
FINITE SUMS IN PASCAL’S TRIANGLE

A. SOFO

Abstract. We consider sums across the nth row in Pascal’s triangle and develop their in-
tegral identities. In particular we obtain integral identities for

∑n

k=0 (−1)k
(

n

k

)

kq

(ak+b)p
when

q = −1, 0, 1, 2.

1. Introduction

It is known that, for any positive integer n ≥ 1, if we sum across the nth row in Pascal’s
triangle in the following way

S1 =
n∑

k=0

(−1)k
(
n

k

)

(2k + 1) ,

then S1 = 0. In fact, for p ∈ N, N := {1, 2, 3, . . .} and a, b ∈ R
+, we have for n > p

n∑

k=0

(−1)k
(
n

k

)

(ak + b)p = 0.

Dence [7] asked the question and showed that for the reciprocals of the numbers (2k + 1)
n∑

k=0

(−1)k
(
n

k

)
1

(2k + 1)
=

∫ 1

0

(1− x)n

2
√
x

dx =
4n (n!)2

(2n+ 1)!
. (1.1)

In this paper we will extend the results of Dence and investigate the more general sums

S =
n∑

k=0

(−t)k
(
n

k

)
kq

(ak + b)p
, for q = −1, 0, 1, 2,

t ∈ R
+\ {0}, p ∈ N and real positive numbers a and b.

There has recently been renewed interest in the study of series involving binomial coeffi-
cients and a number of authors have obtained either closed form representation or integral
representation for some particular cases of these series. The interested reader is referred to
[1, 2, 3, 4, 5, 10, 15, 17, 18, 21]. The following information and notation will be useful through-
out this paper. The generalized hypergeometric representation pFq [·, ·], is defined as

pFq

[

a1, a2, . . . , ap

b1, b2, . . . , bq

∣
∣
∣
∣
∣
t

]

=
∞∑

n=0

(a1)n (a2)n · · · (ap)n tn

(b1)n (b2)n · · · (bq)n n!
,

where for w ∈ C\Z−

0 , (w)n is Pochhammer’s symbol defined by

(w)n =

{
Γ(w+n)
Γ(n) = w(w + 1) · · · (w + n− 1), for n ∈ N

1, for n = 0,
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where Z−

0 denotes the set of non positive integers, Γ (z) is the Gamma function, and B (s, z) =
Γ(s)Γ(z)
Γ(s+z) is the Beta function for Re (s) > 0 and Re (z) > 0 [13]. The numbers p and q are

zero or positive integers (interpreting an empty product as 1) and we assume, for simplicity,
that the variable t, the numerator parameters a1, a2, . . . , ap and the denominator parameters
b1, b2, . . . , bq take on complex values C provided that no zeros appear in the denominator of

pFq [·, ·], that is bj /∈ Z
−

0 ; j = 1, 2, 3, . . . , q. Hence, if a numerator parameter is zero or a
negative integer then the hypergeometric series pFq [·, ·] terminates, since (see [20])

(−n)j =
{

0, j > n
(−1)j n!
(n−j)! , 0 ≤ j ≤ n; n ∈ N.

The generalized harmonic numbers of order α are given by

H(α)
n =

n∑

r=1

1

rα
for α, n ∈ N

and for α = 1

H(1)
n = Hn =

∫ 1

0

1− tn

1− t
dt =

n∑

r=1

1

r
= γ + ψ (n+ 1) ,

where γ denotes the Euler-Mascheroni constant, defined by

γ = lim
n→∞

(
n∑

r=1

1

r
− ln (n)

)

= −ψ (1) ≈ 0.5772156649 . . .

and where ψ (z) denotes the Psi, or digamma function, defined by (see [11])

ψ (z) =
d

dz
ln Γ (z) =

Γ′ (z)

Γ (z)
=

∞∑

n=0

(
1

n+ 1
− 1

n+ z

)

− γ.

