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Abstract. For a positive real number x let the Fibonacci distance ‖x‖F be the distance
from x to the closest Fibonacci number. We let

f(x) = #{(a, b, c) ∈ Z
3 : a > b > c ≥ 1, max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ x}

and study the function f(x).

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for
all n ≥ 0. For a positive real number x we let

‖x‖F = min{|x− Fn| : n ≥ 0}. (1.1)

In [1], it was shown that if a > b > c ≥ 1 are integers then

max{‖ab‖F , ‖ac‖F , ‖bc‖F } > exp(0.034
√

log a). (1.2)

Here, we revisit the Fibonacci distances of ab, ac, and bc for positive integers a, b, and c. We
define the function

f(x) = #{(a, b, c) ∈ Z3 : a > b > c ≥ 1, max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ x}. (1.3)

We study the behavior of f(x) as x → ∞. We have the following result.

Theorem 1.1. The estimates

x3/2 � f(x) ≤ x2+o(1)

hold as x → ∞.

For the non-negative integers x ≤ 2 we obtain the following theorem.

Theorem 1.2.

f(0) = 0, f(1) = 16, f(2) = 49.

Throughout the paper, we use the Landau symbols O and o as well as the Vinogradov
symbols �, �, and � with their regular meanings. Recall that F = O(G), F � G and
G � F are all equivalent and mean that the inequality |F | ≤ cG holds with some constant c,
whereas F � G means that both inequalities F � G and G � F hold. The constants implied
by these symbols are absolute. Further, F = o(G) means that F/G → 0.
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2. The Proof of Theorem 1.1

Let x ≥ 9 be any real number. Let S = {1, 2, . . . , b√xc}. Let T be the set of triples (a, b, c)
with a > b > c all in S. If (a, b, c) is such a triple, then

max{ab, ac, bc} = ab < x.

Since the interval [1, x] contains a Fibonacci number, it follows that if we write

ab+ u = Fn, ac+ v = Fm, bc+ w = F`

for positive integers (`,m, n) such that |u|, |v| and |w| are minimal, then max{|u|, |v|, |w|} ≤ x.
In particular, triples (a, b, c) in T are counted by f(x). It follows that

f(x) ≥
(

#T
3

)

� x3/2,

which takes care of the lower bound.
For the upper bound, assume that x ≥ 2 and that (a, b, c) is a triple of integers a > b > c ≥ 1

such that
max{‖ab‖F , ‖ac‖F , ‖bc‖F } ≤ x.

Using (1.2), we get that

exp(0.034
√

log a) < x therefore, log a < 900(log x)2.

It thus follows that if we write ab+ u = Fn, where |u| = ‖ab‖F , then
Fn < a2 + x < exp(1800(log x)2) + x < exp(2000(log x)2). (2.1)

We now use the Binet formula

Fs =
αs − βs

α− β
valid for all integers s ≥ 0, (2.2)

where (α, β) = ((1 +
√
5)/2, (1 −

√
5)/2). In particular, the inequality

Fs ≥ αs−2 holds for all s ≥ 1.

From inequality (2.1), we get

αn−2 < exp(2000(log x)2)),

which implies that n < 5000(log x)2. The same conclusions apply to the positive indices `, m
such that ac+ v = Fm, bc+ w = F`, where |v| = ‖ac‖F and |w| = ‖bc‖F . Thus,

max{`,m, n} = O((log x)2). (2.3)

Since u, v, w ∈ [−x, x], it follows that (u, v, w) can be chosen in O(x3) ways, and by in-
equality (2.3), the triple (`,m, n) can be chosen in O((log x)6) ways. Hence, the sextuple
(`,m, n, u, v, w) can be chosen in O(x3(log x)6) ways and once these data are chosen then

ab = Fn − u, ac = Fm − v and bc = F`−w,

therefore a, b, and c are uniquely determined. This argument shows that f(x) � x3(log x)6.

We shall now improve this to f(x) ≤ x2+o(1) as x → ∞.
We distinguish two cases.

Case 1. a < x10.

In this case, we fix (u, v, n,m). This can be done in O(x2(log x)4) ways. Once these are
fixed, then

ab = Fn − u, and ac = Fm − v
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are fixed. Clearly, ab < a2 + x < 2x20. Thus, a is a divisor of the number ab = Fn − u which
is of size O(x20), so the number of choices for a is at most τ(Fn − u) = xo(1) as x → ∞. Here,
τ(m) is the number of divisors of the positive integer m. Once a is determined, also b and c
are determined out of knowledge of ab and ac. Hence, the number of triples a > b > c ≥ 1 in
this case is at most x2+o(1) as x → ∞, which is what we wanted.

Case 2. a ≥ x10.

Fix (u, v, `,m, n). This can be done in O(x2(log x)6) ways. Let D = gcd(ab, ac) and let
ab = Db0, ac = Dc0. Then a | D, so we let D = ad. Thus, b = b0d c = c0d. Clearly, b0 and
c0 are uniquely determined in terms of ab and ac, so it remains to account for the number of
choices for d. Observe that

b0
c0

=
ab

ac
=

Fn − u

Fm − v
, so b0Fm − c0Fn = b0v − c0u.

