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Abstract. Gap balancing numbers are introduced and defined. It is observed that 0-gap and
1-gap balancing numbers are nothing but cobalancing and balancing numbers respectively. A
detailed study of 2-gap balancing numbers is presented.

1. Introduction

In [1], Behera and Panda defined balancing numbers n and balancers r as solutions of the
Diophantine Equation 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r). Subsequently,
Panda and Ray [7] introduced cobalancing numbers n and cobalancers r as solutions of the
Diophantine Equation 1 + 2 + · · · + n = (n + 1) + (n+ 2) + · · · + (n+ r). After that, several
papers came up in this area and the interested readers are advised to read [1,2] and [4–11] for
a literature review. Observe that while defining balancing numbers, we delete a number (and
hence maintain a gap) from the list of first m natural numbers so that, the sum of numbers
to the left of it is equal to the sum to the right. In case of cobalancing numbers, there is no
such gap. To define gap balancing numbers, we shall consider deleting k < m− 2 consecutive
numbers from the list of first m natural numbers so that the sum of numbers to the left of
these deleted numbers is equal to the sum to the right. In this paper, we focus our attention
on 2-gap balancing numbers only.

2. k-Gap Balancing Numbers

In this section, we define k-gap balancing numbers and provide some examples.

Definition 2.1. Let k be an odd natural number. We call a natural number n a k-gap balancing
number (or gk-balancing number) if

1 + 2 + · · ·+
(

n− k + 1

2

)

=

(

n+
k + 1

2

)

+

(

n+
k + 3

2

)

+ · · ·+ (n+ r)

for some natural number r, which we call a k-gap balancer (or a gk-balancer) corresponding
to n.

Definition 2.2. Let k be even. If

1 + 2 + · · ·+
(

n− k

2

)

=

(

n+
k

2
+ 1

)

+

(

n+
k

2
+ 2

)

+ · · · + (n+ r)

for some natural numbers n and r then we call 2n+1 a k-gap balancing number (or gk-balancing
number) and r a k-gap balancer (or a gk-balancer) corresponding to this k-gap balancing num-
ber.

Since our focus in this paper is on 2-gap balancing numbers (henceforth we will call g2-
balancing numbers), we prefer to provide a formal definition of g2-balancing numbers sepa-
rately.
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Definition 2.3. We call 2n + 1 a g2-balancing number if

1 + 2 + · · ·+ (n− 1) = (n+ 2) + (n+ 3) + · · ·+ (n+ r)

for some natural number r. We call r the g2-balancer corresponding to the g2-balancing number
2n+ 1.

Example 2.4. Since 1 + 2+ 3 = 6, 9 is a g2-balancing number with g2-balancer 2. Similarly,
since 1 + 2 + · · · + 8 = 11 + 12 + 13, 19 is a g2-balancing number with g2-balancer 4.

Remark 2.5. The defining equation for g2-balancing numbers suggests that if x = 2n + 1 is
a g2-balancing number then

r =
−x+

√
2x2 + 7

2
.

Thus, if x is a g2-balancing number then 2x2 +7 is a perfect square. It is easy to see that 9 is
the first g2-balancing number. Since 2·12+7 = 9 = 32 and 2·32+7 = 25 = 52, we accept 1 and
3 as g2-balancing numbers (though these numbers do not satisfy the definition of g2-balancing
numbers), just like Behera and Panda [1] accepted 1 as the first balancing number and Panda
and Ray [7] accepted 0 as the first cobalancing number. After adding 1 and 3 to g2-balancing
numbers’ list, we can claim that a natural number x is a g2-balancing number if and only if
2x2 + 7 is a perfect square.

3. Functions Generating g2-Balancing Numbers

In this section, we present some functions that generate g2-balancing numbers. The following
theorems contain these functions.

Theorem 3.1. If x is a g2-balancing number then f(x) = 3x+2
√
2x2 + 7 is also a g2-balancing

number. Furthermore, f(x) ≡ 1 or −1(mod 4) according to the g2-balancing number x ≡ 1 or
−1(mod 4).

