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Abstract. An n-color composition of n is a composition of n where a part k has k possible
colors. It is known that the number of n-color compositions of n is F2n (the 2nth Fibonacci
numbers). Among other objects, F2n also counts the number of binary words with exactly
n− 1 strictly increasing runs and the number of {0, 1, 2} strings of length n− 1 excluding the
subword 12. In this note, we show bijections between n-color compositions and these objects.
In particular, the bijection between the n-color compositions and the binary words with n−1
increasing substrings generalizes the classic bijection between compositions and binary words
of length n− 1. We also comment on the potential applications of these findings.

1. Introduction

A composition of a positive integer n is an ordered t-tuple of positive integers {c1, c2, . . . , ct}
(we call each ci a “part” of this composition) such that

c1 + c2 + · · · + ct = n.

It is well-known that the number of compositions of n is 2n−1 [8]. For instance, the 8 compo-
sitions of 4 are listed below:

4, 3 + 1, 2 + 2, 1 + 3, 2 + 1 + 1, 1 + 2 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1.

A composition can be naturally represented as a tiling of a 1×n board with tiles of dimension
1 × ci where 1 ≤ i ≤ t. For example, the composition 2 + 3 + 1 = 6 can be represented as
Figure 1.

Figure 1. Tiling representation of 2 + 3 + 1 = 6.

The classical bijection that maps a composition of n to a binary word of length n − 1 is
due to MacMahon [8]. One can also see, for instance, [5] for details. In terms of the tiling
representation, one could consider the internal vertical lines in Figure 1 and map a vertical
line to a 0 if it is bold and otherwise to a 1. The above composition of 6 is then mapped to a
binary word

10110 (1.1)

of length 5.
An “n-color composition” of n is a composition where a part k has one of k possible colors

[1]. This can be conveniently denoted by a subscript for each part (i.e., ki denotes a part k

with color i, where 1 ≤ i ≤ k). For instance, in the composition 2+3+1, the part 2 has two
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possible colors, the part 3 has three possible colors, the part 1 has only one possible color. All
the n-color compositions with these parts (in this order) are shown below:

21 + 11 + 31, 21 + 11 + 32, 21 + 11 + 33, 22 + 11 + 31, 22 + 11 + 32, 22 + 11 + 33. (1.2)

The tiling representation can be naturally extended for n-color compositions by marking one
of the k squares of an 1 × k tile with a dot, called the “spotted tiling” [7]. For example, the
n-color composition 22 + 32 + 11 = 6 can be represented by Figure 2.

Figure 2. Tiling representation of 22 + 32 + 11 = 6.

Many interesting studies and questions followed from the introduction of the n-color com-
positions. See, for instance, [2, 4] and the references therein for some related topics. Even
before the formal introduction of this concept, “weighted compositions” were considered [6]
(in the setting of n-color compositions, the weight of a part is simply the number of colors).
When introducing this concept, Agarwal [1] also asked for the analogue of MacMahon’s zig-zag
graph [9] as the conjugation of a composition.

It is known that the number of n-color compositions of n is F2n [1], i.e., bisection of Fibonacci
sequence (A001906 in [10]). In [7], an interesting bijection was established between the n-color
compositions of n and compositions of 2n with odd parts.

In view of the aforementioned classical one-to-one correspondence between the compositions
and the binary words, it is interesting to see that the “number of binary words with exactly
n − 1 strictly increasing runs” (A119900 in [10]) is also F2n. Formally speaking, a strictly
“increasing run” is a maximal subsequence of consecutive terms that is strictly increasing.
Evidently each “strictly increasing run” is either a 0, 1, or 01. As an example, the binary
word “100111101011100” can be written as

|1|0|01|1|1|1|01|01|1|1|0|0|

where strictly increasing runs are separated by |’s.
In Section 2, we will see a bijection between the n-color compositions and such binary words,

offering a combinatorial proof for the following fact.