The polygamma functions are defined by (see [11])

ψ(k) (z + 1) =
(−1)k k!

zk+1
+ ψ(k) (z) =

∞∑

n=1

(−1)k+1 k!

(n+ z)k+1
=

∫
∞

0

(−1)k+1 tk e−(z+1)t

1− e−t
dt

=
dk+1

dzk+1
[ln Γ (z + 1)] =

dk

dzk
[ψ (z + 1)] , z 6= {−1,−2,−3, . . .} .

In the case of non-integer values of the argument z = r
a
, we may write the generalized harmonic

numbers in terms of polygamma functions

H
(α+1)
r
a

= ζ (α+ 1) +
(−1)α

α!
ψ(α)

( r

a
+ 1
)

,
r

a
6= {−1,−2,−3, . . .} , (1.2)

where ζ (z) is the zeta function. When we encounter harmonic numbers at possible rational

values of the argument of the form H
(α)
r
a

, they may be evaluated by an available relation in

terms of the polygamma function ψ(α) (z) or, for rational arguments z = r
a
(1.2). We also

define

H
(1)
r
a

= γ + ψ
( r

a
+ 1
)

and H
(α)
0 = 0.

The evaluation of the polygamma function ψ(α)
(
r
a

)
at rational values of the argument can be

explicitly done via a formula as given by Kölbig [9], (see also [8]), or Choi and Cvijovic [6] in
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terms of the Polylogarithmic or other special functions. Some specific values are given as

H
(4)
1
2

= 16 − 4ζ (2) , H
(2)
3
4

=
16

9
+ 8G− 5ζ (2) ,

H
(1)

−
1
2

= − ln 4, and H
(1)
3
2

=
8

3
− ln (4) .

Many others are listed in the book [20].
The following lemma and theorems are the main results presented in this paper.

2. The Main Results

The following lemma will be useful in the proof of the three main theorems.

Lemma 1. If p, k are positive integers and a and b positive real numbers, then

1

(ak + b)p
=

1

Γ (p)

∫
∞

0
yp−1 e−y(ak+b)dy (2.1)

=
(−1)p−1

ap Γ (p)

∫ 1

0
x

b
a
−1 xk lnp−1 (x) dx.

Proof. The proof follows upon integration by parts and then by the substitution x = e−ya. �

Theorem 1. Let t ∈ R
+\ {0}, p be a positive integer and for real positive numbers a and b,

then

S =

n∑

k=0

(−t)k
(
n

k

)
1

(ak + b)p
(2.2)

=
(−1)p−1

apΓ (p)

∫ 1

0
(x)

b
a
−1 (1− tx)n lnp−1 (x) dx (2.3)

=
1

bp
p+1Fp











p−terms
︷ ︸︸ ︷

b

a
, . . . ,

b

a
,−n

1 +
b

a
, . . . , 1 +

b

a
︸ ︷︷ ︸

p−terms

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t











, (2.4)

where pFq [·, ·] is the generalized hypergeometric function.

Proof. From S =
∑n

k=0 (−t)
k
(
n
k

)
1

(ak+b)p and using Lemma 1, we may write

S =

n∑

k=0

(−t)k
(
n

k

)
(−1)p−1

apΓ (p)

∫ 1

0
x

b
a
−1xk lnp−1 (x) dx.

Interchanging the sum and integral produces

S =
(−1)p−1

apΓ (p)

∫ 1

0
x

b
a
−1 lnp−1 (x)

n∑

k=0

(−t)k
(
n

k

)

xk dx

=
(−1)p−1

ap Γ (p)

∫ 1

0
x

b
a
−1 lnp−1 (x)

n∑

k=0

(−tx)k
(
n

k

)

dx
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and hence,

S =
(−1)p−1

apΓ (p)

∫ 1

0
(x)

b
a
−1 (1− tx)n lnp−1 (x) dx.

The identity (2.4) follows upon considering the ratio
Tk+1

Tk
where

Tk = (−t)k
(
n

k

)
1

(ak + b)p
.