Proof. The identity

2f2(x) + 7 =
(

4x+ 3
√

2x2 + 7
)2

together with Remark 2.5 proves that f(x) is a g2-balancing number. We observe that 2x2+7 ≡
1 (mod 4) if x ≡ ±1 (mod 4) and hence,

√
2x2 + 7 ≡ ±1 (mod 4). If x ≡ 1 (mod 4), then

3x+ 2
√

2x2 + 7 ≡ 3 · 1± 2 (mod 4) ≡ 1 (mod 4)

and if x ≡ −1 (mod 4), then

3x+ 2
√

2x2 + 7 ≡ 3 · (−1)± 2 (mod 4) ≡ −1 (mod 4).

�

Theorem 3.2. If x is a g2-balancing number and x ≡ −1 (mod 4), then g(x) = 11x+6
√

2x2+7

7

is also a g2-balancing number and g(x) ≡ 1 (mod 4).

Proof. We first show that if x is a g2-balancing number and x ≡ −1 (mod 4), then g(x) is a
natural number, that is,

11x + 6
√

2x2 + 7 ≡ 0 (mod 7). (3.1)

Since 2x2 + 7 ≡ 9x2 (mod 7), it follows that
√
2x2 + 7 ≡ ±3x (mod 7). This gives

11x+ 6
√

2x2 + 7 ≡ 11x± 18x (mod 7),
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implying that

11x+ 6
√

2x2 + 7 ≡ −7x (mod 7) or 11x+ 6
√

2x2 + 7 ≡ 29x (mod 7).

Thus,

11x+ 6
√

2x2 + 7 ≡ 0 (mod 7)

or
10x + 6

√

2x2 + 7 ≡ 0 (mod 7). (3.2)

Observe that the substitution x = 3 (and hence, x ≡ −1 (mod 4)) in (3.2) yields 4 ≡ 0

(mod 7) which is false. Thus, the only option left is 11x + 6
√
2x2 + 7 ≡ 0 (mod 7), proving

that g(x) is a natural number if x is a g2-balancing number and x ≡ −1 (mod 4). Now, by
virtue of Remark 2.5 and the identity

2g2(x) + 7 =

(

12x+ 11
√
2x2 + 7

7

)2

,

g(x) is a g2-balancing number. Finally, we have to show that g(x) ≡ 1 (mod 4). We observe
that

g(x) ≡ (−1) · (11x+ 6
√

2x2 + 7) (mod 4)

since 7−1 ≡ −1 (mod 4). Thus, if x ≡ −1 (mod 4) then g(x) ≡ −1 ± 6 ≡ 1 (mod 4). This
ends the proof. �

Theorem 3.3. If x is a g2-balancing number and x ≡ 1 (mod 4), then h(x) = 9x+4
√

2x2+7

7
is

also a g2-balancing number and h(x) ≡ −1 (mod 4).

Proof. First of all we claim that h(x) is a natural number. For this, we have to show that if
x is a g2-balancing number and x ≡ 1 (mod 4), then

9x+ 4
√

2x2 + 7 ≡ 0 (mod 7). (3.3)

Since 2x2 + 7 ≡ 9x2 (mod 7), it follows that
√
2x2 + 7 ≡ ±3x (mod 7). Hence,

9x+ 4
√

2x2 + 7 ≡ 9x± 12x (mod 7),

which gives

9x+ 4
√

2x2 + 7 ≡ 21x (mod 7) or 9x+ 4
√

2x2 + 7 ≡ −3x (mod 7).

Thus either
9x+ 4

√

2x2 + 7 ≡ 0 (mod 7)

or
12x + 4

√

2x2 + 7 ≡ 0 (mod 7). (3.4)

But the substitution x = 1 (and hence, x ≡ 1 (mod 4)) in (3.4) gives 3 ≡ 0 (mod 7) which

is not true. Thus the only option left is 9x + 4
√
2x2 + 7 ≡ 0 (mod 7), proving that h(x) is a

natural number if x is a g2-balancing number and x ≡ 1 (mod 4). Our next claim is that h(x)
is a g2-balancing number. This easily follows from the identity

