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Abstract. In this note we prove that
(

np
s

mps + r

)

≡ (−1)r−1
r
−1(m+ 1)

(

n

m+ 1

)

p
s (mod p

s+1)

where p is any prime, n, m, s and r are nonnegative integers such that n ≥ m, s ≥ 1,
1 ≤ r ≤ p

s
− 1 and r is not divisible by p. We derive a proof by induction using a multiple

application of Lucas’ Theorem and two basic binomial coefficient identities. As an application,
we prove that a similar congruence for a prime p ≥ 5 established in 1992 by D. F. Bailey
holds for all primes p.

1. Introduction and Main Result

In 1878 É. Lucas [9] (also see [6]) proved a remarkable result which provides a simple way
to compute the binomial coefficient

(

n
m

)

modulo a prime p in terms of the binomial coefficients
of the base-p digits of n and m: if n = n0 + n1p+ · · ·+ nsp

s and m = m0 +m1p+ · · ·+msp
s

such that 0 ≤ mi, ni ≤ p− 1 for each i, then
(

n

m

)

≡

s
∏

i=0

(

ni

mi

)

(mod p) (1.1)

(with the usual convention that
(0
0

)

= 1, and
(

l
r

)

= 0 if l < r). Lucas’ Theorem is often
formulated in the literature in the following equivalent form. If p is a prime, and a, b, c and d

are nonnegative integers with a, b ≤ p− 1, then
(

cp + a

dp+ b

)

≡

(

c

d

)(

a

b

)

(mod p). (1.2)

In 1990 D. F. Bailey [1, Theorems 3 and 5] proved that under the same assumptions on a, b, c, d

for each prime p ≥ 5
(

cpf + a

dpf + b

)

≡

(

c

d

)(

a

b

)

(mod pf )

with f ∈ {2, 3}. A generalization of this Lucas-like theorem to every prime power pf with p ≥ 5
and f = 2, 3, . . . was discovered in 1990 by K. S. Davis and W. A. Webb [5] and independently
by A. Granville [7]. In 2001 H. Hu and Z.-W. Sun [8] proved a similar congruence to (1.2)
for generalized binomial coefficients defined in terms of second order recurrent sequences with
initial values 0 and 1. In 2007 Z.-W. Sun and D. M. Davis [10] and in 2009 M. Chamberland
and K. Dilcher [4] established analogues of Lucas’ Theorem for certain classes of binomial
sums.
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Some Lucas type congruences were established also by Bailey. Namely, in 1991 Bailey [2,
Theorem 4] proved by induction on n ≥ 0 that

(

np

mp+ i

)

≡ (m+ 1)

(

n

m+ 1

)(

p

i

)

(mod p2) (1.3)

where p is a prime, n, m and i are nonnegative integers with m ≤ n and 1 ≤ i ≤ p− 1.
Applying the congruence (1.3), in the same paper [2, Theorem 5] the author extended it to

the congruence
(

np2

mp2 + kp+ i

)

≡ (m+ 1)

(

n

m+ 1

)(

p2

kp+ i

)

(mod p3) (1.4)

where p ≥ 5 is a prime, n, m, k and i are nonnegative integers with m ≤ n, 0 ≤ k ≤ p− 1 and
1 ≤ i ≤ p− 1.

The following year, proceeding by induction on s ≥ 1, Bailey [3, Theorem 2.1] generalized
the congruence (1.4) modulo higher powers of a prime p ≥ 5. This congruence, extended here
for all primes p (Corollary 1.2 given below), is obtained as a consequence of the following
result.

Theorem 1.1. Let p be any prime, and let n, m, s and r be nonnegative integers such that

m ≤ n, s ≥ 1, 1 ≤ r ≤ ps − 1 and r is not divisible by p. Then
(

nps

mps + r

)

≡ (−1)r−1r−1(m+ 1)

(

n

m+ 1

)

ps (mod ps+1). (1.5)

(Here r−1 denotes the inverse of r in the field Zp).