Writing Fm and Fn according to the Binet formula (2.2), we have

αm(b0 − c0α
n−m) =

√
5(b0v − c0u) + βmb0 − βnc0. (2.4)

Observe that

Fm = ab− u ≥ ab− x > ac+ x ≥ Fn,

where the middle inequality follows because ab− ac = a(b− c) ≥ a > x10 > 2x. Thus, m < n.
The number b0 − c0α

n−m is a quadratic integer in Q[
√
5] which is not zero because if it were,

then αn−m = b0/c0 ∈ Q, which is impossible for n > m. The conjugate of b0 − c0α
n−m is

b0 − c0β
n−m and so

|b0 − c0α
n−m||b0 − c0β

n−m| ≥ 1.

Inserting the above inequality into (2.4) leads to

αm < |
√
5(b0v − c0u) + βmb0 − βnc0||b0 − c0β

n−m| � b20x.

Since

αm > Fm = ac+ v ≥ ac− x ≥ a/2,

we get that a � b20x. Thus, x
10 ≤ a � b20x, therefore b0 � x4.5. We now look at the condition

bc+ w = F`,

which we write under the form

w = F` − bc = F` − b0c0d
2.

We show that there is at most one d such that F` − b0c0d
2 = w ∈ [−x, x] for large x. Assume

that there were two such d, let us call them d1 < d2. Then

F` − b0c0d
2
1 = w1, F` − b0c0d

2
2 = w2

and both w1, w2 ∈ [−x, x]. Taking the difference of the above relations, we get

b0c0(d2 − d1)(d2 + d1) = (F` − b0c0d
2
1)− (F` − b0c0d

2
2) = w1 − w2 ∈ [−2x, 2x],

which is impossible for x > x0 because the integer on the left above is nonzero and divisible
by b0c0 ≥ b0 � x4.5, while the integer on the right is of absolute value at most 4x. This shows
that for large x, the quintuple (u, v, `,m, n) determines d (hence, w) uniquely (at most), so the

number of possible triples a > b > c ≥ 1 in this case is O(x2(log x)6) = O(x2+o(1)) as x → ∞.
The upper bound from the theorem now follows.
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3. The Proof of Theorem 1.2

Consider the function (1.3) if x = 2. A computer search provides the results of the theorem.
To turn to the details, first let

ab+ u = Fn, ac+ v = Fm, bc+ w = F`. (3.1)

The condition a < exp(415.62) comes from Theorem 1 of [1]. Consequently, n ≤ 1730 since
the inequalities αn−2 < Fn < a2 hold. Then, we apply a computer search for checking all the
candidates (n,m, `).

We found 222 solutions (a, b, c, u, v, w, n,m, `) to the system (3.1) with |u|, |v|, |w| ≤ 2
belonging to 49 triples (a, b, c). Therefore f(2) = 49. Among the aforementioned 222 solutions,
there are 43 for which |u|, |v|, |w| ≤ 1 (see Table 1). The rows signed by ? mean two solutions
since F1 = F2 = 1. Concentrating only on the triples (a, b, c) again, we get f(1) = 16. Finally,
we note that f(0) = 0.

4. Comments and an Open Problem

As the referee noted, the upper bound in Theorem 1.1 on f(x) remains valid if we replace the
Fibonacci sequence {Fn}n≥0 with any sequence u = {un}n≥0 and then define ‖x‖u and f(x)
in ways analogously to (1.1) and (1.2), respectively. We thank the referee for this observation.
Theorem 1.1 shows that

3

2
≤ lim inf

x→∞

log f(x)

log x
≤ lim sup

x→∞

log f(x)

log x
≤ 2.

We conjecture that log f(x)/ log x tends to 3/2 as x → ∞, and we leave this as an open
question for the reader.
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a b c u v w Fn Fm F`

1 3 2 1 -1 -1 -1 5 2 1?

2 3 2 1 -1 -1 0 5 2 2
3 3 2 1 -1 -1 1 5 2 3
4 3 2 1 -1 0 -1 5 3 1?

5 3 2 1 -1 0 0 5 3 2
6 3 2 1 -1 0 1 5 3 3
7 4 2 1 0 -1 -1 8 3 1?

8 4 2 1 0 -1 0 8 3 2
9 4 2 1 0 -1 1 8 3 3
10 4 2 1 0 1 -1 8 5 1?

11 4 2 1 0 1 0 8 5 2
12 4 2 1 0 1 1 8 5 3
13 4 3 1 1 -1 -1 13 3 2
14 4 3 1 1 -1 0 13 3 3
15 4 3 1 1 1 -1 13 5 2
16 4 3 1 1 1 0 13 5 3
17 4 3 2 1 0 -1 13 8 5
18 5 4 1 1 0 -1 21 5 3
19 5 4 1 1 0 1 21 5 5
20 6 2 1 1 -1 -1 13 5 1?

21 6 2 1 1 -1 0 13 5 2
22 6 2 1 1 -1 1 13 5 3
23 7 2 1 -1 1 -1 13 8 1?

24 7 2 1 -1 1 0 13 8 2
25 7 2 1 -1 1 1 13 8 3
26 7 3 1 0 1 -1 21 8 2
27 7 3 1 0 1 0 21 8 3
28 7 3 2 0 -1 -1 21 13 5
29 7 5 1 -1 1 0 34 8 5
30 8 7 1 -1 0 1 55 8 8
31 9 6 1 1 -1 -1 55 8 5
32 11 3 2 1 -1 -1 34 21 5
33 14 4 1 -1 -1 -1 55 13 3
34 14 4 1 -1 -1 1 55 13 5
35 22 4 1 1 -1 -1 89 21 3
36 22 4 1 1 -1 1 89 21 5
37 54 7 1 -1 1 1 377 55 8

Table 1
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