A RESULT ABOUT CYCLES IN DUCCI SEQUENCES

CHRISTIAN AVART

Abstract

We prove that for any $k \in \mathbb{N}, k$ not a power of two, there are cyclic vectors of length k which are not the concatenation of two or more copies of a vector of smaller length. As an application of this, we give a new proof of the fact that the period of a Ducci sequence can be any positive integer with the exception of the powers of 2 greater than 1.

1. Introduction to Ducci Sequences

Let $k \in \mathbb{N}$ and let $\vec{x}=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right) \in \mathbb{N}^{k}$. We define a map $T: \mathbb{N}^{k} \rightarrow \mathbb{N}^{k}$ by

$$
T(\vec{x})=T\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)=\left(\left|a_{0}-a_{1}\right|,\left|a_{1}-a_{2}\right|, \ldots,\left|a_{k-1}-a_{0}\right|\right) .
$$

The sequence $\left(T^{n}(\vec{x})\right)_{n \in \mathbb{N}}$ generated by the iterations of T is called a Ducci sequence. Ducci sequences have been extensively studied and often rediscovered. We state a few well-known facts which will be used in this paper.

Let $\vec{x}=\left(a_{0}, a_{1}, \ldots a_{k-1}\right) \in \mathbb{N}^{k}$. If there exists $a \in \mathbb{N}$ such that for every $0 \leq i \leq k$, $a_{i} \in\{0, a\}$, we will say that \vec{x} is a simple vector. A well-known result states that for every $\vec{x} \in \mathbb{N}^{k}$, there exists $n \in \mathbb{N}$ such that $T^{n}(\vec{x})$ is simple (see [5] for example). Since there are only finitely many vectors of length k with components in $\{0, a\}$, the iterations must eventually repeat. In other words, every Ducci sequence is ultimately cyclic. We derive another important consequence of this fact.

Let $\vec{x}=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ be a simple vector with $a_{i} \in\{0, a\}$ for every $0 \leq i \leq k-1$. We can rewrite \vec{x} as $\left(a \cdot \epsilon_{0}, a \cdot \epsilon_{1}, \ldots, a \cdot \epsilon_{k-1}\right)$, where $\epsilon_{i}=1$ if $a_{i}=a$ and 0 otherwise. Notice that for every $k \in \mathbb{N}, T^{k}\left(a \cdot \epsilon_{0}, a \cdot \epsilon_{1}, \ldots, a \cdot \epsilon_{k-1}\right)=a \cdot T^{k}\left(\epsilon_{0}, \epsilon_{1}, \ldots, \epsilon_{k-1}\right)$. This simple remark implies that in order to study cycles in Ducci sequences, we can restrict our attention to vectors with components in $\{0,1\}$.

Finally, note that when $a_{i} \in\{0,1\}$, the operation $\left|a_{i}-a_{i+1}\right|$ is equivalent to $a_{i}+a_{i+1}$ $(\bmod 2)$. Consequently, we will study the map $T: \mathbb{Z}_{2}^{k} \rightarrow \mathbb{Z}_{2}^{k}$ defined by

$$
T\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)=\left(a_{0}+a_{1}, a_{1}+a_{2}, \ldots, a_{k-1}+a_{0}\right) .
$$

We will call the sequences generated by iterating this map Ducci sequences over \mathbb{Z}_{2}. If for some vector $\vec{x} \in \mathbb{N}^{k}$, there exists an integer p such that $T^{p}(\vec{x})=\vec{x}$, and p is minimal with this property, we will say that \vec{x} has period p. The discussion above implies that in order to study the periods of the Ducci sequences it is sufficient to do so over \mathbb{Z}_{2}. We will do so in the remainder of this paper.

2. Proof of the Main Result

In order to simplify the notation, the indices of the components of any vector $\vec{x} \in \mathbb{Z}_{2}^{k}$ will be written modulo k so that, for example, $a_{k}=a_{0}$ and $a_{k+1}=a_{1}$.

