall prove that a = m = 1. Note that 122am2 | F12am and in
particular, we have

4a = ν2(12
2am2) ≤ ν2(F12am) = ν2(12

am) + 2 = 2a+ 2

and so a = 1. Also, suppose that, on the contrary, m > 1, then we can write m = pa11 · · · pakk ,
where ai’s are positive integers and pi’s are prime numbers, with 5 < p1 < p2 < · · · < pk. Since
p1 | F12p

a1
1

···p
ak
k
, then z(p1) | 12pa11 · · · pakk . However, either z(p1) < p1 or z(p1) = p1 +1. When

z(p1) < p1, then gcd(z(p1), pi) = 1, for all i = 1, . . . , k. Thus, z(p1) | 12 implying that p1 = 2
or 3 which is a contradiction. Suppose now that z(p1) = p1+1, then p1 ∈ {7, 23, 43, 67, . . .}. It
is a simple matter to infer that p3 > p1 +1 which yields gcd(p1 +1, pi) = 1, for i = 1, 3, . . . , k.
Also p1 + 1 and p2 are coprime. In fact, on the contrary, p2 | p1 + 1 and therefore p1 = 2 and
p2 = 3, contradiction. In conclusion, p1 + 1 | 12 which cannot happen for p1 ∈ {7, 23, . . .}.
Hence, m = 1 and the proof is complete. �

Another kind of related problem which could be considered is about the equation z(n) =
an/b for some positive integers a and b. For example, we have the following proposition.

Proposition 4.3. Let a and b be positive integers. If ν5(a) 6= ν5(b), then the equation z(n) =
an/b has no solution in positive integers n.

Proof. If ν5(b) > ν5(a), then ν5(an/b) = ν5(a)−ν5(b)+ν5(n) < ν5(n) and so n - Fan/b yielding
that z(n) 6= an/b. When ν5(b) < ν5(a), then

ν5(Fan/5b) = ν5(an/5b) = ν5(a)− 1− ν5(b) + ν5(n) ≥ ν5(n).

Therefore, n | Fan/5b and thus, z(n) | an/5b < an/b. �

However, there are several related equations with infinitely many solutions. For instance,
we can take the same approach as in the proof of Theorem 1.1 to prove the following result.

Proposition 4.4. We have that

(a) z(n) = n/2 if and only if n = 24 · 5k, for k ≥ 0;
(b) z(n) = 2n if and only if n = 6 · 5k, for k ≥ 0;
(c) z(n) = n/3 if and only if n = 4 · 3k · 5`, for k ≥ 2 and ` ≥ 0;
(d) z(n) = 2n/3 if and only if n = 2 · 3k or n = 10 · 3k, for k ≥ 2;
(e) z(n) = 3n/4 if and only if n = 2k · 5`, for k ≥ 3 and ` ≥ 0;
(f) z(n) = 6n/7 if and only if n = 4 · 5k · 7`, for k ≥ 0 and ` ≥ 1.

We finish by pointing that the general equation z(n) = mt, for t > 1, was not solved
completely (here we treated only the case n = m). However, Theorem 1.1 allows us to
conclude that for any fixed t > 1, this equation has infinitely many solutions, with n 6= m,
namely the pairs (n,m) = (5kt, 5k), for all k ≥ 1.
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