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Abstract. Here, we show that if u0 = 0, u1 = 1, and un+2 = run+1 + sun for all n ≥ 0 is
the Lucas sequence with s ∈ {±1}, then there are only finitely many effectively computable
n such that φ(|un|) is a power of 2, where φ is the Euler function. We illustrate our general
result by a few specific examples. This generalizes prior results of the third author and others
which dealt with the above problem for the particular Lucas sequences of the Fibonacci and
Pell numbers.

1. Introduction

Let φ(m) be the Euler function of the positive integer m. It is well-known that for m ≥ 3,
the regular polygon with m sides is constructible with the ruler and the compass if and only
if φ(m) is a power of 2. This happens exactly when m is the product of a power of 2 and a
square free number all whose prime factors are Fermat primes; i.e., prime numbers of the form
22

n

+ 1 for some n ≥ 0. For more information on Fermat numbers, see [1].
In [2], Luca found all the Fibonacci numbers whose Euler function is a power of 2. In [3],

Luca and Stănică found all the Pell numbers whose Euler function is a power of 2. Here,
we prove a more general result which contains the results of [2] and [3] as particular cases.
Namely, we consider the Lucas sequence (un)n≥0, with u0 = 0, u1 = 1 and

un+2 = run+1 + sun for all n ≥ 0,

where s ∈ {±1} and r 6= 0 is an integer. Let ∆ = r2 + 4s and assume that ∆ 6= 0, so, in
particular, (r, s) 6= (±2,−1). It is then well-known that if we let

(γ, δ) =

(

r +
√
∆

2
,
r −

√
∆

2

)

,

then the so-called Binet formula

un =
γn − δn

γ − δ
holds for all n ≥ 0. (1.1)

We assume that γ/δ is not a root of 1, which happens if (r, s) 6= (±1,−1). Observe that this
condition implies that ∆ = r2+4s > 0. So, γ and δ are real. If r < 0, we may replace (r, s) by
(−r, s), whose effect is that it replaces the pair (γ, δ) by the pair (−δ,−γ), so, in particular,
un by (−1)n−1un. Such a transformation does not change |un|. Thus, we may assume that
r > 0. In this case, we have γ > 1 and δ = −sγ−1 ∈ {−γ−1, γ−1}. Furthermore, un > 0 for
all n ≥ 1. In fact, we have un+1 ≥ un for all n ≥ 0 with the inequality being strict for n ≥ 2.
This is clear if r = 1, because then s = 1 and so un = Fn, the nth Fibonacci number, while if
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r ≥ 2, then, by induction on n ≥ 0, we have

un+2 ≥ 2un+1 − un = un+1 + (un+1 − un) > un+1.

We have the following theorem.

Theorem 1.1. Assume s = ±1, r > 0 be an integer, (r, s) 6= (2,−1), (1,−1). Suppose n > 0
is such that φ(un) is a power of 2. Then writing n = 2a0pa11 · · · pakk , where 3 ≤ p1 < · · · < pk
are distinct primes and a0, a1, . . . , ak are nonnegative integers, we have that a0 ≤ 4 and

paii < 2(r2 + 3)2 for all i = 1, . . . , k.

Example 1.2. Consider the case when un = Fn is the Fibonacci sequence and assume that

φ(Fn) is a power of 2. We have r = 1, therefore paii < 32 for i = 1, . . . , k. Since the Euler

functions of F7, F11, F13, F17, F19, F23, F25, F27, F29, F31 are not powers of 2, it follows
that pa11 · · · pakk is a divisor of 32 × 5. Finally, since the Euler function of F8 is not a power

of 2, it follows that n is a divisor of 22 × 32 × 5, and now a very quick calculation shows that

n ∈ {1, 2, 3, 4, 5, 6, 9}, which is the main result from [2].

Example 1.3. Consider the case when un = Pn, the Pell sequence and assume that φ(Pn) is
a power of 2. Then r = 2, so paii < 98 for i = 1, . . . , k. A quick calculation shows that of all

odd prime power values of pa < 98, the Euler function of Ppa is a power of 2 only for pa = 3.
Further, the Euler function of P16 is not a power of 2, so n is a divisor of 23 × 3. Computing

the remaining values, we get that the only values for n are in {1, 2, 3, 4, 8}, which is the main

result in [3].

