A PROPERTY OF LEHMER NUMBERS

A. SCHINZEL

Abstract. Let L, M be integers, $L>0, M \neq 0,(L, M)=1$ and $L \neq M, 2 M, 3 M, 4 M$; $K=L-4 M, \alpha=\left(L^{1 / 2}+K^{1 / 2}\right) / 2, \beta=\left(L^{1 / 2}-K^{1 / 2}\right) / 2, P_{n}=\left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{(n, 2)}-\beta^{(n, 2)}\right)$. It is proved for all positive integers k, l and m, that if $P_{k} \mid P_{l m} / P_{m}$, then $l \geq k / 30$ and for $L>4 M$ then $l \geq k / 2$.

I have proved in a previous paper [4] that if $a>b$ are coprime positive integers such that

$$
\left.\frac{a^{k}-b^{k}}{a-b} \right\rvert\, \sum_{j=0}^{n-1} c_{j} a^{j} b^{n-1-j}
$$

then

$$
k \leq \sum_{j=0}^{n-1} c_{j}
$$

It follows, hence, that if

$$
\frac{a^{k}-b^{k}}{a-b} \left\lvert\, \frac{a^{l m}-b^{l m}}{a^{m}-b^{m}}\right.
$$

then $k \leq l$. The aim of this paper is to generalize the latter result in a slightly weaker form to the case, where

$$
\begin{equation*}
\alpha=\frac{\sqrt{L}+\sqrt{K}}{2}, \quad \beta=\frac{\sqrt{L}-\sqrt{K}}{2} \quad(\alpha, \beta \text { replace } a, b), \tag{1}
\end{equation*}
$$

$L>0, M \neq 0, K=L-4 M$, and L, M are coprime integers such that α / β is not a root of unity. We shall formulate our result in terms of Lehmer numbers defined, as usual, by the formula

$$
P_{n}= \begin{cases}\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, & n \text { odd } \tag{2}\\ \frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}}, & n \text { even. }\end{cases}
$$

We shall prove the following theorem.
Theorem. Let k, l, m be positive integers and L, M integers. If

$$
\begin{equation*}
L>0, \quad M \neq 0, \quad(L, M)=1, \quad L / M=1,2,3,4, \tag{3}
\end{equation*}
$$

(1) holds and

$$
\begin{equation*}
P_{k}(\alpha, \beta) \mid P_{l m}(\alpha, \beta) / P_{m}(\alpha, \beta), \tag{4}
\end{equation*}
$$

then $l \geq \frac{k}{30}$. If, in addition, $L>4 M$, then $l \geq \frac{k}{2}$.
The proof is based on nine lemmas, in which $Q_{n}(x, y)$ denotes the homogeneous form of a cyclotomic polynomial of order n.

THE FIBONACCI QUARTERLY

Lemma 1. If n is not of the form 2^{λ} or $3 \cdot 2^{\lambda}, \lambda \geq 0$, then the only factor of $Q_{n}(\alpha, \beta)$ that divides $n P_{m}(\alpha, \beta)$ for $m<n$ is the largest prime factor of n. If $n=2^{\lambda}$ or $3 \cdot 2^{\lambda}, \lambda>2$, then 2 is the only factor of $Q_{n}(\alpha, \beta)$ that divides $n P_{m}(\alpha, \beta)$ for $m<n$. If $n=12, Q_{12}(\alpha, \beta)$ may have 2, 3 or 6 as factors that divide $n P_{m}(\alpha, \beta)$ for $m<n$.
Proof. See [3], Theorem 3.4.
Lemma 2. If (1) and (2) hold and $d>30$, then $Q_{d}(\alpha, \beta)$ has a prime factor not dividing d. If, in addition $L>4 M$, then the same conclusion holds for $d>2$ except for

$$
\begin{array}{ll}
d=3, & L=1, \quad M=-2 ; \\
d=6, & L=9, \quad M=2 ; \quad L=1, \quad M=-1 \quad \text { or } \quad L=5, \quad M=1 ; \tag{5}\\
d=12, & L=1, \quad M=-1 \quad \text { or } \quad L=5, \quad M=1 ;
\end{array}
$$

Proof. See [1] and [2].
Lemma 3. If (1) and (3) hold, then every prime factor of $Q_{d}(a, b)$ not dividing d is $\equiv \pm 1$ $(\bmod d)$.