�

Example 1. The famous Gauss summation formula is

2F1

[

a, b

c

∣
∣
∣
∣
∣
1

]

=
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
forRe (c− a− b) > 0, c /∈ Z

−

0

and from (2.2) with p = t = 1 we obtain

n∑

k=0

(−1)k
(
n

k

)
1

ak + b
= 2F1

[
b
a
,−n

1 + b
a

∣
∣
∣
∣
∣
1

]

=
1

a
B

(

n+ 1,
b

a

)

=
1

a

n!
(
b
a

)

n+1

.

When a = 2, b = 1 we recover (1.1).

Example 2. Other interesting cases are t = 1 and p = 2, 3, and 4.

n∑

k=0

(
n

k

)
(−1)k

(ak + b)2
=

−1

a2

∫ 1

0
x(

b
a
−1) (1− x)n ln (x) dx

=
1

b2
3F2

[
b
a
, b
a
,−n

1 + b
a
, 1 + b

a

∣
∣
∣
∣
∣
1

]

=
n!

a2
(
b
a

)

n+1

(

H
(1)

n+ b
a

−H
(1)
b
a
−1

)

. (2.5)

The infinite case yields the result

∞∑

k=0

(
n

k

)
(−1)k

(ak + b)2
=

1

a2
B

(
b

a
, n + 1

)(

H
(1)

n+ b
a

−H
(1)
b
a
−1

)

,

n∑

k=0

(
n

k

)
(−1)k

(ak + b)3
=

1

2a3

∫ 1

0
x(

b
a
−1) (1− x)n ln2 (x) dx

=
1

b3
4F3

[
b
a
, b
a
, b
a
− n

1 + b
a
, 1 + b

a
, 1 + b

a

∣
∣
∣
∣
∣
1

]

=
n!

2a3
(
b
a

)

n+1

[(

H
(1)

n+ b
a

−H
(1)
b
a
−1

)2

+H
(2)

n+ b
a

−H
(2)
b
a
−1

]

,
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and

n∑

k=0

(
n

k

)
(−1)k

(ak + b)4
=

−1

6a4

∫ 1

0
x(

b
a
−1) (1− x)n ln3 (x) dx

=
1

b4
5F4

[
b
a
, b
a
, b
a
, b
a
− n

1 + b
a
, 1 + b

a
, 1 + b

a
, 1 + b

a

∣
∣
∣
∣
∣
1

]

=
n!

6a4
(
b
a

)

n+1







(

H
(1)

n+ b
a

−H
(1)
b
a
−1

)3

+ 3

(

H
(1)

n+ b
a

−H
(1)
b
a
−1

)(

H
(2)

n+ b
a

−H
(2)
b
a
−1

)

+2

(

H
(3)

n+ b
a

−H
(3)
b
a
−1

)

.






.

Note that the inversion formula states that

g (n) =
∑

k

(−1)k
(
n

k

)

f (k) if and only if f (n) =
∑

k

(−1)k
(
n

k

)

g (k)

and therefore we may write, from (2.5) that

n∑

k=0

(−1)k
(
n

k

)
k!

(
b
a

)

k+1

(

H
(1)

k+ b
a

−H
(1)
b
a
−1

)

=
a2

(an+ b)2
.

Some interesting extensions of Theorem 1 are as follows.

Theorem 2. Let p be a positive integer. Then for real positive numbers a and b we have

n∑

k=0

k

(
n

k

)
(−1)k+1

(ak + b)p
=
n (−1)p−1

apΓ (p)

∫ 1

0
x

b
a (1− x)n−1 lnp−1 (x) dx (2.6)

=
n

(a+ b)p
p+1Fp











p−terms
︷ ︸︸ ︷

b

a
+ 1, . . . ,

b

a
+ 1, 1− n

2 +
b

a
, . . . , 2 +

b

a
︸ ︷︷ ︸

p−terms

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1











and

n∑

k=0

k2
(
n

k

)
(−1)k+1

(ak + b)p
=
n (−1)p−1

apΓ (p)