2h2(x) + 7 =

(

8x+ 9
√
2x2 + 7

7

)2

and Remark 2.5. Lastly, it remains to show that h(x) ≡ −1 (mod 4). Since

h(x) ≡ (−1) · (9x+ 4
√

2x2 + 7) (mod 4)
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and x ≡ 1 (mod 4) it follows that h(x) ≡ −1 (mod 4). This ends the proof. �

4. Listing All g2-Balancing Numbers

In the last section, we presented some functions that generate g2-balancing numbers from
the given ones. Indeed we have seen in Remark 2.5 that x is a g2-balancing number if and only
if 2x2 +7 is a perfect square. In this section, we solve the Diophantine Equation 2x2 +7 = y2

and provide the list of all g2-balancing numbers. Of course, the method of solving 2x2+7 = y2

is not direct, rather we convert 2x2 +7 = y2 to a Pells’ equation of the form 8z2 +1 = w2 and
apply certain balancing numbers’ treatment (see [1, p. 98]).

Let x be any g2-balancing number so that 2x2 + 7 is a perfect square. Now the congruence
9x2 ≡ 2x2 +7 (mod 7) gives 3x ≡ ±

√
2x2 + 7 (mod 7). Since both x and 2x2 +7 are odd, we

also have

3x ≡ ±
√

2x2 + 7 (mod 2).

Thus 3x±
√
2x2 + 7 is congruent to 0 modulo 2 and modulo 7. As 2 and 7 are coprimes,

3x±
√

2x2 + 7 ≡ 0 (mod 14),

yielding that either 3x+
√

2x2+7

14
or 3x−

√

2x2+7

14
is a natural number. Since

8 ·
[

3x±
√
2x2 + 7

14

]2

+ 1 =

[

3
√
2x2 + 7± 2x

7

]2

,

by virtue of [1, p. 98], it follows that either 3x+
√

2x2+7

14
or 3x−

√

2x2+7

14
is a balancing number.

Letting

B =
3x+

√
2x2 + 7

14
or B =

3x−
√
2x2 + 7

14

we obtain

(14B − 3x)2 = 2x2 + 7.

This leads to the quadratic equation

x2 − 12Bx+ 28B2 − 1 = 0.

The solutions of this equation are x = 6B±
√
8B2 + 1 = 6B±C where C is the Lucas-balancing

number associated with B [8]. We further observe that

2 · (6B ± C)2 + 7 = (3C ± 4B)2.

Thus all the g2-balancing numbers are given by 6B ± C. As usual, for n = 0, 1, . . . we
denote the nth balancing number by Bn and nth Lucas-balancing number by Cn [8]. Hence,
{6Bn − Cn, 6Bn + Cn : n = 1, 2, . . .} is the exhaustive list of all g2-balancing numbers. We
next show that for each natural number n,

6Bn − Cn < 6Bn + Cn < 6Bn+1 − Cn+1.

The first part of this inequality is obvious. To prove the second part, we observe that in view
of Bn−1 = 3Bn − Cn, Bn+1 = 3Bn + Cn (see [8, p. 186]) and Bn > 0 if n ≥ 1, it follows that
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Cn < 3Bn for n > 1. Also, we know that for each natural number n,Bn−1 < Bn. Hence,

6Bn + Cn = 3Bn + 3Bn + Cn = 3Bn +Bn+1

< 11Bn +Bn+1 + 2(Bn −Bn−1)

= 2(6Bn −Bn−1) +Bn+1 +Bn

= 2Bn+1 +Bn+1 + 3Bn+1 − Cn+1 = 6Bn+1 − Cn+1.

We shall denote the nth g2-balancing number by xn. Thus, the first g2-balancing number
is x1 = 6B1 − C1 = 6 · 1 − 3 = 3, the second one is x2 = 6B1 + C1 = 9, the third one
x3 = 6B2 − C2 = 6 · 6 − 17 = 19 and the fourth one is x4 = 6B2 + C2 = 53 and so on.
In general x2n−1 = 6Bn − Cn and x2n = 6Bn + Cn, n = 1, 2, . . .. Further, we may write

x0 = 6B0 + C0 = 6B0 +
√

8B2
0
+ 1 = 6 · 0 +

√
8 · 02 + 1 = 1.

The above discussion proves the following theorem.

