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Abstract. Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n ≥ 0,
where F0 = 0 and F1 = 1. There are several interesting identities involving this sequence such
as F 2

n +F 2
n+1 = F2n+1, for all n ≥ 0. One of the most known generalizations of the Fibonacci

sequence, is the k-generalized Fibonacci sequence (F
(k)
n )n which is defined by the initial values

0, 0, . . . , 0, 1 (k terms) and such that each term afterwards is the sum of the k preceding terms.
In this paper, we prove that contrarily to the Fibonacci case, the Diophantine equation

(F (k)
n )2 + (F

(k)
n+1)

2 = F
(k)
m

has no any solution in positive integers n,m and k, with n > 1 and k ≥ 3.

1. Introduction

Let (Fn)n≥0 be the Fibonacci sequence given by Fn+2 = Fn+1+Fn, for n ≥ 0, where F0 = 0
and F1 = 1. A few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . .

The Fibonacci numbers are well-known for possessing wonderful and amazing properties
(consult [7] together with their very extensive annotated bibliography for additional references
and history).

Among the several pretty algebraic identities involving Fibonacci numbers, we are interested
in the following one

F 2
n + F 2

n+1 = F2n+1, for all n ≥ 0. (1.1)

In particular, this naive identity (which can be proved easily by induction) tells us that the
sum of the square of two consecutive Fibonacci numbers is still a Fibonacci number.

Let k ≥ 2 and denote F (k) := (F
(k)
n )n≥−(k−2), the k-generalized Fibonacci sequence whose

terms satisfy the recurrence relation

F
(k)
n+k

= F
(k)
n+k−1 + F

(k)
n+k−2 + · · ·+ F (k)

n , (1.2)

with initial conditions 0, 0, . . . , 0, 1 (k terms) and such that the first nonzero term is F
(k)
1 = 1.

The above sequence is one among the several generalizations of Fibonacci numbers. Such
a sequence is also called k-step Fibonacci sequence, the Fibonacci k-sequence, or k-bonacci

sequence. Clearly for k = 2, we obtain the well-known Fibonacci numbers F
(2)
n = Fn, for

k = 3, the Tribonacci numbers F
(3)
n = Tn and for k = 4, the Tetranacci numbers F

(3)
n = Qn.

Recently, Melham [8, 9, 10] has published a series of papers presenting identities that (according
to him) can be regarded as higher order analogues of the identity (1.1). For instance, he proved
the following identities for Tribonacci and Tetranacci numbers:

T 2
n+3 + T 2

n+2 + T 2
n+1 − T 2

n = 2T2n + 32T2n+1 + 3T2n+2
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and

Q2
n+6 +Q2

n+5 + 2Q2
n+4 + 2Q2

n+3 − 2Q2
n+2 +Q2

n+1 −Q2
n

= 46Q2n + 70Q2n+1 + 82Q2n+2 + 88Q2n+3.

The aim of this paper is to study a similar equation to (1.1) in the k-generalized Fibonacci
context. More precisely, we have the following theorem.

Theorem 1.1. The Diophantine equation

(F (k)
n )2 + (F

(k)
n+1)

2 = F (k)
m (1.3)

does not have any solution in positive integers n,m and k, with n > 1 and k ≥ 3.

We recall that for n = 1, the triple (n,m, k) = (1, 3, k) is a solution of equation (1.3) for

all k ≥ 2. When n = 2, one has (F
(k)
2 )2 + (F

(k)
3 )2 = 1 + 22 = 5, but on the other hand F

(k)
m

belongs to the increasing sequence 4, 7, 8, 13, 15, . . ., for k ≥ 3 and m ≥ 4. Thus, there is no
solution of equation (1.3) for n = 2. In conclusion, we may suppose that n ≥ 3.

2. Auxiliary Results

We know that the characteristic polynomial of (F
(k)
n )n is

ψk(x) := xk − xk−1 − · · · − x− 1

and it is irreducible over Q[x] with just one zero outside the unit circle. That single zero is
located between 2(1 − 2−k) and 2 (as can be seen in [11]). Also, it was proved in [1, Lemma
1] that

αn−2 ≤ F (k)
n ≤ αn−1, for all n ≥ 1, (2.1)

where α is the dominant root of ψk(x).
Recall that for k = 2, one has the useful Binet’s formula

Fn =
αn − βn√

5
,

where α = (1 +
√
5)/2 = −β−1. There are many closed formulas representing these k-

generalized Fibonacci numbers, as can be seen in [3, 4, 5, 6]. However, we are interested
in the simplified “Binet-like” formula due to G. Dresden [2, Theorem 1] :

F (k)
n =

k∑

i=1

αi − 1

2 + (k + 1)(αi − 2)
αn−1
i

, (2.2)

for α = α1, . . . , αk being the roots of ψk(x). Also, the contribution of the roots inside the unit
circle in formula (2.2) is almost trivial. More precisely, it was proved in [2] that

|En(k)| <
1

2
, (2.3)

where En(k) := F
(k)
n − g(α, k)αn−1 and g(x, y) := (x− 1)/(2 + (y + 1)(x− 2)).