2. Preliminary Results

For a nonzero integer m we write ν2(m) for the exponent of 2 in the factorization of m.
We let {vn}n≥0 for the companion Lucas sequence of {un}n≥0 given by v0 = 2, v1 = r and
vn+2 = rvn+1 + svn. Its Binet formula is

vn = γn + δn for all n ≥ 0. (2.1)

We have the following results. Recall that s ∈ {±1}.
Lemma 2.1. We have the following relations:

i) If r ≡ 0 (mod 2), then

ν2(un) =

{

0 if n ≡ 1 (mod 2),
ν2(r) + ν2(n)− 1 if n ≡ 0 (mod 2),

and

ν2(vn) =

{

ν2(r) if n ≡ 1 (mod 2),
1 if n ≡ 0 (mod 2).

ii) If r ≡ 1 (mod 2), then

ν2(un) =







0 if n 6≡ 0 (mod 3),
ν2(r

2 + s) if n ≡ 3 (mod 6),
ν2(r

2 + s) + ν2(r
2 + 3s) + ν2(n)− 1 if n ≡ 0 (mod 6),

and

ν2(vn) =







0 if n 6≡ 0 (mod 3),
v2(r

2 + 3s) if n ≡ 3 (mod 6),
1 if n ≡ 0 (mod 6).
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Proof. i) Say r is even. If {wn}n≥0 is any binary recurrent sequence of recurrence wn+2 =
rwn+1 + swn, then wn+2 ≡ wn (mod 2). In particular, wn has the same parity as w0 or w1 if
n is even or odd, respectively. Since v0 = 2, v1 = r are even, it follows that vn is always even.
If n = 2k is even, then

vn = γ2k + δ2k = (γk + δk)2 − 2(γδ)k = v2k ± 2

is congruent to 2 modulo 4 because 2 | vk. If n = 2k + 1, then

v2k+1 = (γ + δ)

(

γ2k+1 + δ2k+1

γ + δ

)

= rwk where wk = c(γ2)k + d(δ2)k,

where c = γ/r, d = δ/r. Thus, {wk}k≥0 is a binary recurrent sequence of roots γ2, δ2, whose
sum is γ2 + δ2 = v2 is even and whose product is γ2δ2 = 1. By the remark at the beginning
of the proof, wk has the same parity as w0 or w1 if k is even and odd, respectively, and since
w0 = 1, w1 = γ2 + δ2 − γδ = v2 ± 1 is also odd, it follows that wk is always odd. This shows
that ν2(v2k+1) = ν2(r) and takes care of the parity of vn. For un, since u0 = 0, u1 = 1, it
follows that un is even or odd according to whether n is even or odd, respectively. If n is even
and we write n = 2k` with k ≥ 1 and ` odd, then

un = u2k` =
γ2

k − δ2
k

γ − δ

(

(γ2
k

)` − (δ2
k

)`

γ2
k − δ2

k

)

= v1v2 · · · v2k−1

(

(γ2
k

)` − (δ2
k

)`

γ2
k − δ2

k

)

.

Since v1 = r, and v2i is congruent to 2 modulo 4 for all i = 1, . . . , k− 1, the part about ν2(un)
when n is even follows provided that we show that the factor in the parenthesis above is odd.

But this is w`, where now {wn}n≥0 is the Lucas sequence of roots γ2
k

and δ2
k

, the sum of

which is v2k which is even and the product of which is (γδ)2
k

= 1, and now the fact that w`

is odd when ` is odd follows by the argument at the beginning of the proof, because w1 = 1 is
odd. This takes care of (i).

ii) Say r is odd. Then un+2 ≡ un+1 + un (mod 2) and the same is true for {vn}n≥0. Since
v0 ≡ u0 ≡ 0 (mod 2) and v1 ≡ u1 ≡ 1 (mod 2), it follows that both un and vn have the same
parity as Fn, the nth Fibonacci number, which is even if and only if 3 | n. This takes care of
ii) when 3 - n. Now take n = 3k. Then

un =
γ3k − δ3k

γ − δ
=

γ3 − δ3

γ − δ

(

(γ3)k − (δ3)k

γ3 − δ3

)

= (r2 + s)wk,

where {wn}n≥0 is the Lucas sequence of roots γ3 + δ3 the sum of which is r(r2 + 3s), which
is even and for which ν2(r(r

2 + 3s)) = ν2(r
2 + 3s) and the product of which is (γδ)3 = −s3.

