INDEPENDENT SETS OF CARDINALITY s OF MAXIMAL OUTERPLANAR GRAPHS

JOHN ESTES, WILLIAM STATON, AND BING WEI

Abstract

In 1982, Prodinger and Tichy defined the Fibonacci number $f(G)$ to be the number of independent sets in the graph G. Let $\alpha(G)$ be the cardinality of a maximum independent set of G and $f_{s}=f_{s}(G)$ be the number of independent sets of cardinality s in G. Then the independence polynomial of G is defined to be $I(G ; x)=\sum_{s=0}^{\alpha(G)} f_{s}(G) x^{s}$, and so $I(G ; 1)=f(G)$. In 1998, Alameddine determined that $f\left(P_{n}^{2}\right) \leq f(G) \leq f\left(S_{n}^{2}\right)$ for maximal outerplanar graphs G with equality reached uniquely by the 2-path P_{n}^{2} and the 2spiral S_{n}^{2}, respectively. We will investigate $f(G)$ for maximal outerplanar graphs by way of the coefficients f_{s} of $I(G ; x)$; we show that for a maximal outerplanar graph G and $s \geq 3$, $\binom{n+2-2 s}{s} \leq f_{s}(G) \leq\binom{ n-s}{s}$. The lower bound is uniquely reached by P_{n}^{2}, and the upper bound is reached exclusively by D_{6}^{2} and S_{n}^{2}. As a corollary, we show the works of Alameddine with one more graph obtaining the upper bound when $n=6$.

Throughout this paper $G=(V, E)$ is a finite simple undirected graph. For graphs G and $H, G \cong H$ denotes that G is isomorphic to H. Let $G \vee H$ denote the graph obtained by adding an edge from each vertex in G to each vertex in H. For $S \subseteq V(G), G[S]$ denotes the subgraph of G induced by S, and $G-S$ denotes $G[V(G)-S]$. For a vertex $v \in V(G)$, we let $N(v)=\{u \mid u \in V(G), u v \in E(G)\}, N[v]=N(v) \bigcup\{v\}$, and the degree of $v, d(v)=|N(v)|$. Let $\delta=\min \{d(v) \mid v \in V(G)\}$. We use K_{n}, P_{n}, and $S_{1, n-1}$ for a clique, a path, and a star, all on n vertices, respectively.

An independent set in a graph G is a set of pairwise non-adjacent vertices. Let $\alpha(G)$ denote the cardinality of a maximum independent set of G. In 1982, Prodinger and Tichy [7] defined the Fibonacci number $f(G)$ to be the total number of independent sets of G. Let $f_{s}=f_{s}(G)$ be the number of independent sets of cardinality s of G. Then the polynomial

$$
I(G ; x)=\sum_{s \geq 0}^{\alpha(G)} f_{s}(G) x^{s}
$$

is called the independence polynomial [3], the independent set polynomial [4], or Fibonacci polynomial [5] of G. It is clear then that $I(G ; 1)=f(G)$. Fibonacci numbers and independence polynomials have been areas of vigorous research, and for results not presented here we refer the reader to a thorough survey paper by Levit and Mandrescu [6].

The following proposition is commonly known and will be used in subsequent sections.
Proposition 1. Let G be a graph on n vertices and m edges, and let $v \in V(G)$. Then
(i) $f_{0}(G)=1$
(ii) $f_{1}(G)=n$
(iii) $f_{2}(G)=\binom{n}{2}-m$
(iv) $f_{s}(G)=f_{s}(G-v)+f_{s-1}(G-N[v])$ for $s \geq 1$.
(v) Let H be a spanning subgraph of G. Then $f_{s}(G) \leq f_{s}(H)$.

THE FIBONACCI QUARTERLY

An outerplanar graph is a graph that has a planar drawing with all vertices on the same face. A graph G is maximal outerplanar if G is outerplanar and is not a spanning subgraph of another outerplanar graph. We say an edge of a maximal outerplanar graph G is bound if it is contained in two triangles of G and unbound if it is not bound. Then it is easy to verify that a maximal outerplanar graph G has a unique Hamiltonian cycle that passes through the unbound edges of G. Also for $v \in V(G)$, if $d(v)=2$, then $G[N(v)] \cong K_{2}$ and $G-v$ is also a maximal outerplanar graph. Define the 2-path, P_{n}^{2}, to be the maximal outerplanar graph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ where $G\left[\left\{v_{1}, v_{2}\right\}\right] \cong K_{2}$, and for $3 \leq i \leq n$, vertex v_{i} is adjacent to vertices $\left\{v_{i-1}, v_{i-2}\right\}$. Define 2 -spiral as $S_{n}^{2} \cong K_{1} \vee P_{n-1}$, and define D_{6}^{2} to be the unique maximal outerplanar graph on six vertices with three vertices of degree 2 .

