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ABSTRACT. For a positive real number z let the Fibonacci distance ||z||r be the distance
from z to the closest Fibonacci number. We let

fla) = #{(a,b,¢) € Z* :a > b> ¢ > 1, max{||abr, |lac||r, |bc|r} <z}
and study the function f(z).

1. INTRODUCTION

Let (F,,)n>0 be the Fibonacci sequence given by Fy =0, Fy =1 and Fj, 49 = F,,11 + F, for
all n > 0. For a positive real number x we let

lz||p = min{|z — F,| : n > 0}. (1.1)
In [1], it was shown that if a > b > ¢ > 1 are integers then
max{||ab||r, ||ac||F, ||be||F} > exp(0.0341/log a). (1.2)

Here, we revisit the Fibonacci distances of ab, ac, and bc for positive integers a, b, and ¢. We
define the function

f(z) =#{(a,b,c) € Z® :a > b > ¢ > 1, max{|ab||r,||ac|r, ||bc|r} < x}. (1.3)
We study the behavior of f(z) as © — oo. We have the following result.

Theorem 1.1. The estimates
2?2 <« f(z) < 2?2t
hold as © — oo.

For the non-negative integers x < 2 we obtain the following theorem.

Theorem 1.2.
f(0)=0,  f(1)=16,  f(2)=49.

Throughout the paper, we use the Landau symbols O and o as well as the Vinogradov
symbols <, >, and =< with their regular meanings. Recall that ' = O(G), F < G and
G > F are all equivalent and mean that the inequality |F| < ¢G holds with some constant c,
whereas F' < G means that both inequalities F' < G and G < F hold. The constants implied
by these symbols are absolute. Further, F' = o(G) means that F'/G — 0.
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2. THE PROOF OF THEOREM 1.1

Let x > 9 be any real number. Let S = {1,2,..., | /z]}. Let T be the set of triples (a, b, ¢)
with a > b > call in S. If (a,b,¢) is such a triple, then
max{ab, ac,bc} = ab < =.
Since the interval [1,z] contains a Fibonacci number, it follows that if we write
ab+u=F, ac+v=~F,, b+w=F

for positive integers (¢, m,n) such that |u|, |v|] and |w| are minimal, then max{|u|, |[v|, |w|} < x.
In particular, triples (a,b,c) in T are counted by f(x). It follows that

fz) > (#3T> > 3:3/2,

which takes care of the lower bound.
For the upper bound, assume that > 2 and that (a, b, ¢) is a triple of integers a > b > ¢ > 1
such that
max{||ab r, l|lac||r, [|bcl|p} < .

Using (1.2), we get that
exp(0.034+/loga) < x therefore, log a < 900(log z)%.

It thus follows that if we write ab + u = F,, where |u| = ||ab||r, then
F, < a® +z < exp(1800(log x)?) + = < exp(2000(log x)?). (2.1)
We now use the Binet formula
F, = o - B valid for all integers s >0, (2.2)

where (o, 8) = ((1 ++/5)/2, (1 —/5)/2). In particular, the inequality
Fy>a*?  holds forall s> 1.

From inequality (2.1), we get

"% < exp(2000(log 2)?)),
which implies that n < 5000(log ). The same conclusions apply to the positive indices £, m
such that ac + v = F,,, bc + w = Fy, where |v| = |lac||r and |w| = ||bc|| . Thus,

max{l,m,n} = O((log z)?). (2.3)
Since u,v,w € [—z,x], it follows that (u,v,w) can be chosen in O(x3) ways, and by in-
equality (2.3), the triple (¢,m,n) can be chosen in O((logx)%) ways. Hence, the sextuple
(¢,m,n,u,v,w) can be chosen in O(x3(log x)%) ways and once these data are chosen then

ab=F, —u, ac=F, —v and bc = Fy_y,

therefore a, b, and ¢ are uniquely determined. This argument shows that f(z) < z3(logz)S.
We shall now improve this to f(z) < 22T°W) as z — oco.
We distinguish two cases.

Case 1. a < z19.

In this case, we fix (u,v,n,m). This can be done in O(x?(logz)*) ways. Once these are
fixed, then
ab = F,, — u, and ac=F,, —v
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are fixed. Clearly, ab < a® + = < 22%°. Thus, a is a divisor of the number ab = F,, — u which
is of size O(x?°), so the number of choices for a is at most 7(F, —u) = 2°) as x — co. Here,
7(m) is the number of divisors of the positive integer m. Once a is determined, also b and ¢
are determined out of knowledge of ab and ac. Hence, the number of triples a > b > ¢ > 1 in
this case is at most 2271 as 2 — oo, which is what we wanted.

Case 2. a > z!'0.

Fix (u,v,£,m,n). This can be done in O(x?(logz)®) ways. Let D = gcd(ab,ac) and let
ab = Dby, ac = Dcy. Then a | D, so we let D = ad. Thus, b = byd ¢ = cpd. Clearly, by and
co are uniquely determined in terms of ab and ac, so it remains to account for the number of
choices for d. Observe that

bo ab  F,—u
co ac F,—v

SO boFy, — coFy, = bgv — cou.