If $T^{m}(\vec{x})=\vec{x}$ for some integer m, we will say that \vec{x} is cyclic. If m is the smallest such integer, we say that \vec{x} is m-cyclic, or as defined earlier, has period m. If for some integer n,

THE FIBONACCI QUARTERLY

we have $T^{n}(\vec{x})=\vec{y}$ and \vec{y} is m-cyclic, we say that \vec{y} belongs to the cycle generated by \vec{x} and we write $c(\vec{x})=m$. In other words, $c(\vec{x})$ is the length of the cycle that the iterations of \vec{x} will eventually reach. If $T^{m}(\vec{x})=\overrightarrow{0}$ for some integer m, we say that \vec{x} is nilpotent.

Given $k, l \in \mathbb{N}$ and two vectors $\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ and $\vec{y}=\left(y_{0}, y_{1}, \ldots, y_{l}\right)$ we denote by $\vec{x} \vee \vec{y}$ their concatenation $\left(x_{0}, x_{1}, \ldots, x_{k}, y_{1}, y_{2}, \ldots, y_{l}\right)$. For $m>1$, we write $\vec{x} \vee \vec{x} \ldots \vee \vec{x}=\vee^{(m)} \vec{x}$, the concatenation of \vec{x} with itself m times and by convention $\vee^{(1)} \vec{x}=\vec{x}$.

It is easy to see that for any $\vec{x} \in \mathbb{Z}_{2}^{k}$ (or in \mathbb{N}^{k}) and for any positive integers n, m the following relation holds:

$$
\begin{equation*}
T^{n}\left(\vee^{(m)} \vec{x}\right)=\vee^{(m)} T^{n}(\vec{x}) \tag{2.1}
\end{equation*}
$$

In particular, $T^{n}(\vec{x})=\overrightarrow{0}$ implies $T^{n}\left(\vee^{(m)} \vec{x}\right)=\overrightarrow{0}$ for every m.
A fundamental theorem states that if $k=2^{l}$ for some l, then any $\vec{x} \in \mathbb{Z}_{2}^{k}$ is nilpotent (see for example [3]). Together with (2.1), this implies that for any $m \in \mathbb{N}$ and any $\vec{x} \in \mathbb{Z}_{2}^{2^{l}}$, the vector $\vee^{(m)} \vec{x}$ is nilpotent. In [1] a converse to this statement was proved, thus showing the following proposition.

Proposition 2.1. Let $\vec{x} \in \mathbb{Z}_{2}^{k}$. The vector \vec{x} is nilpotent if and only if there exist $l, m \in \mathbb{N}$ and $\vec{y} \in \mathbb{Z}_{2}^{2^{l}}$ such that $\vec{x}=\vee^{(m)} \vec{y}$.

The equality (2.1) also allows us to construct new cyclic vectors: if \vec{x} is cyclic of period p, so is $\vee^{(m)} \vec{x}$ for any $m>1$. The main result of this paper is that for any $k \in \mathbb{N}, k$ not a power of two, there are cyclic vectors in \mathbb{Z}_{2}^{k} (and thus also in \mathbb{N}^{k}) that are not the concatenation of two or more copies of a smaller vector. So in essence, for every k which is not a power of 2 , \mathbb{Z}_{2}^{k} has "original" cyclic vectors. Note that this result is obvious if $k>2$ is prime and not true if k is a power of 2 since in this case only $\overrightarrow{0}$ is cyclic. We will need two simple lemmas.

Lemma 2.2. Let $k \in \mathbb{N}$ and \vec{x} be any element of \mathbb{Z}_{2}^{k}. There exists a unique \vec{y} in the cycle generated by \vec{x} and a unique nilpotent \vec{z} such that $\vec{x}=\vec{y}+\vec{z}$.
Proof. First we show the existence. If \vec{x} belongs to the cycle generated by itself, take $\vec{z}=\overrightarrow{0}$. Otherwise, choose n such that $\vec{c}=T^{n}(\vec{x})$ is cyclic. Denote by m the period of \vec{c} and choose l such that $l m>n$. Define $\vec{z}=\vec{x}+T^{l m-n}(\vec{c})$. The linearity of T over \mathbb{Z}_{2}^{k} implies that $T^{n}(\vec{z})=T^{n}(\vec{x})+T^{n+l m-n}(\vec{c})=\vec{c}+T^{l m}(\vec{c})=\vec{c}+\vec{c}=\overrightarrow{0}$. In other words, \vec{z} is nilpotent and we can write $\vec{x}=T^{l m-n}(\vec{c})+\vec{z}$.

