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Abstract. We prove that for any k ∈ N, k not a power of two, there are cyclic vectors of
length k which are not the concatenation of two or more copies of a vector of smaller length.
As an application of this, we give a new proof of the fact that the period of a Ducci sequence
can be any positive integer with the exception of the powers of 2 greater than 1.

1. Introduction to Ducci Sequences

Let k ∈ N and let ~x = (a0, a1, . . . , ak−1) ∈ N
k. We define a map T : Nk → N

k by

T (~x) = T (a0, a1, . . . , ak−1) = (|a0 − a1|, |a1 − a2|, . . . , |ak−1 − a0|).

The sequence (T n(~x))n∈N generated by the iterations of T is called a Ducci sequence. Ducci
sequences have been extensively studied and often rediscovered. We state a few well-known
facts which will be used in this paper.

Let ~x = (a0, a1, . . . ak−1) ∈ N
k. If there exists a ∈ N such that for every 0 ≤ i ≤ k,

ai ∈ {0, a}, we will say that ~x is a simple vector. A well-known result states that for every
~x ∈ N

k, there exists n ∈ N such that T n(~x) is simple (see [5] for example). Since there are only
finitely many vectors of length k with components in {0, a}, the iterations must eventually
repeat. In other words, every Ducci sequence is ultimately cyclic. We derive another important
consequence of this fact.

Let ~x = (a0, a1, . . . , ak−1) be a simple vector with ai ∈ {0, a} for every 0 ≤ i ≤ k−1. We can
rewrite ~x as (a · ε0, a · ε1, . . . , a · εk−1), where εi = 1 if ai = a and 0 otherwise. Notice that for
every k ∈ N, T k(a · ε0, a · ε1, . . . , a · εk−1) = a · T k(ε0, ε1, . . . , εk−1). This simple remark implies
that in order to study cycles in Ducci sequences, we can restrict our attention to vectors with
components in {0, 1}.

Finally, note that when ai ∈ {0, 1}, the operation |ai − ai+1| is equivalent to ai + ai+1

(mod 2). Consequently, we will study the map T : Zk
2 → Z

k
2 defined by

T (a0, a1, . . . , ak−1) = (a0 + a1, a1 + a2, . . . , ak−1 + a0).

We will call the sequences generated by iterating this map Ducci sequences over Z2. If for
some vector ~x ∈ N

k, there exists an integer p such that T p(~x) = ~x, and p is minimal with
this property, we will say that ~x has period p. The discussion above implies that in order to
study the periods of the Ducci sequences it is sufficient to do so over Z2. We will do so in the
remainder of this paper.

2. Proof of the Main Result

In order to simplify the notation, the indices of the components of any vector ~x ∈ Z
k
2 will

be written modulo k so that, for example, ak = a0 and ak+1 = a1.
If Tm(~x) = ~x for some integer m, we will say that ~x is cyclic. If m is the smallest such

integer, we say that ~x is m-cyclic, or as defined earlier, has period m. If for some integer n,
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we have T n(~x) = ~y and ~y is m-cyclic, we say that ~y belongs to the cycle generated by ~x and
we write c(~x) = m. In other words, c(~x) is the length of the cycle that the iterations of ~x will

eventually reach. If Tm(~x) = ~0 for some integer m, we say that ~x is nilpotent.
Given k, l ∈ N and two vectors ~x = (x0, x1, . . . , xk) and ~y = (y0, y1, . . . , yl) we denote by ~x∨~y

their concatenation (x0, x1, . . . , xk, y1, y2, . . . , yl). For m > 1, we write ~x ∨ ~x . . . ∨ ~x = ∨(m)~x,

the concatenation of ~x with itself m times and by convention ∨(1)~x = ~x.
It is easy to see that for any ~x ∈ Z

k
2 (or in N

k) and for any positive integers n,m the
following relation holds:

T n(∨(m)~x) = ∨(m)T n(~x). (2.1)

In particular, T n(~x) = ~0 implies T n(∨(m)~x) = ~0 for every m.
A fundamental theorem states that if k = 2l for some l, then any ~x ∈ Z

k
2 is nilpotent (see

for example [3]). Together with (2.1), this implies that for any m ∈ N and any ~x ∈ Z
2l
2 , the

vector ∨(m)~x is nilpotent. In [1] a converse to this statement was proved, thus showing the
following proposition.