Writing F,,, and F;, according to the Binet formula (2.2), we have
a™(bg — o™ ™) = V/5(bov — cou) + ™y — . (2.4)
Observe that
Fo,=ab—u>ab—x>ac+z>F,,

where the middle inequality follows because ab — ac = a(b—c) > a > z'% > 2x. Thus, m < n.
The number by — copa™ ™™ is a quadratic integer in Q[v/5] which is not zero because if it were,
then "™ = by/cy € Q, which is impossible for n > m. The conjugate of by — copa™ ™ is
by — coB" ™™ and so

|bo — co” " ||bg — coB" T > 1.

Inserting the above inequality into (2.4) leads to
™ < [V5(bov — cou) + by — B"col|bo — cofV™| < bR
Since
am>F,=ac+v>ac—z>a/2,
we get that a < b3z. Thus, 710 < a < b3z, therefore by > x15. We now look at the condition
bc+w = Fy,
which we write under the form
w=Fy,—bc=F,— bocod2.

We show that there is at most one d such that I, — bycod? = w € [—x, x| for large z. Assume
that there were two such d, let us call them dy < ds. Then

Fg — boCod% = wq, Fg — boCod% = W2
and both wy,ws € [—x,z|. Taking the difference of the above relations, we get
boco(da — dy)(dy + dy) = (Fy — boc(]d%) — (Fy — boc(]d%) = w; —wy € [—2x,2x],

which is impossible for x > xg because the integer on the left above is nonzero and divisible

by boco > by > 2*?, while the integer on the right is of absolute value at most 4. This shows

that for large x, the quintuple (u,v, ¢, m,n) determines d (hence, w) uniquely (at most), so the

number of possible triples a > b > ¢ > 1 in this case is O(2?(log #)%) = O(z**°(1)) as 2 — occ.
The upper bound from the theorem now follows.
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3. THE PROOF OF THEOREM 1.2

Consider the function (1.3) if x = 2. A computer search provides the results of the theorem.
To turn to the details, first let

ab+u = F,, ac+v=F,,,, bc +w = Fy. (3.1)

The condition a < exp(415.62) comes from Theorem 1 of [1]. Consequently, n < 1730 since
the inequalities a2 < F,, < a® hold. Then, we apply a computer search for checking all the
candidates (n,m,{).

We found 222 solutions (a,b,c,u,v,w,n,m,f) to the system (3.1) with |ul,|v],|w| < 2
belonging to 49 triples (a, b, ¢). Therefore f(2) = 49. Among the aforementioned 222 solutions,
there are 43 for which |ul, [v|,|w| < 1 (see Table 1). The rows signed by * mean two solutions
since F; = F5 = 1. Concentrating only on the triples (a, b, ¢) again, we get f(1) = 16. Finally,
we note that f(0) = 0.

4. COMMENTS AND AN OPEN PROBLEM

As the referee noted, the upper bound in Theorem 1.1 on f(x) remains valid if we replace the
Fibonacci sequence {Fj, },>0 with any sequence u = {u,, },>0 and then define ||z||y and f(z)
in ways analogously to (1.1) and (1.2), respectively. We thank the referee for this observation.
Theorem 1.1 shows that

3 1 1
- < liminfm < limsupm < 2.
2 z—oo  logx T—500 ogzT
We conjecture that log f(z)/logz tends to 3/2 as x — oo, and we leave this as an open
question for the reader.
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L [ alblclu[v]w] Fu[Fn]|F]
1 312|1]-1]-1]-1 5 2| 1*
2 312(1]-1(-1] 0 5 210 2
3 312(1]-1]-1] 1 5 21 3
4 312(1]-1]0]-1 5 311"
5 312(1]-1{0] 0 5 31 2
6 312(1]-1] 0] 1 5 31 3
7 412(1] 0]-1]-1 8 311"
8 412(1] 0(-1] 0 8 31 2
9 41211 0]-11] 1 8 31 3
10 42|10 1]-1 8 5| 1*
11 4121 0(1]0 8 5 2
12 41211 0] 1] 1 8 51 3
13 4131 1|-1]-1| 13 3| 2
14| 4|3|1| 1|{-1] 0| 13 31 3
15 4131 1} 1]-1] 13 51 2
16 4131 1| 1] 0 13 51 3
17 413|121 0[-1| 13 81 5
18 514|111 0(-1] 21 51 3
19 514|110 1] 21 51 5
20| 621 1]|-1|-1| 13 51 1%
21 6|12|1| 1|-1] 0| 13 51 2
22 621 1(-1] 1] 13 51 3
23 712|1]-1| 1(-1] 13 81 1*
24 712(1]-1] 1| 0| 13 81 2
25 7{12(1-1] 1| 1| 13 81 3
26 713|110 1(-1] 21 8 2
27| 7(3|1] 0| 1| 0] 21 81 3
28 71312 0]-1|-1] 21| 13| 5
29 715|1]-1| 1] 0| 34 81 5
30 8|7|1|-1| 0] 1| 55 8| 8
31 9161 1|-1]-1]| 55 81 5
32|11 (32| 1|-1|-1| 34| 21| 5
33|14 (4|1 |-1]-1|-1| 55| 13| 3
34144 |1|-1|-1| 1| 55| 13| 5
352241 1|-1|-1| 8| 21| 3
361(22(4 1] 1](-1| 1] 8| 21| 5
3754 |7 |1|-1| 1] 1|377| 55| 8

Table 1
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