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Abstract. An unexpected relationship is demonstrated between n-color compositions (com-
positions for which a part of size n can take on n colors) and part-products of ordinary compo-
sitions. As a consequence, we are able to use techniques developed for studying part-products
to generalize the concept of n-color compositions to that of S-restricted C-color compositions,
whose part-sizes are restricted to an arbitrary set S of positive integers and for which a part
of size n can take on cn ∈ C = {c1, c2, . . .} colors. We count the number of S-restricted C-
color compositions and the number of C-color palindromic compositions, as well as the total
number of parts in each setting. The celebrated Fibonacci numbers persist throughout.

1. Introduction

A composition of ν is a sequence of positive integers, called parts, that sum to ν. Recently
there has been interest in n-color compositions, defined as compositions of ν for which a part
of size n can take on n colors [1, 2, 6, 12, 13]. As a brief example, there are eight n-color
compositions of 3:

(31), (32), (33), (21, 11), (22, 11), (11, 21), (11, 22), (11, 11, 11).

The analogous problem for partitions has been studied to some extent under the alias “n copies
of n” [3, 14].

Challenging questions often arise when considering compositions whose part-sizes have been
restricted in some way, and there has been recent progress made in this direction for n-color
compositions. For example, in [6] the author studies n-color compositions with no parts of
size 1, and in [1] the author studies n-color compositions with no parts greater than k. We
derive similar results but in a more efficient fashion and in a more general setting. Rather
than requiring a part of size n to take on exactly n colors, we allow a part of size n to take on
cn ∈ Z+ colors, and rather than forbidding a single part-size or interval of part-sizes, we allow
any selection of part-sizes to be forbidden.

We are aided, at least initially, by a rather simple observation.

Theorem 1.1. The number of n-color compositions of a positive integer ν is equal to the sum
of the part-products over all ordinary compositions of ν.

Proof. For an ordinary composition ~λ = (λ1, λ2, . . . ), let B(~λ) =
∏

i λi. Let Λν be the set
of all ordinary compositions of ν and let Cν denote the set of all n-color compositions of ν.
The number of ways to construct an n-color composition having t parts of size λ1, λ2, . . . , λt

is equal to
∏t

i=1 λi, since a part of size λi can take on λi colors. Each choice of part-sizes
corresponds to exactly one ordinary composition. Hence,

|Cν | =
∑

~λ∈Λν

t
∏

i=1

λi =
∑

~λ∈Λν

B(~λ) . �
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The part-product is studied extensively in [15, 16] where the author shows, for example,
that the sum of part-products over all ordinary compositions of ν is F2ν , the 2νth Fibonacci
number. It is not difficult to show by other methods that the number of n-color compositions
of ν is also F2ν (see [1] or [8] for a proof); however, the correspondence to part-products
provides a new approach to the general study of n-color compositions.

Throughout this paper we will denote the coefficient of xm in a formal power series f(x) by
[xm]f(x).

2. Part-Size Restrictions and Arbitrary Colorings

In this section, we apply ideas used in [15, 16] in order to extend the concept of n-color
compositions. Specifically, the proofs of Theorems 2.1 and 2.3 are generalizations of results in
those papers. We define an S-restricted C-color composition of ν to be a composition of ν whose
parts are in a given set S and for which a part of size n can take on cn ∈ C = {c1, c2, . . . , cν}
colors, where cn ∈ Z+ for n = 1, . . . , ν. We denote the set of all such compositions by Cν(S, C).
If S = Z+, we write Cν(C); if S = Z+ and C = {1, . . . , ν}, we write Cν . We place no restrictions
on the choices of C or S.

Theorem 2.1. The number of S-restricted C-color compositions of ν is

|Cν(S, C)| = [xν ]
1

1−
∑

k∈S
ckxk

.

Proof. For a choice of S and a color-set C, define G(x) =
∑

k∈S
ckx

k. Then the number of C-color

compositions of ν with d parts in S is

[xν ]G(x)d .

This fact follows because, while the exponents of the multiplied terms add to ν (hence forming
compositions of ν), the coefficients multiply to count the number of C-color compositions with
those part-sizes. We now sum over all possible values of d to get

ν
∑

d=1

[xν ]G(x)d = [xν ]
1

1−G(x)
. �

When C = {1, . . . , ν}, Theorem 2.1 gives the generating functions

x

1− 3x+ x2
for S = Z+,

2x2 − x3

1− 2x− x2 + x3
for S = Z+\{1},

x+ x3

1− x− 2x2 − x3 + x4
for S = Zodd,+.