Proposition 1.1. The number of n-color compositions of n is the same as the number of

binary words with exactly n− 1 strictly increasing runs.

Essentially the same bijection also leads to the following proposition.

Proposition 1.2. The number of n-color compositions of n is the same as the number of

ternary strings of length n− 1 without 12.

The second set of objects in Proposition 1.2 are also counted by A001906 in [10]. See, for
instance [3]. In fact, we will see that a one-to-one correspondence between the binary words
and ternary strings follows naturally.

Proposition 1.1 provides a generalization of the bijection between compositions and binary
words. And indeed from any binary string, one can generate a corresponding n-color compo-
sition following the bijection. We comment on the potential applications of these results in
Section 3.

MAY 2013 131



THE FIBONACCI QUARTERLY

2. The Bijections

We start with the bijection between the n-color compositions of n and binary words with
n−1 strictly increasing runs. This bijection not only generalizes the classical bijection between
compositions and binary words, but also shows some potential in dealing with different ques-
tions such as defining the conjugation or obtaining bijections between n-color compositions.

2.1. Between n-color compositions and binary words. The bijection is presented here
in an algorithmic process. From the spotted tiling representation of an n-color composition,
we start from the leftmost tile. In every step (except the last) we decrease the number of
“squares” by 1 and generate a strictly increasing run. This is described below and illustrated
by Figure 3.

• If the leftmost part is 11 (i.e., a tile with one square that is marked), we remove this
tile and add |01| to the binary word;

• If the leftmost part is ki for some k > 1 and 1 < i ≤ k (i.e., the leftmost tile is of
size greater than 1 and the marked square is not the first (leftmost) one), we remove
the first square (hence the new first part will be (k − 1)i−1) and add |1| to the binary
word;

• If the leftmost part is k1 for some k > 1 (i.e., the leftmost tile is of size greater than 1
and the marked square is the first one), we remove the first square and mark the next
one (hence the new first part will be (k − 1)1), adding |0| to the binary word.

. . . 7−→
↘

|01|

. . .

. . . 7−→
↘

|1|

. . .

. . . 7−→
↘

|0|

. . .

Figure 3. Generate a binary word from an n-color composition.

Following this process, we will always have a tile of size 1 with the square marked in the
end. We simply ignore this last square. This is shown by Figure 4, when there are two squares
left before the last step.

7−→|01|

7−→ |0|

7−→ |1|

Figure 4. Three possibilities for the end of the process.

It is not difficult to see that the operations defined this way maps the tiling representation of
an n-color composition of n to a binary word with n− 1 strictly increasing runs. For example,
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the n-color composition

32 + 44 + 11 + 53 = 13

has a tiling representation as in Figure 5.

Figure 5. Tiling representation of 32 + 44 + 11 + 53 = 13.

Under the operations defined above, this representation is mapped to the binary word

|1|0|01|1|1|1|01|01|1|1|0|0|. (2.1)

Instead of providing a formal proof for this bijection, we show in detail how one can reverse
the process and achieve an n-color composition of 13 from (2.1).

Starting from the right-hand side of the binary word, we have |0| corresponding to the
second operation in Figure 4. Then we have another |0| corresponding to the third operation
in Figure 3 and the process continues this way. This is illustrated in Figure 6.

7−→
|0|

7−→
|0|0|

7−→
|1|0|0|

7−→
|1|1|0|0|

7−→
|01|1|1|0|0|

7−→
|01|01|1|1|0|0|

7−→
|1|01|01|1|1|0|0|

7−→
|1|1|01|01|1|1|0|0|

7−→
|1|1|1|01|01|1|1|0|0|

7−→
|01|1|1|01|01|1|1|0|0|

7−→
|0|01|1|1|01|01|1|1|0|0|

|1|0|01|1|1|01|01|1|1|0|0|

Figure 6. Generating an n-color composition from a binary word.