In 1998, Alameddine determined sharp bounds of the Fibonacci number of maximal outerplanar graphs and characterized the unique maximal outerplanar graphs that obtained these bounds. He found the following.

Theorem 2. [1] Let G be a maximal outerplanar graph on $n \geq 3$ vertices. Then $f(G) \geq f\left(P_{n}^{2}\right)$, and equality is reached if and only if $G \cong P_{n}^{2}$.
Theorem 3. [1] Let G be a maximal outerplanar graph on $n \geq 3$ vertices. Then $f(G) \leq f\left(S_{n}^{2}\right)$, and equality is reached if and only if $G \cong S_{n}^{2}$.

We note for $n=6, f\left(S_{6}^{2}\right)=f\left(D_{6}^{2}\right)=14$, and thus Theorem 3 is not complete. In this paper, we will demonstrate a revision of the results of Alameddine including this special case through investigating lower and upper bounds of the coefficients of $I(G ; x), f_{s}(G)$ for $s \geq 0$. Additionally, we will classify the unique graphs that obtain these bounds.

Now a maximal outerplanar graph G on n vertices has $2 n+3$ edges. Hence by Proposition 1, it is clear that $f_{s}\left(G_{1}\right)=f_{s}\left(G_{2}\right)$ for $0 \leq s \leq 2$ for maximal outerplanar graphs G_{1} and G_{2}. Thus we need to only consider $s \geq 3$. Also, as there is only one maximal outerplanar graph on $n \in\{3,4,5\}$ vertices, we need to only consider $n \geq 6$. We must first introduce some related concepts.

In 1968, Beineke and Pippet introduced the notion of k-trees [2], which will now be defined. For $n=k, G \cong K_{k}$. Let G be a k-tree on $n \geq k+1$ vertices. Add a new vertex v such that $G[N(v)] \cong K_{k}$. The resulting graph is a k-tree on $n+1$ vertices. By this definition, it is clear that maximal outerplanar graphs are 2-trees.

In 2010, Song, Staton, and Wei determined sharp lower bounds for f_{s} of k-trees for $s \geq 3$ and determined the unique graphs that obtained these bounds [8]. For $k=2$, the 2 -tree that uniquely obtains this sharp lower bound is the 2 -path. Thus the lower bound of f_{s} for maximal outerplanar graphs for $s \geq 3$ immediately follows by the results of Song et. al. with $k=2$. We may state the following theorem.

Theorem 4. Let G be a maximal outerplanar graph on $n \geq 6$ vertices. Then for all $s \geq 3$,

$$
f_{s}(G) \geq\binom{ n+2-2 s}{s}
$$

and equality holds if and only if $G \cong P_{n}^{2}$.
Corollary 5. Let G be a maximal outerplanar graph on $n \geq 6$ vertices. Then $f(G) \geq f\left(P_{n}^{2}\right)$ with equality holding if and only if $G \cong P_{n}^{2}$.

We note that Corollary 5 is consistent with the results of Alameddine.
We will now focus on determining the sharp upper bound.

Figure 1. Maximal outerplanar graphs on $n=7$ vertices.

Theorem 6. Let G be a maximal outerplanar graph on $n \geq 6$ vertices. Then for all $s \geq 3$,

$$
f_{s}(G) \leq\binom{ n-s}{s}
$$

and equality holds if and only if $G \in\left\{S_{6}^{2}, D_{6}^{2}\right\}$ for $n=6$ and $G \cong S_{n}^{2}$ for $n \geq 7$.
Proof. First, we note that in 1984, Hopkins and Staton determined that, for the path P_{n} on n vertices and $s \geq 0, f_{s}\left(P_{n}\right)=\binom{n+1-s}{s}$ [5] which will be used in our proofs. We need only to consider $s \geq 3$. Suppose $n=6$. Then $G \in\left\{P_{6}^{2}, S_{6}^{2}, D_{6}^{2}\right\}$. Let $n=7$. Then $G \in$ $\left\{P_{7}^{2}, G_{1}, G_{2}, S_{7}^{2}\right\}$ as pictured in Figure 1. Routine calculations show that for $n \in\{6,7\}$, $\alpha(G) \leq 3, f_{3}\left(P_{6}^{2}\right)=0, f_{3}\left(D_{6}^{2}\right)=f_{3}\left(S_{6}^{2}\right)=1=\binom{6-3}{3}, f_{3}\left(P_{7}^{2}\right)=1, f_{3}\left(G_{1}\right)=2, f_{3}\left(G_{2}\right)=3$, and $f_{3}\left(S_{7}^{2}\right)=4=\binom{7-3}{3}$. Thus the theorem holds for $n \in\{6,7\}$.