Theorem 4.1. If x is a g2-balancing number then x = 6Bn − Cn or x = 6Bn + Cn for
some natural number n. In particular, if we denote the nth g2-balancing number by xn, then
x2n−1 = 6Bn − Cn and x2n = 6Bn + Cn, n = 1, 2, . . ..

The next theorem classifies g2-balancing numbers congruent to 1 and −1 modulo 4.

Theorem 4.2. For n = 1, 2, . . . , x2n−1 ≡ −1 (mod 4) and x2n ≡ 1 (mod 4).

To prove this theorem, we need the following lemma.

Lemma 4.3. If n is even, then 6Bn ≡ 0 (mod 4) and Cn ≡ 1 (mod 4); if n is odd, then
6Bn ≡ 2 (mod 4) and Cn ≡ −1 (mod 4).

Proof. We know that Bn is even or odd when n is even or odd, respectively. Therefore, if n
is even then 6Bn ≡ 0 (mod 4). Further, if n is odd, then Bn is odd and Bn ≡ ±1 (mod 4)
implies 6Bn ≡ ±6 ≡ 2 (mod 4). Further C1 = 3 ≡ −1 (mod 4) and C2 = 17 ≡ 1 (mod 4).
Assume that C2n−1 ≡ −1 (mod 4) and C2n ≡ 1 (mod 4) for n = 1, 2, . . . , k. Then

C2k+1 = 6C2k − C2k−1 ≡ 6 · 1− (−1) ≡ −1 (mod 4)

and
C2k+2 = 6C2k+1 − C2k ≡ 6 · (−1)− 1 ≡ 1 (mod 4).

�

Proof of Theorem 4.2. We infer from Lemma 4.3 that if n is even then 6Bn ≡ 0 (mod 4) and
Cn ≡ 1 (mod 4). Hence, 6Bn+Cn ≡ 0+1 ≡ 1 (mod 4) and 6Bn−Cn ≡ 0−1 ≡ −1 (mod 4).
Similarly, if n is odd 6Bn+Cn ≡ 2+ (−1) ≡ 1 (mod 4) and 6Bn −Cn ≡ 2+1 ≡ −1 (mod 4).
Thus, x2n−1 ≡ −1 (mod 4) and x2n ≡ 1 (mod 4), n = 1, 2, . . .. �

5. Recurrence Relations for g2-Balancing Numbers

In the previous section we have seen that, g2-balancing numbers are given by x2n−1 =
6Bn −Cn and x2n = 6Bn +Cn, n = 1, 2, . . .. Since both balancing as well as Lucas-balancing
numbers satisfy the recurrence relation yn+1 = 6yn−yn−1 ( [1, p. 100] and [9, p. 44]), it follows
that the g2-balancing numbers satisfy the recurrence relation xn+2 = 6xn−xn−2; n = 3, 4, . . ..

In Section 3, we developed some non-linear functions for finding a specified type of g2-
balancing numbers from the given ones. Here we shall prove that two of these functions are
nothing but shift functions to the next g2-balancing numbers. In this context we have the
following theorems.
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Theorem 5.1. Let g(x) = 11x+6
√

2x2+7

7
and h(x) = 9x+4

√

2x2+7

7
be two arithmetic functions.

Then g(x2n−1) = x2n and h(x2n) = x2n+1.

Proof. If x = 6Bn ± Cn, then 2x2 + 7 = (3Cn ± 4Bn)
2. Thus if x = x2n−1, then

g(x2n−1) =
11(6Bn − Cn) + 6

√

2(6Bn − Cn)2 + 7

7

=
11(6Bn − Cn) + 6(3Cn − 4Bn)

7
= 6Bn + Cn = x2n,

and for x = x2n

h(x2n) =
9(6Bn + Cn) + 4

√

2(6Bn + Cn)2 + 7

7

=
9(6Bn + Cn) + 4(3Cn + 4Bn)

7
= 10Bn + 3Cn = 3(3Bn + Cn) +Bn

= 3Bn+1 + (3Bn+1 − Cn+1)

= 6Bn+1 − Cn+1 = x2n+1.