Here are the values of g(α, k) with six decimal digits, respectively for k = 3, 4, . . . , 11:

{0.618419, 0.566342, 0.537926, 0.521772, 0.512454, 0.507071, 0.503980, 0.502220, 0.501227}.
We remark that, for k ≥ 12, the value of g(α, k) is not greater than 0.502, as can be seen

below

g(α, k) =
α− 1

2 + (k + 1)(α − 2)
<

2− 1

2− (k + 1)/2k−1
< 0.502 for k ≥ 12, (2.4)
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and that certainly, g := g(α, k) < 4/3 in all cases. Moreover, we claim that g > 1/α. In fact,
we have

gα− 1 =
α(α− 1)− (2 + (k + 1)(α− 2))

(2 + (k + 1)(α − 2))
=
α2 + k

>0
︷ ︸︸ ︷

(2− α)−2α

2 + (k + 1)(α − 2)
≥ α2 − 5α+ 6

2 + (k + 1)(α − 2)
> 0,

(2.5)
where (2.5) follows from the fact that k ≥ 3, the inequality x2 − 5x+ 6 > 0 for all 1 < x < 2
and that 2 + (k + 1)(α − 2) > 2 − (k + 1)/2k−1 ≥ 1, for all k ≥ 3. In this way, (2.5) gives
g > 1/α.

Now, we are ready to deal with the proof of Theorem 1.1.

3. Proof of Theorem 1.1

First, observe that by using the estimates in (2.1), we obtain

(F (k)
n )2 + (F

(k)
n+1)

2 > α2n−4 + α2n−2 = α2n−4(1 + α2) > α2n−2

and
(F (k)

n )2 + (F
(k)
n+1)

2 < α2n−2 + α2n = α2n−2(1 + α2) < α2n+1,

where we used that 1 + α2 < α3 for k ≥ 3. Now, the estimate αm−2 < F
(k)
m < αm−1 together

with the previous estimates yield 2n− 1 < m < 2n+ 3. In conclusion, we have proved that if
(m,n, k) is a solution of equation (1.3), then m ∈ {2n, 2n + 1, 2n + 2}.

First, if n ≤ 20 and 3 ≤ k ≤ 42, then a finite computation shows no solutions for (1.3),

whereas if n ≤ 20 and k > 42 then all three F
(k)
n , F

(k)
n+1, and F

(k)
m , are distinct powers of 2:

F (k)
n = 2n−2, F

(k)
n+1 = 2n−1 and F (k)

m ∈ {22n−2, 22n−1, 22n}.
So the sum of the first two squares cannot be the third value, since no two distinct powers of
2 sum up to another power of 2. So, from now on n > 20 independently of k. Let us denote

F (k)
n = gαn−1 + En(k), (3.1)

where En(k) is defined as before. Let m = 2n + i, i ∈ {0, 1, 2}. Then the equation (1.3) can
be written as

(gαn−1 + En(k))
2 + (gαn + En+1(k))

2 = gα2n+i−1 + E2n+i(k).

Divide across by α2n−2 to get

(g + En(k)/α
n−1)2 + (gα + En+1(k)/α

n−1)2 = gαi+1 +E2n+i(k)/α
2n−2. (3.2)

We write
(g + En(k)/α

n−1)2 = g2 +C1,

where

|C1| = |2gEn+1(k)/α
n−1 + (En(k)/α

n−1)2|
≤ 2× (4/3) × (1/2) × α−(n−1) + (1/4) × α−2(n−1)

< 2× 2× (4/3) × (1/2) × α−(n−1)

< 3/αn−1. (3.3)

Similarly,

(gα+ En+1(k)/α
n−1)2 = g2α2 + C2,
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where

|C2| = |2gαEn+1(k)/α
n−1 + (En+1(k)/α

n−1)2|
< 2× (4/3) × 2× (1/2) × (2/αn−1)

< 6/αn−1. (3.4)

Since C3 = E2n+i/α
2n−2 < 1/αn−1, we obtain from (3.2), (3.3) and (3.4) that

|g + gα2 − αi+1| = 1

g
|C3 − C1 −C2|

< 2×
(

1

αn−1
+

3

αn−1
+

6

αn−1

)

=
20

αn−1
. (3.5)

Computing the left-hand side of (3.5) for k = 3, 4, . . . , 11 and i ∈ {0, 1, 2} with the values of g
given previously, we obtain

0.505 < |g + gα2 − αi+1| < 20

αn−1
<

20

1.5n−1
,

which contradicts the fact that n > 20.
Now, suppose that k ≥ 12. If i = 0, we see that in the left-hand side of inequality (3.5) we

have, since gα > 1, that

g + gα2 − α = g + (gα)α − α > g > 0.5,

leading to 1.5n−1 < 40, which is false for n > 20. So, i ∈ {1, 2}.
If i = 1, then

α > 2(1− 2−12) =
4095

2048
> 1.99,

and g < 0.502, so α2 − gα2 − g > (1.99)2 − 0.502 × 22 − 0.502 > 1.45, and we get

1.45 < α2 − gα2 − g ≤ |g + gα2 − α2| < 20

αn−1
⇒ αn−1 < 13.8

which is false for α > 1.99 and n > 20.
Similarly, if i = 2 we also have g < 0.502 and α > 1.99, so α3 − gα2 − g > (1.99)3 − 0.502×

22 − 0.502 > 5.37, which is even larger than the previous one, giving us again a contradiction.
This completes the proof. �
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