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Abstract. In 1971, Burr investigated the moduli for which the Fibonacci numbers contain
a complete set of residues. In this paper, we examine the moduli for which this is true of the
Lucas numbers.

1. Introduction

In 1971, Burr [2] proved the complete set of moduli m for which the Fibonacci numbers
(Fn)

∞

n=0 contain a complete set of residues to be all m taking the following forms:

5k, 2 · 5k, 3j · 5k, 4 · 5k, 6 · 5k, 7 · 5k, 14 · 5k for k ≥ 0, j ≥ 1.

For example, the reduction of the Fibonacci numbers modulo 5 yields the sequence (0, 1, 1,
2, 3, 0, 3, 3, 1, 4, . . . ), where every residue is seen. But when reducing the sequence modulo
8, we find the repeating pattern (0, 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, . . .), which does not contain 4
or 6. The analogous set of moduli for Alcuin’s Sequence was studied in 2012 by Bindner and
Erickson [1].

The Lucas numbers (Ln)
∞

n=0 are defined with the same recursion as the Fibonacci numbers
(Ln = Ln−1 + Ln−2), but with starting values L0 = 2 and L1 = 1. Here we explore the Lucas
numbers, and those moduli for which the same property is seen. For the sake of brevity, we
will call the moduli m for which the Fibonacci numbers and Lucas numbers contain all the
residues mod m, Fibonacci-complete and Lucas-complete, respectively.

The theorem discussed in this paper was first conjectured by Erickson [3] in 2011.

2. Main Result

Theorem. The Lucas-complete moduli are those of the following forms:

2, 4, 6, 7, 14, 3k for k ≥ 0.

First, we observe that the Lucas sequence modulo 5 is (2, 1, 3, 4, 2, 1, 3, 4, . . . ), in which
no multiple of 5 appears. Thus it follows that if m is a multiple of 5, then m is not Lucas-
complete. Also observe that if m is Lucas-complete, then Lr ≡ 0 (mod m) for some r. We
present the following lemmas.

Lemma 1. If Lr ≡ 0 (mod m) and Lr+1 ≡ k (mod m), then gcd(m,k) = 1.

Proof. Let g = gcd(m,k). Because g divides these two consecutive terms in the sequence, it
follows by straightforward induction that g divides every term in the Lucas sequence. But
L1 = 1, so g divides 1, which implies that g = 1. �

Lemma 2. If m is Fibonacci-complete and Lr ≡ 0 (mod m) for some r, then m is Lucas-

complete. If m is Lucas-complete, then m is Fibonacci-complete.
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Proof. For this proof, we will work in Z/mZ.
First, suppose that m is Fibonacci-complete and that Lr = 0, and let k = Lr+1. Then it

follows by induction that Lr+n = kFn for all n ≥ 0, that is, each term in the tail (Ln+r)
∞

n=0 is
k times the corresponding term in (Fn)

∞

n=0. In addition, we have gcd(m,k) = 1 by Lemma 1.
Therefore, if (Fn)

∞

n=0 contains a complete residue system, then so does (kFn)
∞

n=0 = (Ln+r)
∞

n=0.
This proves the first statement.

Now suppose that (Ln)
∞

n=0 contains a complete residue system. Then so does the tail
(Ln+r)

∞

n=0, because (Ln)
∞

n=0 is completely periodic. We now have that (k−1Ln+r)
∞

n=0 =
(Fn)

∞

n=0 also contains a complete residue system. This proves the second statement. �

At this point, it follows that if m is Lucas-complete, then m is of the form

2, 4, 6, 7, 14, 3k for k ≥ 0.

It remains to show that all of the above moduli are indeed Lucas-complete. By Lemma 2, it
suffices to show that there is a Lucas number divisible by m, for each of the above values of
m.

It is easy to check that 1, 2, 4, 6, 7, and 14 have this property. We simply write out the
sequences to show that 1 | L0, 2 | L0, 4 | L3, 6 | L6, 7 | L4, and 14 | L12. It remains to show
that 3k divides some Lucas number for all k ≥ 1. We first make use of the following lemma.

Lemma 3. If for some positive integer k, 3k | Ln, then 3k+1 | L3n.

Proof. Making use of the identity L3n = L3
n − 3(−1)nLn, we see that, since 3k+1 must divide

L3
n (for positive k) and 3k+1 | 3(−1)nLn (that is, 3 · 3k | 3(−1)nLn), 3

k+1 divides a linear
combination of the two, specifically, L3

n − 3(−1)nLn = L3n. �

Since 3 | L2 = 3, by induction, 3k divides some Lucas number for every positive integer k,
and the theorem is proven.
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