∫ 1

0
x

b
a (1− x)n−2 (1− nx) lnp−1 (x) dx (2.7)

=
n

(a+ b)p
p+2Fp+1











p−terms
︷ ︸︸ ︷

b

a
+ 1, . . . ,

b

a
+ 1, 2, 1 − n

2 +
b

a
, . . . , 2 +

b

a
︸ ︷︷ ︸

p−terms

, 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1











.
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Proof. Using Lemma 1 and interchanging the sum and integral, we may write

n∑

k=0

(−1)k+1

(
n

k

)
k

(ak + b)p

=

n∑

k=1

(−1)k+1

(
n

k

)
k (−1)p−1

ap Γ (p)

∫ 1

0
x

b
a
−1 xk lnp−1 (x) dx

=
(−1)p−1

apΓ (p)

∫ 1

0
x

b
a
−1 lnp−1 (x)

n∑

k=1

k

(
n

k

)

(−x)k dx

=
(−1)p−1

apΓ (p)

∫ 1

0
x

b
a
−1 lnp−1 (x) n x (1− x)n−1 dx

=
n (−1)p−1

apΓ (p)

∫ 1

0
x

b
a lnp−1 (x) (1− x)n−1 dx.

Therefore, the integral in (2.6) is attained. The integral (2.7) can be proved in the same way.
The hypergeometric representations can be attained by considering the ratio of binomial terms
in the sums (2.6) and (2.7). �

Example 3. For p = 3 we have

n∑

k=1

(
n

k

)
(−1)k k

(ak + b)3
=

n

2a3

∫ 1

0
x(

b
a
−1) (1− x)n ln2 (x) dx

=
n

(a+ b)3
4F3

[
b
a
, b
a
, b
a
− n

2 + b
a
, 2 + b

a
, 2 + b

a

∣
∣
∣
∣
∣
1

]

=
bn!

2a4
(
b
a

)

n+1

[(

H
(1)

n+ b
a

−H
(1)
b
a

)2

−
(

H
(2)

n+ b
a

−H
(2)
b
a

)]

.

The next theorem follows.

Theorem 3. Let p be a positive integer. Then for real positive numbers a and b we have

n∑

k=1

(
n

k

)
(−1)k+1

k (ak + b)p

=
Hn

bp
− ap

bp+1
+

1

bpΓ (p)

∫ 1

0

(1− x)n

x
Γ

(

p,− b
a
ln (x)

)

dx (2.8)

=
n

(a+ b)p
p+3Fp+2











p−terms
︷ ︸︸ ︷

b

a
+ 1, . . . ,

b

a
+ 1, 1, 1, 1 − n

2 +
b

a
, . . . , 2 +

b

a
︸ ︷︷ ︸

p−terms

, 2, 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1











,

where the incomplete Gamma function is given by

Γ (p, z) =

∫
∞

z

tp−1 exp (−t) dt.
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Proof. By expansion,
n∑

k=1

(
n

k

)
(−1)k+1

k (ak + b)p
=

n∑

k=1

(
n

k

)
(−1)k+1

k bp

− a

n∑

k=1

(−1)k+1

(
n
k

) p
∑

r=1

(−1)k+1

bp+1−r (ak + b)r

=
Hn

bp
− a

p
∑

r=1

1

bp+1−r

(

1

br
+

n∑

k=0

(
n

k

)
(−1)k+1

(ak + b)r

)

=
Hn

bp
− a

p
∑

r=1

1

bp+1
− a

p
∑

r=1

1

bp+1−r

n∑

k=0

(
n

k

)
(−1)k+1

(ak + b)r
.

