A PROPERTY OF LEHMER NUMBERS

A. SCHINZEL

ABSTRACT. Let L, M be integers, L > 0, $M \neq 0$, (L, M) = 1 and $L \neq M, 2M, 3M, 4M$; K = L - 4M, $\alpha = (L^{1/2} + K^{1/2})/2$, $\beta = (L^{1/2} - K^{1/2})/2$, $P_n = (\alpha^n - \beta^n)/(\alpha^{(n,2)} - \beta^{(n,2)})$. It is proved for all positive integers k, l and m, that if $P_k|P_{lm}/P_m$, then $l \geq k/30$ and for L > 4M then $l \geq k/2$.

I have proved in a previous paper [4] that if a > b are coprime positive integers such that

$$\frac{a^k - b^k}{a - b} \bigg| \sum_{j=0}^{n-1} c_j a^j b^{n-1-j},$$

then

$$k \le \sum_{j=0}^{n-1} c_j.$$

It follows, hence, that if

$$\frac{a^k - b^k}{a - b} \left| \frac{a^{lm} - b^{lm}}{a^m - b^m} \right|,$$

then $k \leq l$. The aim of this paper is to generalize the latter result in a slightly weaker form to the case, where

$$\alpha = \frac{\sqrt{L} + \sqrt{K}}{2}, \quad \beta = \frac{\sqrt{L} - \sqrt{K}}{2} \quad (\alpha, \beta \text{ replace } a, b), \tag{1}$$

 $L > 0, M \neq 0, K = L - 4M$, and L, M are coprime integers such that α/β is not a root of unity. We shall formulate our result in terms of Lehmer numbers defined, as usual, by the formula

$$P_n = \begin{cases} \frac{\alpha^n - \beta^n}{\alpha - \beta}, & n \text{ odd,} \\ \frac{\alpha^n - \beta^n}{\alpha^2 - \beta^2}, & n \text{ even.} \end{cases}$$
(2)

We shall prove the following theorem.

Theorem. Let k, l, m be positive integers and L, M integers. If

$$L > 0, \quad M \neq 0, \quad (L, M) = 1, \quad L/M = 1, 2, 3, 4,$$
 (3)

(1) holds and

$$P_k(\alpha,\beta) \mid P_{lm}(\alpha,\beta)/P_m(\alpha,\beta),\tag{4}$$

then $l \geq \frac{k}{30}$. If, in addition, L > 4M, then $l \geq \frac{k}{2}$.

The proof is based on nine lemmas, in which $Q_n(x, y)$ denotes the homogeneous form of a cyclotomic polynomial of order n.

THE FIBONACCI QUARTERLY

Lemma 1. If n is not of the form 2^{λ} or $3 \cdot 2^{\lambda}$, $\lambda \geq 0$, then the only factor of $Q_n(\alpha, \beta)$ that divides $nP_m(\alpha, \beta)$ for m < n is the largest prime factor of n. If $n = 2^{\lambda}$ or $3 \cdot 2^{\lambda}$, $\lambda > 2$, then 2 is the only factor of $Q_n(\alpha, \beta)$ that divides $nP_m(\alpha, \beta)$ for m < n. If n = 12, $Q_{12}(\alpha, \beta)$ may have 2, 3 or 6 as factors that divide $nP_m(\alpha, \beta)$ for m < n.

Proof. See [3], Theorem 3.4.

Lemma 2. If (1) and (2) hold and d > 30, then $Q_d(\alpha, \beta)$ has a prime factor not dividing d. If, in addition L > 4M, then the same conclusion holds for d > 2 except for

$$d = 3, \quad L = 1, \quad M = -2;$$

$$d = 6, \quad L = 9, \quad M = 2; \quad L = 1, \quad M = -1 \quad or \quad L = 5, \quad M = 1;$$

$$d = 12, \quad L = 1, \quad M = -1 \quad or \quad L = 5, \quad M = 1;$$
(5)

Proof. See [1] and [2].

Lemma 3. If (1) and (3) hold, then every prime factor of $Q_d(a,b)$ not dividing d is $\equiv \pm 1 \pmod{d}$.

Proof. See [3], Theorem 3.2 and 3.3.

Lemma 4. If (1) and (3) hold and d > 30 the largest prime factor of $Q_d(\alpha, \beta)$ not dividing d exists and is at least d - 1. If, in addition, L > 4M, the same conclusion holds for d > 2 except for (5).

Proof. . This follows from Lemmas 2 and 3.

Lemma 5. If (1) and (3) hold and k, n are positive integers, then

$$(P_k(\alpha,\beta), P_n(\alpha,\beta)) = |P_{(k,n)}(\alpha,\beta)|.$$
(6)

Proof. See [3], Theorem 1.4.

Lemma 6. If (1) and (3) hold, k, n are positive integers, k > 30 and

$$P_k(\alpha,\beta) \mid P_n(\alpha,\beta),\tag{7}$$

then, $k \mid n$. If, in addition, L > 4M, then the same conclusion holds for k > 2.

Proof. It follows from Lemma 5 and (7) that

$$|P_k(\alpha,\beta)| = \left| P_{(k,n)}(\alpha,\beta) \right|.$$
(8)

However,

$$P_n(\alpha,\beta) = \prod_{\substack{\delta \mid n \\ \delta > 2}} Q_\delta(\alpha,\beta), \tag{9}$$

hence, (8) gives

 $\prod_{\substack{\delta \mid n \\ \delta \nmid (k,n), \, \delta > 2}} Q_{\delta}(\alpha,\beta) = \pm 1,$

which, unless $k \mid n$, gives for k > 2, $Q_k(\alpha, \beta) = \pm 1$. By Lemma 2 this is impossible for k > 30 and if L > 4M for k > 2. Exceptions (5) are not exceptions here.