Corollary 1.2. ([3, Theorem 2.1]). Let p ≥ 5 be a prime and let n, m and s be nonnegative

integers such that m ≤ n and s ≥ 1. Let r =
∑s−1

j=0 ajp
j with nonnegative integers aj such that

1 ≤ a0 ≤ p− 1 and 0 ≤ aj ≤ p− 1 for all j = 1, . . . , s− 1. Then
(

nps

mps + r

)

≡ (m+ 1)

(

n

m+ 1

)(

ps

r

)

(mod ps+1). (1.6)

Remark. In the proof of Corollary 1.2, using Vandermonde’s Identity, Bailey proceeds by
induction on s assuming for the base of induction the cases s = 1 and s = 2, that is, the
congruences (1.3) and (1.4), respectively. Recall that his inductive proof of the congruence
(1.4) [1, Theorem 5] is based on Vandermonde’s Identity and Ljunggren’s Congruence (see
e.g., [1, Theorem 4] or [6]) which asserts that

(

np
mp

)

≡
(

n
m

)

(modp3) for all primes p ≥ 5

and nonnegative integers n and m with n ≥ m. Bailey applied the same arguments (with
(

np
mp

)

≡
(

n
m

)

(mod p2) instead of Ljunggren’s Congruence) in the proof of the congruence (1.3)

[1, Theorem 4].
In the next section, using only Lucas’ Theorem and two basic binomial coefficient identities,

we give an inductive proof of Theorem 1.1.

2. Proof of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. First observe that if n = m then since r ≥ 1, (1.5) reduces to the
identity 0 = 0. Thus, we can assume that p, n,m and s are arbitrary fixed integers satisfying
the assumptions of Theorem 1.1 and n ≥ m+1 ≥ 1. Since by the assumptions, 1 ≤ r ≤ ps− 1
and r is not divisible by p, if s ≥ 2 we can write r = kp + i with 0 ≤ k ≤ ps−1 − 1 and
1 ≤ i ≤ p− 1, and if s = 1, then k = 0 and r = i with 1 ≤ i ≤ p− 1.
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We will prove (1.5) by induction on i (= r(mod p)) in the range 1 ≤ i ≤ p − 1. For i = 1,

using the identities
(

a
b+1

)

= a−b
b+1

(

a
b

)

and
(

a
b+1

)

= a
b+1

(

a−1
b

)

with 0 ≤ b ≤ a− 1, we find that

(

nps

mps + kp+ 1

)

=
(n−m)ps − kp

mps + kp + 1

(

nps

mps + kp

)

= p ·
(n−m)ps−1 − k

mps + kp+ 1

(

nps

(mps−1 + k)p

)

= p ·
(n−m)ps−1 − k

mps + kp+ 1
·

nps

(mps−1 + k)p

(

nps − 1

(mps−1 + k)p − 1

)

(2.1)

= ps ·
((n −m)ps−1 − k)n

(mps + kp+ 1)(mps−1 + k)

(

nps − 1

(mps−1 + k)p − 1

)

.

Now we consider two cases.
Case 1: k = 0. Then r = 1 and for m = 0 (1.5) reduces to the identity nps = nps. If m ≥ 1,

then the right hand side of (2.1) with k = 0 is equal to

ps ·
(n−m)n

(mps + 1)m

(

nps − 1

mps − 1

)

= ps ·
(n−m)n

(mps + 1)m

(

(nps−1 − 1)p+ (p− 1)

(mps−1 − 1)p + (p− 1)

)

,

which by iterating Lucas’ Theorem in the form (1.2) s times and using the identity (n−m)n
m

(

n−1
m−1

)

=

(m+ 1)
(

n
m+1

)

, gives

≡ ps ·
(n−m)n

m

(

nps−1 − 1

mps−1 − 1

)

(mod ps+1)

= ps ·
(n−m)n

m

(

(nps−2 − 1)p+ (p − 1)

(mps−2 − 1)p + (p− 1)

)

(mod ps+1)

≡ ps ·
(n−m)n

m

(

nps−2 − 1

mps−2 − 1

)

(mod ps+1) ≡ · · ·

≡ ps ·
(n−m)n

m

(

n− 1

m− 1

)

= (m+ 1)

(

n

m+ 1

)

ps (mod ps+1).

Comparing this with (2.1) for k = 0, we find that
(

nps

mps + 1

)

≡ (m+ 1)

(

n

m+ 1

)

ps (mod ps+1).

This proves (1.5) with r = 1 (that is, with i = 1 and k = 0).
Case 2: 1 ≤ k ≤ ps−1 − 1. Then from r = kp + 1 ≤ ps − 1 we see that we must have s ≥ 2.