Similarly,
vn = (γ3)k + (δ3)k

is the companion Lucas sequence of {wn}n≥0. Since this new Lucas sequence has the property
that its sum of roots (namely, its corresponding “r”) is r2+3s which is even, the results from
i) apply to wk and its companion and give ii). �

Lemma 2.2. We have the following relations:

i) If r ≡ 0 (mod 2) and k ≥ 2, then

ν2(v2k − 2) = v2(r
2 + 4s) + 2v2(r) + 2k − 4.

ii) If r ≡ 1 (mod 2) and k ≥ 2, then

v2k ≡ 7 (mod 8).
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Proof. For k ≥ 2, we write

v2k − 2 = γ2
k

+ δ2
k − 2 = (γ2

k−1 − δ2
k−1

)2 = ∆u22k−1 , (2.2)

where ∆ = r2 + 4s = (γ − δ)2. Thus, if r is even, we get, by Lemma 2.1, that

ν2(v2k − 2) = ν2(∆) + 2ν2(u2k−1) = ν2(r
2 + 4s) + 2ν2(r) + 2(k − 2).

If r is odd, then ∆ = r2 + 4s ≡ 5 (mod 2) and u2k−1 is odd, by Lemma 2.1, so that the
right-hand side of formula (2.2) is congruent to 5 (mod 8), which yields v2k ≡ 7 (mod 8). �

Lemma 2.3. Let a, b be nonnegative integers with a ≡ b (mod 2). Then

ua − ub =

{

u(a−b)/2v(a+b)/2 if s = 1 or a ≡ b (mod 4),
u(a+b)/2v(a−b)/2 if s = −1 and a ≡ b+ 2 (mod 4).

Proof. Straightforward verification using Binet’s formulas (1.1) and (2.1). �

3. Proof of Theorem 1.1

We use the fact that if φ(m) is a power of 2 and d is a divisor of m, then φ(d) is a power of
2 as well. We assume that n > 1, φ(un) is a power of 2 and pa‖n and we want to bound pa.
We proceed in various steps.

Case 1. p is odd and p | ∆.

It is well-known that p | un. Furthermore, if p2 | n, then p2 | un. Since φ(un) is a power of
2, it follows that it is not possible that p2 | n, therefore a ≤ 1. Thus, in this case

pa ≤ p ≤ ∆ = r2 + 4s < (r2 + 3)2.

Case 2. p ≥ 5 and p - ∆.

We consider the number upa/upa−1 , which is a divisor of un. Since it is also a divisor of upa

and p ≥ 5, it follows, by Lemma 2.1, that upa/upa−1 is an odd number larger than 1 because
um+1 > um for all m ≥ 2. Since the Euler function of the odd number upa/upa−1 > 1 is a
power of 2, it can be written as

upa

upa−1

= q1q2 · · · qt, where qi = 22
ni + 1 is prime for 1 ≤ i ≤ t. (3.1)

We assume that n1 < · · · < nt. We look at the smallest prime factor q1 of upa/upa−1 . Since
p - ∆, it follows that q1 is primitive for upa . In particular, q1 ≡ ±1 (mod pa). If q1 ≡ 1
(mod pa), then, since q1 = 22

n1 + 1, it follows that 22
n1 + 1 ≡ 1 (mod pa). Thus, p | 22n1 ,

which is false. Hence, q1 ≡ −1 (mod pa), therefore

22
n1

+ 1 = −1 + pa` for some integer `. (3.2)

Since p ≥ 5, it follows that n1 ≥ 2. Further, reducing the above relation modulo 4, we get
that 2‖`. Thus, we have that

pa ≤ 22
n1 + 2

`
≤ 22

n1−1 + 1.