�

It is important to observe that g(x) = 11x+6
√

2x2+7

7
and h(x) = 9x+4

√

2x2+7

7
are strictly

increasing functions for x > 0. So the functions are invertible. It is easy to see that g−1(y) =
11y−6

√
2y2+7

7
and h−1(y) =

9y−4

√
2y2+7

7
. Thus, we can definitely expect g−1(x2n) = x2n−1 and

h−1(x2n+1) = x2n. The following corollary demonstrates this result.

Corollary 5.2. Let g̃(x) = 11x−6
√

2x2+7

7
and h̃(x) = 9x−4

√

2x2+7

7
be two arithmetic functions.

Then g̃(x2n) = x2n−1 and h̃(x2n+1) = x2n.

Proof. It is known that if x = 6Bn ±Cn, then 2x2 +7 = (3Cn ± 4Bn)
2. Thus if x = x2n, then

g̃(x2n) =
11(6Bn + Cn)− 6

√

2(6Bn + Cn)2 + 7

7

=
11(6Bn + Cn)− 6(3Cn + 4Bn)

7
= 6Bn − Cn = x2n−1,

and for x = x2n+1

h̃(x2n+1) =
9(6Bn+1 − Cn+1)− 4

√

2(6Bn+1 − Cn+1)2 + 7

7

=
9(6Bn+1 − Cn+1)− 4(3Cn+1 − 4Bn+1)

7
= 10Bn+1 − 3Cn+1 = 3(3Bn+1 − Cn+1) +Bn+1

= 3Bn + (3Bn + Cn)

= 6Bn + Cn = x2n.

�
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Theorem 5.1 gives functions shifting g2-balancing numbers to the next ones, while Corollary
5.2 provide functions taking g2-balancing numbers to previous ones. In the following theorem,
we introduce a function which transforms an odd order g2-balancing number to the next odd
order g2-balancing number and also an even order g2-balancing number to the next even order
g2-balancing number.

Theorem 5.3. Let f(x) = 3x+ 2
√
2x2 + 7 be an arithmetic function. Then f(xn) = xn+2.

Proof. Here also we shall use the fact that if x = 6Bn ± Cn, then 2x2 + 7 = (3Cn ± 4Bn)
2.

Now,

f(x2n−1) = 3x2n−1 + 2
√

2x2
2n−1

+ 7

= 3(6Bn − Cn) + 2(3Cn − 4Bn)

= 10Bn + 3Cn.

In the proof of Theorem 5.1, it has been shown that 10Bn + 3Cn = x2n+1. Further,

f(x2n) = 3x2n + 2
√

2x2
2n + 7

= 3(6Bn + Cn) + 2(3Cn + 4Bn)

= 26Bn + 9Cn = 9(3Bn + Cn)−Bn

= 9Bn+1 −Bn = 6Bn+1 + 3Bn+1 −Bn

= 6Bn+1 +Cn+1 = x2n+2.

�

It is important to note that f(x) = 3x+ 2
√
2x2 + 7 is strictly increasing for x > 0. So the

inverse exists and it is easy to see that f−1(y) = 3y − 2
√

2y2 + 7. Thus, we can definitely
expect f−1(x2n) = x2n−2 and f−1(x2n+1) = x2n−1. The following corollary ascertains these
claims.

Corollary 5.4. Let f̃(x) = 3x− 2
√
2x2 + 7 be an arithmetic function. Then f̃(xn) = xn−2.

The proof of this corollary is similar to that of Theorem 5.3 and hence it is omitted.

6. Binet Form for g2-Balancing Numbers

In Section 5, we obtained the recurrence relation xn+2 = 6xn − xn−2 for g2-balancing
numbers, which is linear, homogeneous and is of fourth order. Using this recurrence relation,
we can find the Binet form (also popularly known as closed form) for g2-balancing numbers.

Putting xn = αn as a trial solution in xn+2 = 6xn − xn−2 we get the auxiliary equation
α4 − 6α2 + 1 = 0. The solutions of this biquadratic equation are

α1 = 1 +
√
2, α2 = 1−

√
2, α3 = −(1 +

√
2), α4 = −(1−

√
2).