The last term follows directly from Theorem 1, (2.3), so that

n∑

k=1

(
n

k

)
(−1)k+1

k (ak + b)p
=
Hn

bp
− a

p
∑

r=1

1

bp+1

− a

bp+1

p
∑

r=1

br (−1)r−1

arΓ (r)

∫ 1

0
x

b
a
(1− x)n

x
lnr−1 (x) dx

=
Hn

bp
− ap

bp+1
− a

bp+1

p
∑

r=1

br (−1)r−1

ar Γ (r)

∫ 1

0
x

b
a
(1− x)n

x
lnr−1 (x) dx

=
Hn

bp
− ap

bp+1
− a

bp+1

∫ 1

0
x

b
a
(1− x)n

x

b

a

p
∑

r=1

(
− b

a
ln (x)

)r−1

Γ (r)
dx

=
Hn

bp
− ap

bp+1
− a

bp+1

∫ 1

0
x

b
a
(1− x)n

x

b

a

x−
b
aΓ
(
p,− b

a
ln (x)

)

Γ (p)
dx

and (2.8) follows. The hypergeometric representation follows from the ratio of the binomial
terms. �

Example 4. First we can note that, from Theorem 3, when p is a positive integer we have

Γ (p, z) =

∫
∞

z

tp−1 exp (−t) dt = (p− 1)! exp (−z)
p−1
∑

j=0

zj

j!

= (p− 1)! exp (−z) Ξp−1 (z)

and Ξn−1 (z) is denoted as the exponential sum function. For p = 2, Γ (2,−m lnx) = xm (1−m lnx)
and hence,

n∑

k=1

(
n

k

)
(−1)k+1

k (ak + b)2
=

n!

b
(
b
a

)

n+1

(
2

b
+

1

a

(

H
(1)

n+ b
a

−H
(1)
b
a

))

+
Hn

b2
− 2a

b3
(2.9)

=
n

(a+ b)2
5F4

[

1 + b
a
, 1 + b

a
, 1, 1, 1 − n

2 + b
a
, 2 + b

a
, 2, 2

∣
∣
∣
∣
∣
1

]

=
Hn

b2
− ap

b3
+

1

b2

∫ 1

0
(1− x)n x

b
a
−1

(

1− b

a
lnx

)

dx.
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Remark 1. Infinite versions of some of the identities and their modifications have been in-
vestigated. In [14]

∞∑

n=1

(−1)n

n (an+ b)m+1 =
1

bm+1

{

H
(1)
b
2a

−H
(1)
b
a

}

+

m+1∑

p=2

a

bm+2

(
b

2a

)p(

H
(p)
b
2a

−H
(p)
b
2a

−
1
2

)

and [16]

∞∑

n=1

(−1)n

nm+1 (an+ 1)
=

m−1∑

s=0

(
2s−m − 1

)
ζ (m+ 1− s) + (−1)m am

(

H
(1)
1
a

−H
(1)
1
2a

)

.

Remark 2. Although the focus of this paper is on integral representations of sums it should
be noted that the sums in (2.2), (2.6), and (2.8) can be solved by recurrence relations [12].
The emphasis in this paper is in giving another tool, integral representations for the relevant
sums which enable the study of convexity properties [19]. We give some examples of recurrence
relations. For

Sn =
n∑

k=0

(−1)k
(
n

k

)
1

(2k + 1)

then
(2n+ 3)Sn+1 − 2 (n+ 1)Sn = 0, S0 = 1,

and solving produces (1.1). For

Wn =

n∑

k=0

(−1)k
(
n

k

)
1

k (ak + b)2

we obtain

(

a2 (n+ 3)2 + b (2an + 6a+ b)
)

Wn+3 −





a2
(
3n2 + 15n + 19

)

+b (4an + 10a+ b)



Wn+2

+





3a2 (n+ 2)2

+2a (6an+ bn+ 2b)



Wn+1 − a2 (n+ 2) (n+ 1)Wn =
1

n+ 3
, W1 =

1

(a+ b)2
,

W2 =
(5a+ 3b) (3a+ b)

2 (a+ b)2 (2a+ b)2
, W3 =

575a4 + 888a3b+ 494a2b2 + 120ab3 + 11b4

6 (a+ b)2 (a+ b)2 (2a+ b)2 (3a+ b)2

and solving produces the solution (2.9).
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