Since the number 22
n1−1 + 1 is a multiple of 3 and p ≥ 5, the above inequality implies that in

fact

pa < 22
n1−1

. (3.3)
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We now use a 2-adic argument to bound n1 in terms of p. Namely, performing the multiplica-
tion on the right-hand side of (3.1) above, we get that the right-hand side of (3.1) is congruent
to 1 + 22

n1 (mod 22
n1+1). Hence,

2n1 = ν2(upa/upa−1 − 1) = ν2((upa − upa−1)/upa−1). (3.4)

Since upa−1 is odd, we get that
2n1 = ν2(upa − upa−1).

By Lemma 2.3, we get that

upa − upa−1 = upa−1(p+ε)/2vpa−1(p−ε)/2 for some ε ∈ {±1}.
Since p ≥ 5, exactly one of pa−1(p ± 1)/2 is even and the other is odd, and exactly one is a
multiple of 3 and the other is not. Invoking Lemma 2.1, we get that

2n1 = ν2(upa − upa−1) ≤ max{ν2(u(p+ε)/2), ν2(v(p−ε)/2)}+ ν2(r). (3.5)

The extra term ν2(r) in fact appears only when r is even and (p + ε)/2 is also even. Let
A = ν2(r) + ν2(r

2 + s) + ν2(r
2 + 3s). Note that A ≥ 1. We distinguish two cases.

Case 2.1 The maximum on the right–hand side of (3.5) is at most A.

In this case, 22
n1−1 ≤ 2A+ν2(r)−1. If r is even, then A = ν2(r), and therefore 2A+ν2(r)−1 ≤

r2/2. If r is odd, then A = ν2(r
2 + s) + ν2(r

2 + 3s), and since (r2 + 3s)− (r2 + s) = 2s = ±2,
it follows that min{ν2(r2 + s), ν2(r

2 + 3s)} = 1. Hence,

2A+ν2(r)−1 ≤ max{r2/2, r2 + 3s, r2 + s} ≤ r2 + 3. (3.6)

By inequality (3.3), we get that

pa < 22
n1−1 ≤ 2A+ν2(r)−1 ≤ r2 + 3. (3.7)

Case 2.2 The maximum on the right-hand side of (3.5) exceeds A.

A quick look at Lemma 2.1, shows that this case occurs only if the above maximum is at
ν2(u(p+ε)/2). Further, the condition ν2(u(p+ε)/2) > A implies that ν2((p + ε)/2) ≥ 2. Thus,

p+ ε = 2α+1k holds with some odd number k and some α ≥ 2, (3.8)

and relation (3.5) and Lemma 2.1 give

2n1 = B + α− 1 (3.9)

for some 1 ≤ B ≤ A+ ν2(r). In fact, it is easy to deduce that B = A+ ν2(r), but we shall not
need this precise information. Thus, also using relation (3.2), we get

−2 + pa` = 22
n1

= 2B+α−1 = 2B−1 × 2α = 2B−1

(

p+ ε

2k

)

.

Thus, we get that
p(2k`pa−1 − 2B−1) = 4k + ε2B−1. (3.10)

Assume first that the left-hand side of the formula (3.10) above is 0. Then 2k`pa−1 = 2B−1.
Since k is odd, 2‖`, the only possibility is ` = 2, a = 1, k = 1, B = 3. We then get
22

n1 + 1 = −1 + 2p, therefore p = 22
n1−1 + 1, which is a multiple of 3, a contradiction.

Thus, the left-hand side of equation (3.10) is nonzero. If k ≥ 2B−2, then 2k` ≥ 4k ≥ 2B , so
2k`pa−1 − 2B−1 ≥ 2k, so (3.10) gives

p ≤ 4k + 2B−1

2k
= 2 +

2B−2

k
≤ 3,
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a contradiction. Thus, k < 2B−2, so, by (3.10) again,

p < 4 · 2B−2 + 2B−1 ≤ 3× 2B−1 ≤ 3× 2A+ν2(r)−1 ≤ 3(r2 + 3),

where for the last inequality we have used inequality (3.6). Thus,

2α =
p+ ε

2k
< 2(r2 + 3),

therefore,

22
n1

= 2B+α−1 ≤ 2A+ν2(r)−12α ≤ (r2 + 3)× (2(r2 + 3)) = 2(r2 + 3)2,

getting, by (3.3), that

pa < 22
n1−1 ≤ (r2 + 3)2,

which is what we wanted to prove.