To show uniqueness, suppose $\vec{x}=\vec{y}+\vec{z}=\vec{y}^{\prime}+\vec{z}^{\prime}$ where \vec{y} and \vec{y}^{\prime} both belong to the cycle generated by \vec{x} and $\vec{z}, \vec{z}^{\prime}$ are both nilpotent. Let n be an integer such that $T^{n}(\vec{z})=T^{n}\left(\vec{z}^{\prime}\right)=\overrightarrow{0}$. Then

$$
\begin{aligned}
& T^{n}(\vec{y}+\vec{z})=T^{n}\left(\vec{y}^{\prime}+\vec{z}^{\prime}\right) \\
& \Rightarrow T^{n}(\vec{y})+T^{n}(\vec{z})=T^{n}\left(\vec{y}^{\prime}\right)+T^{n}\left(\vec{z}^{\prime}\right) \\
& \Rightarrow T^{n}(\vec{y})=T^{n}\left(\vec{y}^{\prime}\right)
\end{aligned}
$$

But since both \vec{y} and \vec{y}^{\prime} belong to the same cycle we must have $\vec{y}=\vec{y}^{\prime}$. It follows that $\vec{z}=$ 条

Define $N i l_{k}$ to be the set of nilpotent vectors in \mathbb{Z}_{2}^{k}. Lemma 2.2 immediately implies the following.

Lemma 2.3. Let $\vec{x} \in \mathbb{Z}_{2}^{k}$. Exactly one element in the set $\left\{\vec{x}+\vec{z}, \vec{z} \in N i l_{k}\right\}$ is cyclic.

A RESULT ABOUT CYCLES IN DUCCI SEQUENCES

Proof. Suppose that there are two different \vec{z}_{1} and \vec{z}_{2} in $N i l_{k}$ such that $\vec{x}+\vec{z}_{1}=\vec{y}_{1}$ and $\vec{x}+\vec{z}_{2}=\vec{y}_{2}$ are both cyclic. Then we can rewrite these equalities as $\vec{x}=\overrightarrow{y_{1}}+\vec{z}_{1}$ and $\vec{x}=\overrightarrow{y_{2}}+\overrightarrow{z_{2}}$, contradicting the previous lemma.

Define C_{k} to be the set of cyclic elements of \mathbb{Z}_{2}^{k} and

$$
S_{k}=\left\{\vec{x} \in C_{k}: \text { there exists } \vec{y} \text { such that } \vec{x}=\vee^{(n)} \vec{y} \text { for some } n \geq 2\right\} .
$$

Theorem 2.4. For every positive integer k, k not a power of 2 , there is at least one cyclic vector of length k which is not the concatenation of two or more copies of a smaller vector.

Proof. Set $k=2^{l} m$ for some odd number $m \geq 3$. The statement is equivalent to showing that the set $C_{k} \backslash S_{k}$ is non-empty. There are exactly $2^{2^{l}}$ vectors in \mathbb{Z}_{2}^{k} that can be obtained by concatenating vectors of length a power of 2 . Proposition 2.1 implies $\left|N i l_{k}\right|=2^{2^{l}}$. Using Lemma 2.3 we obtain $\left|C_{k}\right|\left|N i l_{k}\right|=\left|\mathbb{Z}_{2}^{k}\right|$ or $\left|C_{k}\right| 2^{2^{l}}=2^{2^{l} m}$. Consequently,

$$
\begin{equation*}
\left|C_{k}\right|=2^{2^{l}(m-1)} . \tag{2.2}
\end{equation*}
$$