Hence, the general solution of xn+2 = 6xn − xn−2 is given by

xn = Aαn
1 +Bαn

2 + Cαn
3 +Dαn

4

and the initial conditions are x0 = 1, x1 = 3, x2 = 9, and x3 = 19. Since α3 = −α1 and
α4 = −α2, it follows that

xn = (A+ (−1)nC)αn
1 + (B + (−1)nD)αn

2 .
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Substitution of initial conditions yields

xn =







α
n+2

1
−α

n+2

2

2
√

2
− αn

1+αn

2

2
if n is even,

αn+2

1
−αn+2

2

2
√

2
− αn

1
−αn

2√

2
if n is odd.

Using this result and the Binet form of balancing and Lucas-balancing numbers (see [1], [8])
we get,

x2k =
α2k+2

1
− α2k+2

2

2
√
2

− α2k
1 + α2k

2

2

= 2 · λ
k+1
1

− λk+1
2

4
√
2

− λk
1 + λk

2

2

= 2Bk+1 − Ck = 2(3Bk + Ck)− Ck

= 6Bk + Ck,

and

x2k−1 =
α2k+1
1

− α2k+1
2

2
√
2

− α2k−1
1

− α2k−1
2√

2

=
(1 +

√
2)α2k

1 − (1−
√
2)α2k

2

2
√
2

+
(1−

√
2)α2k

1 − (1 +
√
2)α2k

2√
2

= 2Bk +Ck + 4Bk − 2Ck

= 6Bk −Ck

which are already obtained in Section 4.

7. Functions Transforming g2-Balancing Numbers to Balancing and Related

Numbers

Here we present some functions of g2-balancing numbers that generate balancing numbers.
The following theorems are important in this regard.

Theorem 7.1. If x is an odd ordered g2-balancing number then, F (x) = 3x+
√

2x2+7

14
is a bal-

ancing number. Further, if x is an even ordered g2-balancing number then, F̃ (x) = 3x−
√

2x2+7

14

is a balancing number. In particular, F (x2n−1) = F̃ (x2n) = Bn.

Proof. Since x2n−1 = 6Bn − Cn and x2n = 6Bn + Cn, we have

F (x2n−1) =
3(6Bn − Cn) + 3Cn − 4Bn

14
= Bn

and

F̃ (x2n) =
3(6Bn + Cn)− (3Cn + 4Bn)

14
= Bn.

�

The next theorem relates functions of g2-balancing numbers to Lucas-balancing numbers.

Theorem 7.2. If x is an odd ordered g2-balancing number then G(x) = 2x+3
√

2x2+7

7
is a

Lucas-balancing number. Further, if x is an even ordered g2-balancing number then G̃(x) =
−2x+3

√

2x2+7

7
is a Lucas-balancing number. In particular, G(x2n−1) = G̃(x2n) = Cn.
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Proof. Since x2n−1 = 6Bn − Cn and x2n = 6Bn + Cn, we have

G(x2n−1) =
2(6Bn − Cn) + 3(3Cn − 4Bn)

7
= Cn,

and

G̃(x2n) =
−2(6Bn +Cn) + 3(3Cn + 4Bn)

7
= Cn.

�

8. An Application of g2-Balancing Numbers to an Almost Pythagorean

Equation

The association of balancing and cobalancing numbers with the solutions of Pythagorean
and Pythagorean-like equations is well-known (see [1, p. 104], [7, p. 1199] and [9, p. 69]).
In [3], Haggard developed certain links of solutions of the Pythagorean equation x2 + y2 = z2

with the solutions of the almost Pythagorean equation x2 + y2 = z2 + 1. In this section, we
completely solve the Diophantine equation x2 + (x+ 4)2 = y2 + 1.

We observe that if x2 + (x + 4)2 = y2 + 1, then x must be odd. Setting z = x + 2, we
convert this equation to (z−2)2+(z+2)2 = y2+1, which on simplification gives 2z2+7 = y2,
suggesting that z is a g2-balancing number, so that z = xn for some n. Now we can list the
solutions of the equation x2 + (x+ 4)2 = y2 + 1 as x = xn − 2, y =

√

2x2n + 7, n = 1, 2, . . ..
Observe that almost Pythagorean equations corresponding to the g2-balancing number 9

and 13 are respectively, 72 + 112 = 132 + 1 and 172 + 212 = 272 + 1.
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