Suppose that for maximal outerplanar graphs on $7 \leq n^{\prime}<n$ vertices the theorem holds, and let G be a maximal outerplanar graph on $n \geq 8$ vertices. Let $v \in V(G)$ such that $d(v)=2$ and $N(v)=\left\{u_{1}, u_{2}\right\}$. By Proposition 1(iv)

$$
\begin{equation*}
f_{s}(G)=f_{s}(G-v)+f_{s-1}(G-N[v]), \tag{1}
\end{equation*}
$$

and as $G-v$ is a maximal outerplanar graph by induction, $f_{s}(G-v) \leq f_{s}\left(S_{n-1}^{2}\right)=\binom{n-1-s}{s}$.
Now G has a Hamiltonian cycle C that passes through all of the unbound edges of G. Thus $u_{1} v u_{2}$ is a segment of C, and so $G-N[v]$ has a spanning path on $n-3$ vertices, namely $C-N[v]$. By Proposition $1, f_{s-1}(G-N[v]) \leq f_{s-1}\left(P_{n-3}\right)=\binom{n-3+1-(s-1)}{s-1}=\binom{n-1-s}{s-1}$.

Thus by induction and (1),

$$
\begin{aligned}
f_{s}(G)= & f_{s}(G-v)+f_{s-1}(G-N[v]) \\
& \leq f_{s}\left(S_{n-1}^{2}\right)+f_{s-1}\left(P_{n-3}\right) \\
= & \binom{n-1-s}{s}+\binom{n-1-s}{s-1} \\
= & \binom{n-s}{s-1},
\end{aligned}
$$

and for $s \geq 3$ equality holds if and only if $G-v \cong S_{n-1}^{2}$ and $G-N[v] \cong P_{n-3}$, i.e. $G \cong S_{n}^{2}$.
As a corollary, we obtain the following modified result of Alameddine.
Corollary 7. Let G be a maximal outerplanar graph on $n \geq 6$. Then $f(G) \leq f\left(S_{n}^{2}\right)$. If $n=6$, then equality is reached if and only if $G \in\left\{D_{6}^{2}, S_{6}^{2}\right\}$, and if $n \geq 7, G \cong S_{n}^{2}$.

THE FIBONACCI QUARTERLY

References

[1] A. F. Alameddine, Bounds on the Fibonacci number of a maximal outerplanar graph, The Fibonacci Quarterly, 36.3 (1998), 206-210.
[2] L. W. Beineke and R. E. Pippet, The number of labeled k-dimensional trees, J. Combin. Theory, 6 (1969), 200-205.
[3] I. Gutman and F. Harary, Generalizations of the matching polynomial, Utilitas Mathematica, 24 (1983), 97-106.
[4] C. Hoede and X. Li, Clique polynomials and independent sets of graphs, Discrete Mathematics, 125 (1994), 219-228.
[5] G. Hopkins and W. Staton, An identity arising from counting independent sets, Congressus Numerantium, 44 (1984), 5-10.
[6] V. Levit and E. Mandrescu, The independence polynomial of a graph - a survey, Proceedings of the 1st International Conference on Algebraic Informatics, Aristotle Univ. Thessaloniki, Thessaloniki, (2005), 231252.
[7] H. Prodinger and R. F. Tichy, Fibonacci numbers of graphs, The Fibonacci Quarterly, 20.1 (1982), 16-21.
[8] L. Song, W. Staton, and B. Wei, Independence polynomials of k-tree related graphs, Discrete Applied Math., 158 (2010), 943-950.

MSC2010: 05C31
Department of Mathematics, Belhaven University, 1500 Peachtree St., Jackson, MS 39202
E-mail address: jestes@belhaven.edu
Department of Mathematics, The University of Mississippi, University, MS 38677
E-mail address: mmstaton@olemiss.edu
E-mail address: bwei@olemiss.edu