Proof. See [3], Theorem 3.2 and 3.3.
Lemma 4. If (1) and (3) hold and $d>30$ the largest prime factor of $Q_{d}(\alpha, \beta)$ not dividing d exists and is at least $d-1$. If, in addition, $L>4 M$, the same conclusion holds for $d>2$ except for (5).

Proof. . This follows from Lemmas 2 and 3.
Lemma 5. If (1) and (3) hold and k, n are positive integers, then

$$
\begin{equation*}
\left(P_{k}(\alpha, \beta), P_{n}(\alpha, \beta)\right)=\left|P_{(k, n)}(\alpha, \beta)\right| . \tag{6}
\end{equation*}
$$

Proof. See [3], Theorem 1.4.
Lemma 6. If (1) and (3) hold, k, n are positive integers, $k>30$ and

$$
\begin{equation*}
P_{k}(\alpha, \beta) \mid P_{n}(\alpha, \beta), \tag{7}
\end{equation*}
$$

then, $k \mid n$. If, in addition, $L>4 M$, then the same conclusion holds for $k>2$.
Proof. It follows from Lemma 5 and (7) that

$$
\begin{equation*}
\left|P_{k}(\alpha, \beta)\right|=\left|P_{(k, n)}(\alpha, \beta)\right| . \tag{8}
\end{equation*}
$$

However,

$$
\begin{equation*}
P_{n}(\alpha, \beta)=\prod_{\substack{\delta \mid n \\ \delta>2}} Q_{\delta}(\alpha, \beta) \tag{9}
\end{equation*}
$$

hence, (8) gives

$$
\prod_{\substack{\delta \mid n \\ \delta \nmid(k, n), \delta>2}} Q_{\delta}(\alpha, \beta)= \pm 1,
$$

which, unless $k \mid n$, gives for $k>2, Q_{k}(\alpha, \beta)= \pm 1$. By Lemma 2 this is impossible for $k>30$ and if $L>4 M$ for $k>2$. Exceptions (5) are not exceptions here.
Lemma 7. If (1)-(4) hold, $d=(k, m)>30$ and p is any prime factor of $Q_{d}(\alpha, \beta)$ not dividing d, then $\operatorname{ord}_{p} l>\operatorname{ord}_{p} k$. If $L>4 M$ the same is true for $d>2$.

A PROPERTY OF LEHMER NUMBERS

Proof. By the identity (9), divisibility (4) takes the form

$$
\prod_{\substack{\delta \mid k \\ \delta>2}} Q_{\delta}(\alpha, \beta) \mid \prod_{\substack{\delta \mid m \\ \delta \nmid m, \delta>2}} Q_{\delta}(\alpha, \beta)
$$

which implies

$$
Q_{d}(\alpha, \beta) \prod_{\alpha=1}^{\operatorname{ord}_{p} k} Q_{d p^{e}}(\alpha, \beta) \mid \prod_{\substack{\delta \mid l m \\ \delta \nmid m, \delta>2}} Q_{\delta}(\alpha, \beta) .
$$

Hence,

$$
Q_{d}(\alpha, \beta) \mid \prod_{\substack{\delta \mid m m \\ \delta \nmid m, \delta>2, \delta \neq d p^{m}\left(1 \leq e \leq \operatorname{ord}_{p} k\right)}} Q_{\delta}(\alpha, \beta) .
$$

By Lemma 1 if $\left|Q_{d}(\alpha, \beta)\right|>1$ we have either $\delta \mid d$, or $\delta / d=p^{f}\left(f>\operatorname{ord}_{p} k\right)$. The first option is impossible, since $\delta \nmid m$ and $d \mid m$. The second option gives $p^{f} d \mid l m, p^{f} d \nmid m$;

$$
p^{f} \left\lvert\, l \frac{m}{d}\right., \quad p^{f} \nmid \frac{m}{d},
$$

thus if $\operatorname{ord}_{p} k>0$, then $\operatorname{ord}_{p} m=0$ and $\operatorname{ord}_{p} l>\operatorname{ord}_{p} k$. If $\operatorname{ord}_{p} k=0$, then $\operatorname{ord}_{p} l>0$. In cases (5) the assertion is void.