The first of these is derived in [1] while the remaining two are derived in [6]. An asymptotic
formula is obtained in [16] for the case when S is an arbitrary cofinite set of positive integers.

Although the number of n-color compositions was originally derived in Theorem 1 of [1],
we record it now as an immediate consequence of Theorem 2.1 above.

Corollary 2.2. The number of n-color compositions of ν is

|Cν | = F2ν .
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Let Nν(S, C) be the total number of parts over all compositions in Cν(S, C) and let Nν be
the total number of parts over all n-color compositions of ν.

Theorem 2.3. The total number of parts over all S-restricted C-color compositions of ν is

Nν(S, C) = [xν ]

∑

k∈S
ckx

k

(

1−
∑

k∈S
ckxk

)2
.

Proof. Again let G(x) =
∑

k∈S
ckx

k and note that, by an argument similar to the proof of

Theorem 2.1, the total number of parts over all C-color compositions of ν with parts in S is

ν
∑

d=1

d [xν ]G(x)d = [xν ]
G(x)

(1 −G(x))2
. �

Corollary 2.4. The number of parts over all n-color compositions of ν is

Nν = 2ν
5
F2ν+1 +

2−ν
5

F2ν .

Proof. In Theorem 2.3, set S = Z+ and C = {1, . . . , ν}. Then

Nν = [xν ]

∞
∑

k=1

kxk

(

1−
∞
∑

k=1

kxk
)2

= [xν ]
x(1− x)2

(1 − 3x+ x2)2

= [xν ]
1

5







1
(

1− 3+
√
5

2
x
)2

−
1− 2√

5

1− 3+
√
5

2
x
+

1
(

1− 3−
√
5

2
x
)2

−
1 + 2√

5

1− 3−
√
5

2
x







=
1

5

(

(ν + 1)φ2ν −
(

1− 2√
5

)

φ2ν + (ν + 1)(1− φ)2ν −
(

1 + 2√
5

)

(1− φ)2ν
)

= 2ν
5
F2ν+1 +

2−ν
5

F2ν . �

3. Palindromic Compositions

A palindromic composition or palindrome [4, 5, 7, 9, 11], also referred to as a self-inverse
composition [10, 12], is a composition whose part-sequence is the same whether it is read from

left to right or right to left. In [7], it is shown that there are 2b
ν

2
c palindromes of ν. The

proof relies on a simple argument that fixes the center part λi (if there is one) and counts the

compositions of ν−λi

2
that form on either side of the fixed part (or the compositions of ν

2
if

there is no center part), as shown in the following example.
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Example 3.1.

ν = 6

6

1 4 1

2 2 2
1 1 2 1 1

3 3
2 1 1 2
1 2 2 1

1 1 1 1 1 1

ν = 7

7

1 5 1

2 3 2
1 1 3 1 1

3 1 3
2 1 1 1 2
1 2 1 2 1

1 1 1 1 1 1 1

We combine this idea with Theorem 2.1 in order to count the number of C-color palin-
dromes. The analogous results of [12] can then be derived by setting C = {1, . . . , ν}, as can
the analogous results of [7] by setting C = {1, . . . , 1}. Before beginning the proof, we recall
several Fibonacci identities that are readily checked by mathematical induction.

Lemma 3.2. Let Fν be the νth Fibonacci number (F0 = 0, F1 = 1). The following identities
hold for any positive integer m:

(a)

m
∑

i=1

F2i = F2m+1 − 1,

(b)

m
∑

i=1

iF2i = mF2m+1 − F2m,

(c)
m
∑

i=1

iF2i+1 = mF2m+2 − F2m+1 + 1,

(d)
m
∑

i=1

i2F2i = m2F2m+1 − (2m− 1)F2m + 2F2m−1 − 2,

(e)

m
∑

i=1

i2F2i+1 = m2F2m+2 − (2m− 1)F2m+1 + 2F2m − 1.

Let Pν(C) be the set of C-color palindromes of ν and let Pν be the set of n-color palindromes
of ν.

Theorem 3.3. The number of C-color palindromes of ν is

|Pν(C)| =































cν +

ν−1

2
∑

k=1

cν−2k|Ck(C)|, ν odd;

cν +

ν−2

2
∑

k=1

cν−2k|Ck(C)| + |C ν

2

(C)|, ν even.

