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Abstract. In a 2007 contribution by Osler in this Quarterly, the so-named Vieta-like prod-
ucts were introduced as two eye-catching formulas representing either the nth Fibonacci num-
ber in terms of a product of nested radicals with the nth Lucas number inside, or vice-versa.
As the original and famous Viète’s infinite product, Osler’s infinite products have plus signs
inside the nested radicals. In this paper we explore infinite products of nested square roots
with Fibonacci and Lucas numbers with the novelty that inside the radical symbols there are
minus signs instead of plus signs.

1. Introduction

In a recent contribution [5], Osler gave two striking Viète-like infinite products, which can
be rewritten as
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where

an =

{√
5Fn if n is even,

Ln if n is odd,
bn =

{

Ln if n is even,√
5Fn if n is odd.

As usual, Fn and Ln, respectively stand for the nth Fibonacci and Lucas numbers, and φ
denotes the golden ratio. To derive (1.1), Osler first used a standard procedure to deduce
Viète-like infinite products, using the hyperbolic sine and cosine functions instead of the
trigonometric functions, and next he evaluated sinhx and coshx for the values x = n log φ,
n being a positive integer. (As Osler said, it was Richard Askey who showed him how the
Fibonacci and Lucas numbers were related to the hyperbolic functions.)

In this paper we give new infinite products of nested square roots which link the nth
Fibonacci and Lucas numbers to each other, and which have some resemblances with the
infinite products introduced by Osler in [5]. Concretely, we will prove that
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and also its twin counterpart
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Here and subsequently, i stands for the imaginary unit, and the symbol
√· will stand for the

principal value of the complex square root function. Thus, for a nonnegative real x,
√
x stands

for its nonnegative square root, and for a nonzero complex number z,
√
z =

√

|z|ei
Arg(z)

2 , where
| · | is the modulus function and Arg(·) is the principal value of the argument function, which
takes values in the interval (−π, π].

2. Two Key Tools Towards the Main Result

In this section our purpose is to derive a Viète-like infinite product with just minus signs
inside the nested radicals. To achieve this aim we first give an infinite product of cosines (first
key tool), which essentially coincides with [2, Theorem 1], but here in the complex setting and
with a shorter proof. Next we state the main result in [3] (second key tool), which connects
certain values of the cosine function with certain nested radicals, and which generalizes to the
whole complex plane previous results by L. D. Servi [7], for the interval [−1, 1], and by M. A.
Nyblom [4], for [1,∞). Finally, we show how these two results lead us to the desired Viète-like
infinite product.

Proposition 2.1. (cf. [2, Theorem 1, p.16]) Let aj = (2j−(−1)j)/3 denote the jth Jacobsthal
number, recursively defined by a0 = 0, a1 = 1 and an+2 = an+1 + 2an for n ≥ 0 [8]. For any
complex z,
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Proof. Our first step consists of proving that for each positive integer k,
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, z ∈ C. (2.2)

The proof goes by induction on k.
First, the base case: we need to verify that (2.2) holds for k = 1. To this end, and taking

into account that a2 = 1, we must verify that
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which trivially holds.
Second, the induction step: assuming our claim to hold for k = p, we will prove it for p+1.

Rewriting equation (2.2) with k = p, and applying (2.3) we get
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and (2.2) is proved.
Our next concern will be to deduce (2.1) from (2.2).
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which completes the proof. �

We can now proceed to rewrite Proposition 2.1 as a Viète-like formula. For this to be done
we must link each cosine in formula (2.1) with a certain nested radical. And this can be
achieved by using the main result in [3], which we repeat here without proof, thus making our
exposition self-contained.

Proposition 2.2. [3, Theorem 4, p. 71] Let ξ be an arbitrary complex number and let k be a
positive integer. If bl ∈ {1,−1} for l = 1, 2, . . . , k, then
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where
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We are thus led to the following strengthening of [2, Theorem 3, p.18].

Proposition 2.3. For any w ∈ C,
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Proof. For a fixed complex number w and for a nonnegative integer n let us introduce the
coefficients bj = bj(n), defined by means of
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Evaluating the above geometric series, we have
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Substituting the equation above in (2.1), and taking into account that cos z = cos(Arcsin(w/2))

=
√

1− (w2/4), we establish (2.5) as desired. �

Proposition 2.3 is not new. To the best of our knowledge, it must be credited to A. Levin [1,
formula (48)], who gave a different proof. Our proof mimics the one in [2, Theorem 3, p.18],
but uses Proposition 2.2 to generalize the former result to the whole complex plane.

3. Main Result: A Mirror Image of Osler’s Formulas

A well-known quadratic relation between Fibonacci and Lucas numbers is [6, p. 5]

L2
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n = (−1)n4, n = 1, 2, 3, . . . . (3.1)

Clearly (3.1) can be rewritten as
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Having disposed of this preliminary step, we can now proceed to state our target formulas
(1.2) and (1.3).

Theorem 3.1. Let n be a positive integer. We have
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where

an =
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Ln if n is odd,
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Proof. The proof falls naturally into two parts.
First fix n a positive even integer. Replacing w by Ln in (2.5), and taking into account (3.2)

to transform the right-hand side of the equality, we get (3.4) for even n.
A similar method works when n is a positive odd integer. �
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Mag., 86 (2013), 15–25, doi: 10.4169/math.mag.86.1.015.
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