Notice that if $\vec{x}=\vee^{(n)} \vec{y}$ for $n \geq 2$ then \vec{y} can be of length at most $k / 2$. Thus, the values of the first $\lfloor k / 2\rfloor$ components of \vec{x} determine \vec{x} entirely. Since the vector $(1,1, \ldots, 1)$ is not in C_{k}, we have the following upper bound on the size of S_{k} :

$$
\left|S_{k}\right| \leq 2^{\lfloor k / 2\rfloor}-1 \leq 2^{2^{l-1} m}-1 .
$$

The last inequality in conjunction with (2.2) gives us the following lower bound on the size of $C_{k} \backslash S_{k}$

$$
\begin{equation*}
\left|C_{k}-S_{k}\right| \geq 2^{2^{l}(m-1)}-\left(2^{2^{-1} m}-1\right) \geq 1, \tag{2.3}
\end{equation*}
$$

since $m \geq 3$, concluding the proof.
The equality (2.3) in the above proof was first proved by Ludington-Young in [7] and later in [2] by Brown and Merzel. If 2_{k} denotes the highest power of 2 dividing k, then it can be restated as the following corollary.

Corollary 2.5 (Young's Theorem). For every $k \in \mathbb{N}$, the number of cyclic vectors is $2^{k-2_{k}}$.
If we denote by R the rotation of components defined by $R\left(\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)\right)=\left(a_{1}, a_{2}, \ldots, a_{0}\right)$, then $R(\vec{x})$ is cyclic whenever \vec{x} is cyclic. Note also that if \vec{x} is not the concatenation of two or more copies of a shorter vector, then for any $n \in \mathbb{N}, R^{n}(\vec{x}) \neq \vec{x}$. Consequently, we actually have $\left|C_{k} \backslash S_{k}\right| \geq k$, strengthening Theorem 2.4.

Corollary 2.6. For any k not a power of 2, $\left|C_{k} \backslash S_{k}\right| \geq k$.

3. An Application of Theorem 2.4

In this section, we begin by proving that the period of a Ducci sequence cannot be a power of 2 greater than 1 (the null vector has period 1).

Proposition 3.1. For every integer $m \geq 1$ and every \vec{x} in $\mathbb{Z}_{2}^{k}, c(\vec{x}) \neq 2^{m}$.
Proof. Suppose \vec{x} is a cyclic vector such that $c(\vec{x})=2^{m}$ for some positive integer m. Consider the vector $\vec{x}_{1}=\vec{x}+T^{2^{m-1}}(\vec{x})$. It cannot be that $\vec{x}_{1}=\overrightarrow{0}$, otherwise $\vec{x}=T^{2^{m-1}}(\vec{x})$ and $c(\vec{x}) \leq 2^{m-1}$, contradicting our assumption. Also notice that

$$
T^{2^{m-1}}\left(\vec{x}_{1}\right)=T^{2^{m-1}}\left(\vec{x}+T^{2^{m-1}}(\vec{x})\right)=T^{2^{m-1}}(\vec{x})+T^{2^{m}}(\vec{x})=T^{2^{m-1}}(\vec{x})+\vec{x}=\vec{x}_{1}
$$

THE FIBONACCI QUARTERLY

Thus from \vec{x} we constructed a non-zero cyclic vector \vec{x}_{1} whose period $c\left(\vec{x}_{1}\right)$ must be a divisor of 2^{m-1}. If we repeat the procedure with \vec{x}_{1}, we obtain a cyclic vector \vec{x}_{2} whose period divides 2^{m-2} and $\vec{x}_{2} \neq \overrightarrow{0}$. By repeating the process m times, we create a non-null cyclic vector \vec{x}_{m} with $c\left(\vec{x}_{m}\right)=1$, a contradiction.

We use Theorem 2.4 to show that any positive integer which is a power of 2 is the period of a Ducci sequence. This fact is also the consequence of a more general result proved in [2]. Related results were also proved earlier in [7]. Both [7, 2] exploit a form of duality between the "rows" and "columns" of Ducci sequences. We use the same idea in the following proof.