Lemma 8. If $L=1, M=-2$ or $L=9, M=2$, n even, and (1) holds, then

$$
\operatorname{ord}_{3} P_{n}(\alpha, \beta)=\operatorname{ord}_{3} n .
$$

Proof. This follows from the law of repetition for Lehmer numbers.
Lemma 9. If $n \equiv 0 \bmod 6$ and $L=1, M=-1$ or $L=5, M=1$, and (1) holds, then

$$
\operatorname{ord}_{2} P_{n}(\alpha, \beta)=\operatorname{ord}_{2} n+2 .
$$

Proof. For $n \equiv 0 \bmod 6$ the sequences $P_{n}(\alpha, \beta)$ corresponding to $L=1, M=-1$ and $L=5$, $M=1$ coincide and the lemma follows from the law of repetition for Lehmer numbers.
Proof of the Theorem. Let $d=(k, m)$. By Lemma 6 we have $k \mid l m$, hence $\left.\frac{k}{d} \right\rvert\, l$. Also, by Lemmas 2 and 7, if $d>30$ or $L>4 M$ and $d>2$ and exceptions (5) are excluded, a prime factor of $Q_{d}(\alpha, \beta)$ not dividing d exists and divides l in a higher power than k. Hence by Lemma 4,

$$
l \geq p \frac{k}{d} \geq(d-1) \frac{k}{d}>\frac{k}{2}
$$

Now consider the cases (5).
If $d=3, L=1, M=-2$, then by Lemma 6

$$
\begin{equation*}
\left.\frac{k}{3} \right\rvert\, l . \tag{10}
\end{equation*}
$$

On the other hand, by Lemma 8

$$
\begin{aligned}
& \operatorname{ord}_{3} P_{k}(\alpha, \beta)=\operatorname{ord}_{3} k, \\
& \operatorname{ord}_{3} P_{l m}(\alpha, \beta) / P_{m}(\alpha, \beta)=\operatorname{ord}_{3} l,
\end{aligned}
$$

hence, by (4), $\operatorname{ord}_{3} k \leq \operatorname{ord}_{3} l$ and, by (10), $k \mid l$.

THE FIBONACCI QUARTERLY

If $d=6, L=9, M=2$, then by Lemma 6

$$
\begin{equation*}
\left.\frac{k}{6} \right\rvert\, l . \tag{11}
\end{equation*}
$$

On the other hand, by Lemma 8 , as above $\operatorname{ord}_{3} k \leq \operatorname{ord}_{3} l$ and, by (11)

$$
\left.\frac{k}{2} \right\rvert\, l .
$$

If $d=6$ or $12, L=1, M=-1$ or $L=5, M=1$, then by Lemma 6

$$
\begin{equation*}
\left.\frac{k}{d} \right\rvert\, l . \tag{12}
\end{equation*}
$$

On the other hand, by Lemma 9

$$
\begin{aligned}
& \operatorname{ord}_{2} P_{k}(\alpha, \beta)=\operatorname{ord}_{2} k+2, \\
& \operatorname{ord}_{2} P_{l m}(\alpha, \beta) / P_{m}(\alpha, \beta)=\operatorname{ord}_{2} l,
\end{aligned}
$$

hence, by (4), $\operatorname{ord}_{2} k+2 \leq \operatorname{ord}_{2} l$ and, by (12),

$$
\left.\frac{4}{3} k \right\rvert\, l .
$$

References

[1] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, with an appendix by M. Mignotte, J. Reine Angew. Math., 539 (2001), 75-122.
[2] L. K. Durst, Exceptional real Lehmer sequences, Pac. J. Math., 9 (1959), 437-441.
[3] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math., 31.2 (1930), 419-448.
[4] A. Schinzel, On divisibility by $\frac{a^{k}-b^{k}}{a-b}$, The Fibonacci Quarterly, 51.1 (2013), 72-77.
MSC2010: 11B39
Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warsaw, Poland E-mail address: schinzel@impan.pl