Proposition 2.1. Let ~x ∈ Z
k
2. The vector ~x is nilpotent if and only if there exist l,m ∈ N

and ~y ∈ Z
2l
2 such that ~x = ∨(m)~y.

The equality (2.1) also allows us to construct new cyclic vectors: if ~x is cyclic of period p,

so is ∨(m)~x for any m > 1. The main result of this paper is that for any k ∈ N, k not a power
of two, there are cyclic vectors in Z

k
2 (and thus also in N

k) that are not the concatenation of
two or more copies of a smaller vector. So in essence, for every k which is not a power of 2,
Z
k
2 has “original” cyclic vectors. Note that this result is obvious if k > 2 is prime and not true

if k is a power of 2 since in this case only ~0 is cyclic. We will need two simple lemmas.

Lemma 2.2. Let k ∈ N and ~x be any element of Zk
2. There exists a unique ~y in the cycle

generated by ~x and a unique nilpotent ~z such that ~x = ~y + ~z.

Proof. First we show the existence. If ~x belongs to the cycle generated by itself, take ~z = ~0.
Otherwise, choose n such that ~c = T n(~x) is cyclic. Denote by m the period of ~c and choose
l such that lm > n. Define ~z = ~x + T lm−n(~c). The linearity of T over Z

k
2 implies that

T n(~z) = T n(~x) + T n+lm−n(~c) = ~c+ T lm(~c) = ~c+ ~c = ~0. In other words, ~z is nilpotent and we
can write ~x = T lm−n(~c) + ~z.

To show uniqueness, suppose ~x = ~y+ ~z = ~y ′ + ~z ′ where ~y and ~y ′ both belong to the cycle
generated by ~x and ~z, ~z ′ are both nilpotent. Let n be an integer such that T n(~z) = T n(~z ′) = ~0.
Then

T n(~y + ~z) = T n(~y ′ + ~z ′)

⇒ T n(~y) + T n(~z) = T n(~y ′) + T n(~z ′)

⇒ T n(~y) = T n(~y ′)

But since both ~y and ~y ′ belong to the same cycle we must have ~y = ~y ′. It follows that
~z = ~z′. �

Define Nilk to be the set of nilpotent vectors in Z
k
2. Lemma 2.2 immediately implies the

following.

Lemma 2.3. Let ~x ∈ Z
k
2. Exactly one element in the set {~x+ ~z, ~z ∈ Nilk } is cyclic.
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Proof. Suppose that there are two different ~z1 and ~z2 in Nilk such that ~x + ~z1 = ~y1 and
~x+~z2 = ~y2 are both cyclic. Then we can rewrite these equalities as ~x = ~y1+~z1 and ~x = ~y2+~z2,
contradicting the previous lemma. �

Define Ck to be the set of cyclic elements of Zk
2 and

Sk = {~x ∈ Ck : there exists ~y such that ~x = ∨(n)~y for some n ≥ 2}.

Theorem 2.4. For every positive integer k, k not a power of 2, there is at least one cyclic

vector of length k which is not the concatenation of two or more copies of a smaller vector.

Proof. Set k = 2lm for some odd number m ≥ 3. The statement is equivalent to showing

that the set Ck \ Sk is non-empty. There are exactly 22
l

vectors in Z
k
2 that can be obtained

by concatenating vectors of length a power of 2. Proposition 2.1 implies |Nilk| = 22
l

. Using

Lemma 2.3 we obtain |Ck||Nilk| = |Zk
2 | or |Ck|2

2l = 22
lm. Consequently,

|Ck| = 22
l(m−1). (2.2)

Notice that if ~x = ∨(n)~y for n ≥ 2 then ~y can be of length at most k/2. Thus, the values
of the first bk/2c components of ~x determine ~x entirely. Since the vector (1, 1, . . . , 1) is not in
Ck, we have the following upper bound on the size of Sk:

|Sk| ≤ 2bk/2c − 1 ≤ 22
l−1m − 1.