Theorem 3.2. Let m be an integer. If $m \neq 2^{t}$ for any $t \geq 2$, then there exist k and a vector \vec{x} in \mathbb{Z}_{2}^{k} such that $c(\vec{x})=m$.
Proof. Let $k=2^{l} q$ for some integers l, q where $q \geq 3$ is odd. Using Theorem 2.4, let $\vec{x}=$ $\left\{x_{0}, x_{1}, \ldots, x_{k-1}\right\} \in C_{k} \backslash S_{k}$ and form the matrix $M=\left[a_{i, j}\right], 1 \leq i \leq c(\vec{x}), 0 \leq j \leq k-1$ where $a_{i, j}$ is the j component of $T^{i}(\vec{x})$. By construction

$$
a_{i, j}+a_{i, j+1}=a_{i+1, j}
$$

or equivalently

$$
\begin{equation*}
a_{i+1, j}+a_{i, j}=a_{i, j+1} . \tag{3.1}
\end{equation*}
$$

Consider for $0 \leq i \leq k-1$ the vectors $\vec{C}_{i}=\left(a_{c(\vec{z}), i}, a_{c(\vec{z})-1, i}, \ldots, a_{1, i}\right)$, the transposition of the $i+1$ column of M. Note that the role of the indices is now reversed. In particular i now represent the row. By (3.1) we have $T\left(\vec{C}_{i}\right)=\vec{C}_{i+1}$, where as usual the addition of the index is taken modulo k. In particular

$$
\begin{equation*}
T^{k}\left(\vec{C}_{1}\right)=\vec{C}_{1} . \tag{3.2}
\end{equation*}
$$

We claim that $c\left(\vec{C}_{1}\right)=k$. By (3.2) we have $c\left(\vec{C}_{1}\right) \mid k$. Suppose that $c\left(\vec{C}_{1}\right)=t$ is a proper divisor of k. Then $T^{t}\left(\vec{C}_{1}\right)=\vec{C}_{1}$ implying $x_{0}=x_{t}$. Similarly, since then $T^{t}\left(C_{i}\right)=C_{i}$ for every $0 \leq i \leq k-1$ we obtain in general

$$
x_{i}=x_{i+t} .
$$

But then $\vec{x}=\left(x_{0}, x_{1}, \ldots, x_{t-1}, x_{0}, \ldots, x_{t-1}, \ldots, x_{0}, \ldots, x_{t-1}\right)$, contradicting the fact that $\vec{x} \notin$ S_{k}.

References

[1] C. Avart, A characterization of converging Ducci sequences over \mathbb{Z}_{2}, The Fibonacci Quarterly, 49.2 (2011), 155-157.
[2] R. Brown and J. L. Merzel, The number of Ducci sequences with given period, The Fibonacci Quarterly, 45.2 (2007), 115-121.
[3] R. Brown and J. L. Merzel, Limiting behaviour in Ducci sequences, Periodica. Math. Hungarica, 47 (2003), 45-50.
[4] A. Ehrlich, Periods in Ducci's n-number game of differences, The Fibonacci Quarterly, 26.2 (1990), 302305.
[5] A. Ehrlich, Columns of differences, Mathematics Teaching, 79 (1977), 42-45.
[6] H. Glaser and G. Schöffl, Ducci-sequences and Pascal's triangle, The Fibonacci Quarterly, 33.4 (1995), 313-324.
[7] A. Ludington Furno, Cycles of differences of integers, J. Number Theory, 13 (1981), 255-261.

A RESULT ABOUT CYCLES IN DUCCI SEQUENCES

[8] A. Ludington-Young, Length of the n-number game, The Fibonacci Quarterly, 28.3 (1990), 259-265.
[9] A. Ludington-Young, Even Ducci-sequences, The Fibonacci Quarterly, 37.2 (1999), 145-153.
MSC2010: 11B37, 11B65, 11B85
Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303
E-mail address: cavart@gsu.edu

