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Abstract. Let L, M be integers, L > 0, M 6= 0, (L,M) = 1 and L 6= M, 2M, 3M, 4M ;

K = L− 4M , α = (L1/2 +K1/2)/2, β = (L1/2 −K1/2)/2, Pn = (αn − βn)/(α(n,2) − β(n,2)).
It is proved for all positive integers k, l and m, that if Pk|Plm/Pm, then l ≥ k/30 and for
L > 4M then l ≥ k/2.

I have proved in a previous paper [4] that if a > b are coprime positive integers such that

ak − bk

a− b

∣

∣

∣

∣

n−1
∑

j=0

cja
jbn−1−j,

then

k ≤
n−1
∑

j=0

cj .

It follows, hence, that if
ak − bk

a− b

∣

∣

∣

∣

alm − blm

am − bm
,

then k ≤ l. The aim of this paper is to generalize the latter result in a slightly weaker form
to the case, where

α =

√
L+

√
K

2
, β =

√
L−

√
K

2
(α, β replace a, b), (1)

L > 0, M 6= 0, K = L − 4M , and L, M are coprime integers such that α/β is not a root
of unity. We shall formulate our result in terms of Lehmer numbers defined, as usual, by the
formula

Pn =















αn − βn

α− β
, n odd,

αn − βn

α2 − β2
, n even.

(2)

We shall prove the following theorem.

Theorem. Let k, l, m be positive integers and L, M integers. If

L > 0, M 6= 0, (L,M) = 1, L/M = 1, 2, 3, 4, (3)

(1) holds and

Pk(α, β) | Plm(α, β)/Pm(α, β), (4)

then l ≥ k
30 . If, in addition, L > 4M , then l ≥ k

2 .

The proof is based on nine lemmas, in which Qn(x, y) denotes the homogeneous form of a
cyclotomic polynomial of order n.
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Lemma 1. If n is not of the form 2λ or 3 · 2λ, λ ≥ 0, then the only factor of Qn(α, β) that

divides nPm(α, β) for m < n is the largest prime factor of n. If n = 2λ or 3 · 2λ, λ > 2, then
2 is the only factor of Qn(α, β) that divides nPm(α, β) for m < n. If n = 12, Q12(α, β) may

have 2, 3 or 6 as factors that divide nPm(α, β) for m < n.

Proof. See [3], Theorem 3.4. �

Lemma 2. If (1) and (2) hold and d > 30, then Qd(α, β) has a prime factor not dividing d.
If, in addition L > 4M , then the same conclusion holds for d > 2 except for

d = 3, L = 1, M = −2;

d = 6, L = 9, M = 2; L = 1, M = −1 or L = 5, M = 1;

d = 12, L = 1, M = −1 or L = 5, M = 1;

(5)

Proof. See [1] and [2]. �

Lemma 3. If (1) and (3) hold, then every prime factor of Qd(a, b) not dividing d is ≡ ±1
(mod d).

Proof. See [3], Theorem 3.2 and 3.3. �

Lemma 4. If (1) and (3) hold and d > 30 the largest prime factor of Qd(α, β) not dividing

d exists and is at least d − 1. If, in addition, L > 4M , the same conclusion holds for d > 2
except for (5).

Proof. . This follows from Lemmas 2 and 3. �

Lemma 5. If (1) and (3) hold and k, n are positive integers, then

(Pk(α, β), Pn(α, β)) =
∣

∣P(k,n)(α, β)
∣

∣ . (6)

Proof. See [3], Theorem 1.4. �

Lemma 6. If (1) and (3) hold, k, n are positive integers, k > 30 and

Pk(α, β) | Pn(α, β), (7)

then, k |n. If, in addition, L > 4M , then the same conclusion holds for k > 2.

Proof. It follows from Lemma 5 and (7) that

|Pk(α, β)| =
∣

∣P(k,n)(α, β)
∣

∣ . (8)

However,

Pn(α, β) =
∏

δ|n
δ>2

Qδ(α, β), (9)

hence, (8) gives
∏

δ|n
δ-(k,n), δ>2

Qδ(α, β) = ±1,

which, unless k |n, gives for k > 2, Qk(α, β) = ±1. By Lemma 2 this is impossible for k > 30
and if L > 4M for k > 2. Exceptions (5) are not exceptions here. �

Lemma 7. If (1)–(4) hold, d = (k,m) > 30 and p is any prime factor of Qd(α, β) not dividing
d, then ordp l > ordp k. If L > 4M the same is true for d > 2.
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Proof. By the identity (9), divisibility (4) takes the form

∏

δ|k
δ>2

Qδ(α, β)

∣

∣

∣

∣

∏

δ|lm
δ-m, δ>2

Qδ(α, β),

which implies

Qd(α, β)

ordp k
∏

α=1

Qdpe(α, β)

∣

∣

∣

∣

∏

δ|lm
δ-m, δ>2

Qδ(α, β).

Hence,

Qd(α, β)

∣

∣

∣

∣

∏

δ|lm
δ-m, δ>2, δ 6=dpe (1≤e≤ordp k)

Qδ(α, β).

By Lemma 1 if |Qd(α, β)| > 1 we have either δ | d, or δ/d = pf (f > ordp k). The first option

is impossible, since δ - m and d |m. The second option gives pfd | lm, pfd - m;

pf | lm
d
, pf -

m

d
,

thus if ordp k > 0, then ordpm = 0 and ordp l > ordp k. If ordp k = 0, then ordp l > 0. In cases
(5) the assertion is void. �

Lemma 8. If L = 1, M = −2 or L = 9, M = 2, n even, and (1) holds, then

ord3 Pn(α, β) = ord3 n.

Proof. This follows from the law of repetition for Lehmer numbers.

Lemma 9. If n ≡ 0 mod 6 and L = 1, M = −1 or L = 5, M = 1, and (1) holds, then

ord2 Pn(α, β) = ord2 n+ 2.

Proof. For n ≡ 0 mod 6 the sequences Pn(α, β) corresponding to L = 1, M = −1 and L = 5,
M = 1 coincide and the lemma follows from the law of repetition for Lehmer numbers.

Proof of the Theorem. Let d = (k,m). By Lemma 6 we have k | lm, hence k
d
| l. Also, by

Lemmas 2 and 7, if d > 30 or L > 4M and d > 2 and exceptions (5) are excluded, a prime
factor of Qd(α, β) not dividing d exists and divides l in a higher power than k. Hence by
Lemma 4,

l ≥ p
k

d
≥ (d− 1)

k

d
>

k

2
.

Now consider the cases (5).
If d = 3, L = 1, M = −2, then by Lemma 6

k

3

∣

∣

∣

∣

l. (10)

On the other hand, by Lemma 8

ord3 Pk(α, β) = ord3 k,

ord3 Plm(α, β)/Pm(α, β) = ord3 l,

hence, by (4), ord3 k ≤ ord3 l and, by (10), k | l.
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If d = 6, L = 9, M = 2, then by Lemma 6

k

6

∣

∣

∣

∣

l. (11)

On the other hand, by Lemma 8, as above ord3 k ≤ ord3 l and, by (11)

k

2

∣

∣

∣

∣

l.

If d = 6 or 12, L = 1, M = −1 or L = 5, M = 1, then by Lemma 6

k

d

∣

∣

∣

∣

l. (12)

On the other hand, by Lemma 9

ord2 Pk(α, β) = ord2 k + 2,

ord2 Plm(α, β)/Pm(α, β) = ord2 l,

hence, by (4), ord2 k + 2 ≤ ord2 l and, by (12),

4

3
k

∣

∣

∣

∣

l.
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