The last inequality in conjunction with (2.2) gives us the following lower bound on the size
of Ck \ Sk

|Ck − Sk| ≥ 22
l(m−1) − (22

l−1m − 1) ≥ 1, (2.3)

since m ≥ 3, concluding the proof. �

The equality (2.3) in the above proof was first proved by Ludington-Young in [7] and later
in [2] by Brown and Merzel. If 2k denotes the highest power of 2 dividing k, then it can be
restated as the following corollary.

Corollary 2.5 (Young’s Theorem). For every k ∈ N, the number of cyclic vectors is 2k−2k .

If we denote byR the rotation of components defined byR((a0, a1, . . . , ak−1)) = (a1, a2, . . . , a0),
then R(~x) is cyclic whenever ~x is cyclic. Note also that if ~x is not the concatenation of two
or more copies of a shorter vector, then for any n ∈ N, Rn(~x) 6= ~x. Consequently, we actually
have |Ck \ Sk| ≥ k, strengthening Theorem 2.4.

Corollary 2.6. For any k not a power of 2, |Ck \ Sk| ≥ k.

3. An Application of Theorem 2.4

In this section, we begin by proving that the period of a Ducci sequence cannot be a power
of 2 greater than 1 (the null vector has period 1).

Proposition 3.1. For every integer m ≥ 1 and every ~x in Z
k
2, c(~x) 6= 2m.

Proof. Suppose ~x is a cyclic vector such that c(~x) = 2m for some positive integer m. Consider

the vector ~x1 = ~x + T 2m−1

(~x). It cannot be that ~x1 = ~0, otherwise ~x = T 2m−1

(~x) and
c(~x) ≤ 2m−1, contradicting our assumption. Also notice that

T 2m−1

(~x1) = T 2m−1

(~x+ T 2m−1

(~x)) = T 2m−1

(~x) + T 2m(~x) = T 2m−1

(~x) + ~x = ~x1.
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Thus from ~x we constructed a non-zero cyclic vector ~x1 whose period c(~x1) must be a divisor
of 2m−1. If we repeat the procedure with ~x1, we obtain a cyclic vector ~x2 whose period divides
2m−2 and ~x2 6= ~0. By repeating the process m times, we create a non-null cyclic vector ~xm
with c(~xm) = 1, a contradiction. �

We use Theorem 2.4 to show that any positive integer which is a power of 2 is the period
of a Ducci sequence. This fact is also the consequence of a more general result proved in [2].
Related results were also proved earlier in [7]. Both [7, 2] exploit a form of duality between
the “rows” and “columns” of Ducci sequences. We use the same idea in the following proof.

Theorem 3.2. Let m be an integer. If m 6= 2t for any t ≥ 2, then there exist k and a vector

~x in Z
k
2 such that c(~x) = m.

Proof. Let k = 2lq for some integers l, q where q ≥ 3 is odd. Using Theorem 2.4, let ~x =
{x0, x1, . . . , xk−1} ∈ Ck \Sk and form the matrix M = [ai,j ], 1 ≤ i ≤ c(~x), 0 ≤ j ≤ k−1 where
ai,j is the j component of T i(~x). By construction

ai,j + ai,j+1 = ai+1,j

or equivalently
ai+1,j + ai,j = ai,j+1. (3.1)

Consider for 0 ≤ i ≤ k − 1 the vectors ~Ci = (ac(~z),i, ac(~z)−1,i, . . . , a1,i), the transposition of
the i+ 1 column of M . Note that the role of the indices is now reversed. In particular i now
represent the row. By (3.1) we have T ( ~Ci) = ~Ci+1, where as usual the addition of the index
is taken modulo k. In particular

T k( ~C1) = ~C1. (3.2)

We claim that c( ~C1) = k. By (3.2) we have c( ~C1)|k. Suppose that c( ~C1) = t is a proper

divisor of k. Then T t( ~C1) = ~C1 implying x0 = xt. Similarly, since then T t(Ci) = Ci for every
0 ≤ i ≤ k − 1 we obtain in general

xi = xi+t.

But then ~x = (x0, x1, . . . , xt−1, x0, . . . , xt−1, . . . , x0, . . . , xt−1), contradicting the fact that ~x /∈
Sk. �
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