Proof. We directly enumerate the C-color palindromes using the idea from Example 3.1. We
first note that the number of C-color palindromes of ν with ν as their center part is cν . The
number with (ν−2) as their center part is cν−2 times the number of C-color compositions of 1.
The number with (ν−4) as their center part is cν−4 times the number of C-color compositions

300 VOLUME 50, NUMBER 4



C-COLOR COMPOSITIONS AND PALINDROMES

of 2, and so forth. If ν is even, we have the additional case when there is no center part, in
which case we count the number of C-color compositions of ν/2. We combine these cases to
get the statement of the theorem. �

In theory, for a given choice of C, these equations can be used either to compute |Pν(C)|
directly or, in some instances, to derive generating functions for |Pν(C)|. A different method is
used in Theorem 6.2 of [12] to derive the number of n-color palindromes for even values of ν;
the number of n-color palindromes for odd values of ν, while not stated directly, is implied in
the proof of the same theorem. Nevertheless, we record the result here as an easy consequence
of Theorem 3.3 above.

Corollary 3.4. The number of n-color palindromes of ν is

|Pν | =

{

Fν + 2Fν−1, ν odd;

3Fν , ν even.

We use a similar argument to arrive at the total number of parts over all C-color palindromes.
The analogous results of [7] can then be derived by setting C = {1, . . . , 1}. Let N̂ν(C) be the

number of parts over all C-color palindromes of ν and let N̂ν be the number of parts over all
n-color palindromes.

Theorem 3.5. The total number of parts over all C-color palindromes of ν is

N̂ν(C) =































cν +

ν−1

2
∑

k=1

cν−2k(|Ck(C)|+ 2Nk(C)), ν odd;

cν +

ν−2

2
∑

k=1

cν−2k(|Ck(C)|+ 2Nk(C)) + 2N ν

2

(C), ν even.

Proof. We again directly enumerate by using the idea from Example 3.1. We first note that
the number of parts over all C-color palindromes of ν with ν as their center part is cν . The
number of parts over all C-color palindromes with (ν − 2) as their center part is cν−2 times
the number of C-color compositions of 1 (counts the center column) plus cν−2 times twice the
number of parts over all C-color compositions of 1 (counts the number of parts on each side),
and so forth. If ν is even, we have the additional case when there is no center part, in which
case we count the number of parts over all C-color compositions of ν/2 and multiply by two
(counts the number of parts on each side). We combine these cases to get the statement of
the theorem. �

As with Theorem 3.3, these equations can be used either to compute N̂ν(C) directly for a

given choice of C or, in some instances, to derive generating functions for N̂ν(C).

Corollary 3.6. The total number of parts over all n-color palindromes of ν is

N̂ν =

{

νFν , ν odd;
3ν+2
5

Fν +
6ν
5
Fν−1, ν even.
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Proof. Set C = {1, . . . , ν} and let ν be odd. Then by an application of Corollaries 2.2 and 2.4
to Theorem 3.5, followed by an application of parts (a) through (e) of Lemma 3.2, we have

N̂ν = ν +

ν−1

2
∑

k=1

(ν − 2k)(F2k + 2(2k
5
F2k+1 +

2−k
5

F2k))

= ν +

ν−1

2
∑

k=1

(9ν
5
F2k −

2ν+18
5

kF2k +
4ν
5
kF2k+1 +

4
5
k2F2k −

8
5
k2F2k+1)

= Fν+1(
2ν
5
− 2

5
) + Fν(

3ν
5
− 6

5
) + Fν−1(2−

2ν
5
) + Fν−2(

8
5
)

= νFν .

Next let ν be even. Similarly,

N̂ν = ν +

ν−2

2
∑

k=1

(ν − 2k)(F2k + 2(2k
5
F2k+1 +

2−k
5

F2k)) + 2(ν
5
Fν+1 +

2−ν
2

5
Fν)

= ν +

ν−2

2
∑

k=1

(9ν
5
F2k −

2ν+18
5

kF2k +
4ν
5
kF2k+1 +

4
5
k2F2k −

8
5
k2F2k+1)

+ 2ν
5
Fν+1 +

4−ν
5

Fν

= Fν+1(
2ν
5
) + Fν(

3ν
5
− 4

5
) + Fν−1(

2ν
5
− 2

5
) + Fν−2(

14
5
− 2ν

5
) + Fν−3(

8
5
)

= 3ν+2
5

Fν +
6ν
5
Fν−1. �

4. Remarks

While the results of this paper reveal new connections between Fibonacci numbers and
integer compositions, they may also bring clarification to some relationships that are known
to exist. For example, the binomial identities presented in both [6] and [12], when combined
with the results of this paper, are likely to have further combinatorial interpretations and may
give rise to some previously undocumented Fibonacci identities.
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