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ABSTRACT. In 1982, Prodinger and Tichy defined the Fibonacci number f(G) to be the
number of independent sets in the graph G. Let a(G) be the cardinality of a maximum
independent set of G and fs = fs(G) be the number of independent sets of cardinality s
in G. Then the independence polynomial of G is defined to be I(G;z) = Zgi%'v) fs(G)z®,
and so I(G;1) = f(G). In 1998, Alameddine determined that f(P?) < f(G) < f(52%) for
maximal outerplanar graphs G with equality reached uniquely by the 2-path P2 and the 2-
spiral SZ, respectively. We will investigate f(G) for maximal outerplanar graphs by way of
the coefficients fs of I(G;z); we show that for a maximal outerplanar graph G and s > 3,
(”*2;28) < fs(G) < (”:S) The lower bound is uniquely reached by P2, and the upper bound
is reached exclusively by D2 and S2. As a corollary, we show the works of Alameddine with
one more graph obtaining the upper bound when n = 6.

Throughout this paper G = (V, E) is a finite simple undirected graph. For graphs G and
H, G =2 H denotes that G is isomorphic to H. Let G V H denote the graph obtained by
adding an edge from each vertex in G to each vertex in H. For S C V(G), G[S] denotes the
subgraph of G induced by S, and G — S denotes G[V(G) — S]. For a vertex v € V(G), we
let N(v) = {ulu € V(G),uv € E(G)}, N[v] = N(v)|J{v}, and the degree of v, d(v) = |N(v)].
Let 6 = min{d(v)|v € V(G)}. We use K, P,, and Si,—-1 for a clique, a path, and a star, all
on n vertices, respectively.

An independent set in a graph G is a set of pairwise non-adjacent vertices. Let a(G) denote
the cardinality of a maximum independent set of G. In 1982, Prodinger and Tichy [7] defined
the Fibonacci number f(G) to be the total number of independent sets of G. Let fs = f5(G)
be the number of independent sets of cardinality s of G. Then the polynomial

o(G)
I(Gsz) = ) fo(G)a?

s>0
is called the independence polynomial [3], the independent set polynomial [4], or Fibonacci
polynomial [5] of G. It is clear then that I(G;1) = f(G). Fibonacci numbers and independence
polynomials have been areas of vigorous research, and for results not presented here we refer
the reader to a thorough survey paper by Levit and Mandrescu [6].

The following proposition is commonly known and will be used in subsequent sections.

Proposition 1. Let G be a graph on n vertices and m edges, and let v € V(G). Then

(i) fo(G) =1
(ii) f1(G) =n
(iii) f2(G) = (3) —m
(iv) fs(GQ) = fs(G —v) + fs—1(G — N[v]) for s > 1.
(v) Let H be a spanning subgraph of G. Then fs(G) < fs(H).
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An outerplanar graph is a graph that has a planar drawing with all vertices on the same
face. A graph G is maximal outerplanar if G is outerplanar and is not a spanning subgraph
of another outerplanar graph. We say an edge of a maximal outerplanar graph G is bound if
it is contained in two triangles of G and unbound if it is not bound. Then it is easy to verify
that a maximal outerplanar graph G has a unique Hamiltonian cycle that passes through the
unbound edges of G. Also for v € V(G), if d(v) = 2, then G[N(v)] = K3 and G — v is also
a maximal outerplanar graph. Define the 2-path, P2, to be the maximal outerplanar graph
with vertex set {vi,...,v,} where G[{v1,v2}] = Ko, and for 3 < i < n, vertex v; is adjacent
to vertices {v;_1,v;—2}. Define 2-spiral as S,% = Ky V P,_1, and define Dg to be the unique
maximal outerplanar graph on six vertices with three vertices of degree 2.

In 1998, Alameddine determined sharp bounds of the Fibonacci number of maximal outer-
planar graphs and characterized the unique maximal outerplanar graphs that obtained these
bounds. He found the following.

Theorem 2. [1] Let G be a mazimal outerplanar graph onn > 3 vertices. Then f(G) > f(P2?),
and equality is reached if and only if G = P2.

Theorem 3. [1] Let G be a mazimal outerplanar graph onn > 3 vertices. Then f(G) < f(S2),
and equality is reached if and only if G = S2.