2.2. Between n-color compositions and ternary strings without 12. The process is
similar to that in the previous subsection, illustrated in Figure 7. Note that any string gener-
ated from an n-color composition will avoid the pattern “12”. We omit the details.

Similar to before, we ignore the very end of the tiling. Again, Figure 8 shows the situation
when there are two squares left.
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. . . 7−→
↘

0

. . .

. . . 7−→
↘

2

. . .

. . . 7−→
↘

1

. . .

Figure 7. Generating a ternary string from an n-color composition.

7−→ 0

7−→ 1

7−→ 2

Figure 8. Three possibilities of the end of the process.

2.3. Between the binary words and the ternary strings. It is not hard to notice the
similarity between the two aforementioned bijections. Indeed, there is a natural bijection
between the binary words with exactly n strictly increasing runs (where |0|1| is “avoided”)
and the {0, 1, 2} strings of length n that avoids 12 through the following:

• 0 
 |01|;
• 1 
 |0|;
• 2 
 |1|.

3. Concluding Remarks and Potential Applications

In this note we make use of the spotted tiling representation of an n-color composition
to show bijections between such compositions and other objects counted by the bisection of
Fibonacci sequence. The bijection to binary words with n − 1 strictly increasing runs seems
to be particularly interesting.

This bijection offers a generalization of the classical bijection between compositions of n
and binary words of length n − 1. This classical bijection has been useful in many bijective
arguments between compositions. See [11] for a recent example of such applications.

Much information regarding the n-color composition can be readily obtained from the cor-
responding binary word. For instance, the number of parts of the composition is one plus the
number of runs |01|. One can compare this observation with the classical case (1.1) where the
number of parts is one plus the number of 0’s. Similarly, the number of parts of an n-color
composition is one more than the number of 0’s in the corresponding ternary string without
12.

By taking the “conjugate” of a binary word (i.e., exchange 1 and 0), the classical result
yields a number of interesting one-to-one correspondences between compositions with various
constraints (for example, [11]). In terms of the n-color compositions and binary words with
increasing runs, it is the number of increasing runs (corresponding to the number whose
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composition we are considering) instead of the number of digits in a binary word that is of
importance. It is not difficult to observe the following.

Proposition 3.1. The conjugate of a binary word that starts and ends with the same digit

has the same number of increasing runs as that of the original binary word.

With Proposition 3.1, we can define conjugates for n-color compositions whose correspond-
ing binary words start and end with the same digit. For example, the n-color composition

33 + 41 + 22 = 9

is mapped to the binary word
1|1|01|0|0|0|01|1

that starts and ends with the same digit 1. Taking the conjugate yields

0|01|01|1|1|1|0|0

that has 8 increasing runs, the same as the original binary word. Hence we have the n-color
composition

21 + 11 + 64 = 9

as the conjugate.
The above discussion does not apply to binary words that start and end with different digits.

In fact, the following is easily observed.

Proposition 3.2. For a binary word that starts with 1 and ends with 0, the conjugate will

have one fewer increasing run. Similarly, for a binary word that starts with 0 and ends with

1, the conjugate will have one more increasing run.

For example, consider the n-color composition

32 + 44 + 11 + 53 = 13

from Figure 5, the corresponding binary word is

1|0|01|1|1|1|01|01|1|1|0|0,

a binary word with 12 increasing runs starting with 1 and ending with 0. Now taking the
conjugate yields

01|1|0|0|0|01|01|0|0|01|1,

a binary word with 12 − 1 = 11 increasing runs. The corresponding n-color composition is
then obtained as

11 + 52 + 11 + 31 + 22 = 12.

From Proposition 3.2, one can still define the “conjugate” of such an n-color composition
similarly. The “conjugate” defined, however, will map compositions of a number n to n + 1
or n − 1 (the “conjugate” of the “conjugate” will return to the original composition). As a
referee suggested, one might be able to take advantage of the ternary strings without 12 (for
which the compositions will be of the same number, as are the lengths of the strings) provided
that a novel “conjugation” of them can be devised.
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