Case 3. p = 3 and p - ∆.

Up to some minor particularities, this case is similar to Case 2. We work again with
u3a/u3a−1 . If a = 1, then 3a = 3 < (r2+3)2, which is what we wanted. Suppose that a ≥ 2. If
r is even by Lemma 2.1, it follows that u3a is odd, so u3a/u3a−1 is also odd. If r is odd, then
ν2(u3a) = ν2(r

2 + s) = ν2(u3a−1), so u3a/u3a−1 is also odd and it is larger than 1. We again

write equation (3.1), as well as its conclusion (3.2). If n1 = 1, we get −1 + 3a` = 22
1

+ 1 = 5,
showing that 3a | 6, so a = 1, which is not the case we are treating. Thus, n1 ≥ 2, and (3.3)
gives

3a < 22
n1−1. (3.11)

Equation (3.3) is

2n1 = ν2(u3a/u3a−1 − 1) = ν2((u3a − u3a−1)/u3a−1).

Since 3a ≡ 3a−1 + 2 (mod 4), we have, by Lemma 2.3,

u3a − u3a−1 =

{

u3a−1v2×3a−1 if s = 1
u2×3a−1v3a−1 if s = −1.

In particular,
u3a − u3a−1

u3a−1

= v2×3a−1 or v23a−1

according to whether s = 1 or s = −1. If r is even, we deduce, by Lemma 2.1, that 2n1 ≤ 2A.
If r is odd, then, again by Lemma 2.1, we deduce that 2n1 ≤ 2ν2(r

2 + 3s) ≤ 2A − 2. Hence,
at any rate, 2n1 ≤ 2A, therefore

22
n1 ≤ 22A = 4× (2A−1)2 ≤ 4(r2 + 3)2,

where we used again inequality (3.6). By (3.11), we get

3a < 22
n1−1 ≤ 2(r2 + 3)2,

which is what we wanted.

Case 4. p = 2.

In this case, u2a | un. Assume that a ≥ 5. Then

u2a = v1v2 · · · v2a−1 .

Assume that r is odd. Lemma 2.2 shows that both v4 and v8 are congruent to 7 (mod 8).
Since the only Fermat prime which is congruent to 3 modulo 4 is 3, and each one of v4 and
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v8 is a product of distinct Fermat primes, it follows easily that 3 | v4 and 3 | v8, so 9 | un, a
contradiction. So, in fact, a ≤ 4 in this case.

Assume next that r is even and a ≥ 5. Then v4v8v16 is a divisor of u2a and in particular its
Euler function is a power of 2. By Lemma 2.2, we have

ν2(v4 − 2) = ν2(r
2 + 4s) + 2ν2(r),

ν2(v8 − 2) = ν2(r
2 + 4s) + 2ν2(r) + 2,

ν2(v16 − 2) = ν2(r
2 + 4s) + 2ν2(r) + 4.

Writing b = ν2(r
2 + 4s) + 2ν2(r), we get that

v4 = 2q1 · · · qt with qi = 22
ni + 1 where n1 < · · · < nt,

v8 = 2q′1 · · · q′t′ with q′i = 22
n
′

i + 1 where n′
1 < · · · < n′

t′ ,

v16 = 2q′′1 · · · q′′t′′ with q′′i = 22
n
′′

i + 1 where n′′
1 < · · · < n′′

t′′ ,

and where furthermore 2n1 = b, 2n
′

1 = b+ 2, 2n
′′

1 = b+ 4 and the sets

{n1, . . . , nt}, {n′
1, . . . , n

′
t′} and {n′′

1, . . . , n
′′
t′′}

are mutually disjoint. Hence, 2n1 + 2n
′′

1 = 2n
′

1
+1(= 2b+ 4), with distinct n1, n′

1, n′′
1, which is

impossible by the uniqueness of the base 2 representation. This contradiction shows that in
fact a ≤ 4.
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AIMS-Sénégal, Km 2 route de Joal (Centre IRD Mbour), BP: 64566 Dakar-Fann, Sénégal
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