Lemma 7. If (1)–(4) hold, d = (k, m) > 30 and p is any prime factor of $Q_d(\alpha, \beta)$ not dividing d, then $\operatorname{ord}_p l > \operatorname{ord}_p k$. If L > 4M the same is true for d > 2.

Proof. By the identity (9), divisibility (4) takes the form

$$\prod_{\substack{\delta \mid k \\ \delta > 2}} Q_{\delta}(\alpha, \beta) \left| \prod_{\substack{\delta \mid lm \\ \delta \nmid m, \, \delta > 2}} Q_{\delta}(\alpha, \beta), \right.$$

which implies

$$Q_d(\alpha,\beta) \prod_{\alpha=1}^{\operatorname{ord}_p k} Q_{dp^e}(\alpha,\beta) \Big| \prod_{\substack{\delta \mid lm \\ \delta \nmid m, \, \delta > 2}} Q_\delta(\alpha,\beta).$$

Hence,

$$Q_d(\alpha,\beta) \bigg| \prod_{\substack{\delta \mid lm \\ \delta \nmid m, \, \delta > 2, \, \delta \neq dp^e \, (1 \le e \le \operatorname{ord}_p k)}} Q_\delta(\alpha,\beta).$$

By Lemma 1 if $|Q_d(\alpha, \beta)| > 1$ we have either $\delta | d$, or $\delta/d = p^f$ $(f > \operatorname{ord}_p k)$. The first option is impossible, since $\delta \nmid m$ and $d \mid m$. The second option gives $p^f d \mid lm, p^f d \nmid m$;

$$p^f \mid l\frac{m}{d}, \quad p^f \nmid \frac{m}{d}$$

thus if $\operatorname{ord}_p k > 0$, then $\operatorname{ord}_p m = 0$ and $\operatorname{ord}_p l > \operatorname{ord}_p k$. If $\operatorname{ord}_p k = 0$, then $\operatorname{ord}_p l > 0$. In cases (5) the assertion is void.

Lemma 8. If L = 1, M = -2 or L = 9, M = 2, n even, and (1) holds, then

 $\operatorname{ord}_3 P_n(\alpha,\beta) = \operatorname{ord}_3 n.$

Proof. This follows from the law of repetition for Lehmer numbers.

Lemma 9. If $n \equiv 0 \mod 6$ and L = 1, M = -1 or L = 5, M = 1, and (1) holds, then

$$\operatorname{ord}_2 P_n(\alpha,\beta) = \operatorname{ord}_2 n + 2.$$

Proof. For $n \equiv 0 \mod 6$ the sequences $P_n(\alpha, \beta)$ corresponding to L = 1, M = -1 and L = 5, M = 1 coincide and the lemma follows from the law of repetition for Lehmer numbers.

Proof of the Theorem. Let d = (k, m). By Lemma 6 we have k | lm, hence $\frac{k}{d} | l$. Also, by Lemmas 2 and 7, if d > 30 or L > 4M and d > 2 and exceptions (5) are excluded, a prime factor of $Q_d(\alpha, \beta)$ not dividing d exists and divides l in a higher power than k. Hence by Lemma 4,

$$l \ge p\frac{k}{d} \ge (d-1)\frac{k}{d} > \frac{k}{2}.$$

Now consider the cases (5).

If d = 3, L = 1, M = -2, then by Lemma 6

$$\frac{k}{3} \left| l. \right|$$
(10)

On the other hand, by Lemma 8

ord₃
$$P_k(\alpha, \beta) = \text{ord}_3 k$$
,
ord₃ $P_{lm}(\alpha, \beta) / P_m(\alpha, \beta) = \text{ord}_3 l$,

hence, by (4), $\operatorname{ord}_3 k \leq \operatorname{ord}_3 l$ and, by (10), $k \mid l$.

MAY 2013

THE FIBONACCI QUARTERLY

If d = 6, L = 9, M = 2, then by Lemma 6

$$\frac{k}{6} \left| l. \right. \tag{11}$$

On the other hand, by Lemma 8, as above $\operatorname{ord}_3 k \leq \operatorname{ord}_3 l$ and, by (11)

If d = 6 or 12, L = 1, M = -1 or L = 5, M = 1, then by Lemma 6

$$\frac{k}{d} \left| l. \right. \tag{12}$$

On the other hand, by Lemma 9

ord₂
$$P_k(\alpha, \beta) = \operatorname{ord}_2 k + 2,$$

ord₂ $P_{lm}(\alpha, \beta) / P_m(\alpha, \beta) = \operatorname{ord}_2 l$

 $\frac{k}{2}$ | l.

hence, by (4), $\operatorname{ord}_2 k + 2 \leq \operatorname{ord}_2 l$ and, by (12),

$$\frac{4}{3}k \left| l \right|.$$

References

- [1] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, with an appendix by M. Mignotte, J. Reine Angew. Math., 539 (2001), 75–122.
- [2] L. K. Durst, Exceptional real Lehmer sequences, Pac. J. Math., 9 (1959), 437-441.
- [3] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math., **31.2** (1930), 419–448.
 [4] A. Schinzel, On divisibility by ^{ak}-b^k/_{a-b}, The Fibonacci Quarterly, **51.1** (2013), 72–77.

MSC2010: 11B39

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, ŚNIADECKICH 8, 00-956 WARSAW, POLAND E-mail address: schinzel@impan.pl