First notice that by Lucas’ Theorem it follows immediately that
(

apf + c

bpf + d

)

≡

(

a

b

)(

c

d

)

(mod p), (2.2)

where p is a prime, f, a, b, c and d are nonnegative integers such that f ≥ 1, c ≤ pe − 1,
d ≤ pe − 1, and b ≤ a. Similarly, by (1.1) with the usual conventions, we have

(

ape

bpe

)

≡

(

a

b

)

(mod p). (2.3)
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Also notice that for each prime p and any integer j such that 0 ≤ j ≤ p− 1 we have

(

p− 1

j

)

=
(p − 1)(p − 2) · · · (p− j)

j!
≡

(−1)jj!

j!
= (−1)j (mod p). (2.4)

Take k = upl where l ≥ 0 and u ≥ 1 are nonnegative integers such that u is not divisible
by p. Then since r = kp + 1 = upl+1 + 1 ≤ ps − 1, we see that we must have s ≥ 3,

l ≤ s − 2 and u < ps−1−l. Taking k = upl for u =
∑s−l−2

j=0 ujp
j with 0 ≤ uj ≤ p − 1 for each

j = 0, 1, . . . , s − l − 2 and u0 ≥ 1 into (2.1), using Lucas’ Theorem, (2.2), (2.3) and (2.4) we
find that

(

nps

mps + upl+1 + 1

)

= ps ·
((n −m)ps−1−l − u)n

(mps + upl+1 + 1)(mps−l−1 + u)

(

nps − 1

(mps−l−1 + u)pl+1 − 1

)

≡ ps ·
−un

u

(

(nps−l−1 − 1)pl+1 + (pl+1 − 1)

(mps−l−1 + u− 1)pl+1 + (pl+1 − 1)

)

(mod ps+1)

≡ −nps
(

nps−l−1 − 1

mps−l−1 + u− 1

)

(mod ps+1)

= −nps
(

(n− 1)ps−l−1 + ps−l−1 − 1

mps−l−1 − 1 +
∑s−l−2

j=0 ujpj

)

= −nps
(

(n− 1)ps−l−1 +
∑s−l−2

j=0 (p− 1)pj

mps−l−1 + (u0 − 1) +
∑s−l−2

j=1 ujpj

)

(2.5)

≡ −nps
(

(n− 1)ps−l−1

mps−l−1

)(

p− 1

u0 − 1

) s−l−2
∏

j=1

(

p− 1

uj

)

(mod ps+1)

≡ −nps
(

n− 1

m

)

(−1)−1+
∑s−l−2

j=0
uj (mod ps+1)

≡ n

(

n− 1

m

)

(−1)ups (mod ps+1)

≡ (m+ 1)

(

n

m+ 1

)

(−1)r−1ps (mod ps+1)

(the last two congruences are clearly satisfied since for odd prime p,
∑s−l−2

j=0 uj ≡ u(mod 2),

and hence, r − 1 = upl+1 ≡ u(mod 2), while for p = 2 we have (−1)t ≡ 1(mod 2) for each
integer t). The congruence (2.5) coincides with (1.5) for r = upl+1 + 1. This concludes the
proof of the induction beginning (i = 1).

Now suppose that the congruence (1.5) holds for each r = kp+ i with 0 ≤ k ≤ ps−1− 1 and
some fixed i with 1 ≤ i ≤ p− 2; that is,

(

nps

mps + kp+ i

)

≡ (−1)kp+i−1(kp+ i)−1(m+ 1)

(

n

m+ 1

)

ps (mod ps+1). (2.6)
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Then using the identity
(

a
b+1

)

= a−b
b+1

(

a
b

)

with 0 ≤ b ≤ a and (2.6), we find that
(

nps

mps + kp+ i+ 1

)

=
(n−m)ps − kp− i

mps + kp+ i+ 1

(

nps

mps + kp + i

)

≡
(n−m)ps − kp− i

mps + kp+ i+ 1
(−1)kp+i−1(kp+ i)−1(m+ 1)

(

n

m+ 1

)

ps (mod ps+1)

≡
−i

kp+ i+ 1
(−1)kp+i−1i−1(m+ 1)

(

n

m+ 1

)

ps (mod ps+1)

= (−1)kp+i(kp + i+ 1)−1(m+ 1)

(

n

m+ 1

)

ps (mod ps+1).

This proves (1.5) with r satisfying r ≡ i + 1(mod p), which completes the proof of Theorem
1.1. �

Proof of Corollary 1.2. Taking n = 1 and m = 0 in the congruence (1.5) of Theorem 1.1, for
all r such that 1 ≤ r ≤ ps − 1 and r not divisible by p, we get

(

ps

r

)

≡ (−1)r−1r−1ps (mod ps+1).

Comparing this with (1.5), we immediately obtain (1.6). �
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