We note for n = 6, f(S2) = f(D2) = 14, and thus Theorem 3 is not complete. In this
paper, we will demonstrate a revision of the results of Alameddine including this special case
through investigating lower and upper bounds of the coefficients of I(G;x), fs(G) for s > 0.
Additionally, we will classify the unique graphs that obtain these bounds.

Now a maximal outerplanar graph G on n vertices has 2n+3 edges. Hence by Proposition 1,
it is clear that fs(G1) = fs(G2) for 0 < s < 2 for maximal outerplanar graphs G; and Gb.
Thus we need to only consider s > 3. Also, as there is only one maximal outerplanar graph on
n € {3,4,5} vertices, we need to only consider n > 6. We must first introduce some related
concepts.

In 1968, Beineke and Pippet introduced the notion of k-trees [2], which will now be defined.
For n =k, G = Kj. Let G be a k-tree on n > k + 1 vertices. Add a new vertex v such that
G|N (v)] = K. The resulting graph is a k-tree on n + 1 vertices. By this definition, it is clear
that maximal outerplanar graphs are 2-trees.

In 2010, Song, Staton, and Wei determined sharp lower bounds for fs of k-trees for s > 3
and determined the unique graphs that obtained these bounds [8]. For k = 2, the 2-tree that
uniquely obtains this sharp lower bound is the 2-path. Thus the lower bound of fs for maximal
outerplanar graphs for s > 3 immediately follows by the results of Song et. al. with k = 2.
We may state the following theorem.

Theorem 4. Let G be a maximal outerplanar graph on n > 6 vertices. Then for all s > 3,

1(G) = (””‘25>,

s
and equality holds if and only if G = P2.

Corollary 5. Let G be a mazimal outerplanar graph on n > 6 vertices. Then f(G) > f(P2)
with equality holding if and only if G = P2.

We note that Corollary 5 is consistent with the results of Alameddine.
We will now focus on determining the sharp upper bound.
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P72 Gy Go S?

FIGURE 1. Maximal outerplanar graphs on n = 7 vertices.

Theorem 6. Let G be a mazimal outerplanar graph on n > 6 vertices. Then for all s > 3,

£.(G) < ("‘ )

s
and equality holds if and only if G € {S2, D2} for n =6 and G = 52 forn > 7.

Proof. First, we note that in 1984, Hopkins and Staton determined that, for the path P,
on n vertices and s > 0, fs(P,) = ("+;_S) [5] which will be used in our proofs. We need
only to consider s > 3. Suppose n = 6. Then G € {PZ,S2,D3}. Let n = 7. Then G €
{P? G1,G2,52} as pictured in Figure 1. Routine calculations show that for n € {6,7},
a(G) <3, f3(PF) =0, f3(D§) = f3(S3) = 1= (°57), f3(P) =1, f3(G1) = 2, f3(Ga) = 3, and
f3(S2) =4 = (";*). Thus the theorem holds for n € {6,7}.

Suppose that for maximal outerplanar graphs on 7 < n/ < n vertices the theorem holds,
and let G be a maximal outerplanar graph on n > 8 vertices. Let v € V(G) such that d(v) = 2
and N(v) = {u1,u2}. By Proposition 1(iv)

fs(G) :fs(G_U)+fs—1(G_N[U])7 (1)

and as G — v is a maximal outerplanar graph by induction, fs(G —v) < fs(S?_;) = ("_i_s).

Now G has a Hamiltonian cycle C that passes through all of the unbound edges of G. Thus
ujvuy is a segment of C, and so G — N[v] has a spanning path on n — 3 vertices, namely

C — NJv]. By Proposition 1, fs_1(G — N[v]) < fs—1(Py—3) = ("_3':1__1(3_1)) = (";_IIS)
Thus by induction and (1),

fs(G) = fs(G —v) + fs1(G — Nv))
< fS(S’?L—l) + fS—l(Pn—3)

<n—1—8> <n—1—8>
= -
s s—1
_(n—s
S \s—-1)’
and for s > 3 equality holds if and only if G—v = S%2 | and G—N[v] &£ P,_3,ie. G=S2. O

As a corollary, we obtain the following modified result of Alameddine.

Corollary 7. Let G be a mazimal outerplanar graph onn > 6. Then f(G) < f(S?). Ifn =6,
then equality is reached if and only if G € {D2,S2}, and if n > 17, G = S2.
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