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Abstract. It is shown that, for every n ∈ {3, 4, . . .}, every rectangle R can be dissected into
n rectangles that are mutually similar, but of different size. For the case n = 2, a partition
of that kind exists if and only if the quotient of the edge lengths of R is larger than 2.

Given a rectangle R of edge lengths a and b and an integer n ≥ 2, under what conditions

on a, b, and n, can the rectangle R be partitioned into n pairwise similar rectangles that are

all of different size?1

This problem is related to the theory of tilings of polygons P ⊆ R
2. Here a tiling of P is a

cover of P with polygons Pi ⊆ P , i = 1, . . . , n, that have mutually disjoint interiors and are
pairwise similar. The tiling is called perfect if the pieces Pi are of mutually different size [1].
For a more general insight into the theory of tilings we refer to the comprehensive work [5]. We
shall use the notation R(a, b) for a rectangle with edges of lengths a and b. The eccentricity c

of R(a, b) is the quotient of the longer and the smaller edge length, c = max
{

a
b
, b
a

}

≥ 1. Two
rectangles are similar if and only if their eccentricities agree.

The authors of [4] give algebraic characterizations of all pairs of reals c1, c2 ≥ 1 such that
a rectangle of eccentricity c1 can be tiled with rectangles of eccentricity c2. But even if R1 is
known to admit tilings with similar copies of R2, it is not trivial to find all n such that R1

has a perfect tiling with exactly n images of R2. For example, a first perfect tiling of a square
with squares is published in 1939 and consists of 55 pieces [8]. Since 1978 it is known that the
minimal number of pieces in a perfect tiling of a square with squares is 21 [3].

In the above problem only the eccentricity c of R and the number n of pieces is given,
whereas the common eccentricity of the tiles is not restricted. This flexibility is the reason for
a surprisingly simple answer to our question.

Theorem. Let c ≥ 1 be a real number and n ≥ 2 be an integer. A rectangle of eccentricity c

admits a perfect tiling into n rectangles if and only if either n = 2 and c > 2 or n ≥ 3 and c

is arbitrary.

Without any doubt there exists a multitude of different tilings that prove the theorem.2 Our
approach is essentially based on a Fibonacci-type construction. The Fibonacci polynomials

fn : R → R, n = 1, 2, . . ., are defined recursively by

f1(x) = 1, f2(x) = x and fn+2(x) = xfn+1(x) + fn(x),

1This question has been raised by O. Kalenda during the 41st Winter School in Abstract Analysis held in
Kácov, Czech Republic, on January 12–19, 2013. The problem originated in considerations of the design of a
story cake on the occasion of the seventh birthday of O. Kalenda’s daughter. The number n = 7 of stories and
the dimensions a and b of the baking try were given. The stories were required to be of different sizes, but to
have similar layouts.

2A different proof was given by J. Jeĺınek at the same conference.
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Figure 1. Tilings from the proofs of the lemma (left-hand side) and the
theorem (right-hand side) with n = 5 and x = 2. The difference is emphasized.

see [9] and [10, p. 633]. They are closely related with the Fibonacci numbers

F1 = F2 = 1 and Fn+2 = Fn+1 + Fn.

Lemma.

(i) For every n ∈ {1, 2, . . .}, fn is a polynomial of degree n−1 with non-negative coefficients

and fn(1) = Fn.

(ii) For every x > 1, the sequence (fn(x))
∞

n=1 is strictly increasing.

(iii) For every x > 0 and every n ∈ {2, 3, . . .}, a rectangle R(fn(x), fn+1(x)) can be dissected

into n rectangles R(fi(x), xfi(x)), i = 1, . . . , n. If x > 1, this tiling is perfect and all

edges of all tiles are strictly smaller than fn+1(x).

Proof. Claims (i) and (ii) follow immediately from the definition of Fibonacci polynomials.
The proof of the first part of (iii) is by induction on n. For n = 2, R(f2(x), f3(x)) =

R(x, x2 + 1) is split into R(1, x) = R(f1(x), xf1(x)) and R(x, x2) = R(f2(x), xf2(x)). For
n ≥ 3, we cut R(fn(x), fn+1(x)) = R(fn(x), xfn(x) + fn−1(x)) first into R(fn(x), xfn(x))
and R(fn−1(x), fn(x)) and then dissect the piece R(fn−1(x), fn(x)) into R(fi(x), xfi(x)), i =
1, . . . , n− 1, according to the induction hypothesis (see the left-hand part of Figure 1).

Now suppose that x > 1. All n pieces R(fi(x), xfi(x)), i = 1, . . . , n, have eccentricity x and,
by (ii), are of different size. Therefore we have a perfect tiling. Moreover, the largest edge of
the largest piece has length xfn(x), which is smaller than fn+1(x) = xfn(x) + fn−1(x). �

The above Fibonacci-type tiling for the case x = 1 is already illustrated in [2]; for closely
related constructions see [7, 6] and [5, p. 79].

Corollary. Let n ≥ 2 be an integer. If the eccentricity c of a rectangle R is strictly larger

than
Fn+1

Fn
, then R admits a perfect tiling into n rectangles.

Proof. Let x > 1. By claim (iii) of the lemma, the rectangle R(x) = R(fn(x), fn+1(x)) has a

perfect tiling into n rectangles. It suffices to show that the eccentricity c(x) = fn+1(x)
fn(x)

of R(x)

coincides with c for some x > 1. However, this is a consequence of the intermediate value
theorem, since

c(1) =
Fn+1

Fn

< c < ∞ = lim
x→∞

c(x)

by claim (i) of the lemma. �
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Note that the above construction does not necessarily give perfect tilings if x ≤ 1. For
example, the lengths f1(x) and f2(x) coincide if x = 1 and f1(x) = f4(x) for x = 0.45339765 . . ..
We use a slight modification for proving the theorem.

Proof of the Theorem. First let n = 2. If a rectangle R can be perfectly tiled with two rect-
angles R1 and R2 of eccentricity x ≥ 1, then R1 and R2 touch each other along a common
edge, say of length l, their other edge lengths are l

x
and xl, respectively, and perfectness yields

x 6= 1. The edge lengths of R are l and l
x
+ xl and its eccentricity is c = 1

x
+ x. Since every

x > 1 is allowed, the set of all attainable eccentricities c consists of all reals strictly larger
than 2.

Now we consider n ≥ 3. Let x > 1. We divide a rectangle R(x) = R
(

fn−1(x) +
fn(x)
x

, fn(x)
)

into R
(

fn(x)
x

, fn(x)
)

and R(fn−1(x), fn(x)). Then we apply claim (iii) of the lemma to the

rectangle R(fn−1(x), fn(x)) for dissecting it into R(fi(x), xfi(x)), i = 1, . . . , n − 1 (see the
right-hand part of Figure 1). The resulting tiling of R(x) into n rectangles of eccentricity x is

perfect, because R
(

fn(x)
x

, fn(x)
)

has an edge of length fn(x), which is larger than all edges of

the other n− 1 pieces by part (iii) of the lemma.

The ratio r(x) = fn(x)

fn−1(x)+
fn(x)

x

of the edge lengths of R(x) satisfies

r(1) =
Fn

Fn−1 + Fn

< 1 ≤ c < ∞ = lim
x→∞

r(x)

according to claim (i) of the lemma. Hence there exists x0 > 1 such that R(x0) has the
required eccentricity r(x0) = c. This completes the proof. �
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