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Abstract. Motivated by a problem posed by Barwell, we apply graph theory to determine
all n for which the numbers 1, . . . , n can be ordered so that the sum of any two consecutive
terms is a Fibonacci number. We prove that such an ordering exists if and only if n is 9, 11,
a Fibonacci number, or one less than a Fibonacci number. For each such n, we also prove
that at most two such orderings exist, up to symmetry.

In this paper, we consider a problem posed by Barwell [1]. Barwell asked for an ordering
of the numbers 1, . . . , 34 such that any two consecutive terms sum to a Fibonacci number.
We attack this problem using graph theory, by defining a graph with vertices {1, . . . , 34} and
edges {uv : u+ v is a Fibonacci number}. An ordering of the desired form then corresponds
to a spanning path in the graph, i.e. a path that visits each vertex. Using this approach,
we solve a more general problem by determining all n such that the numbers 1, . . . , n, have
such an ordering: this holds if and only if n is 9, 11, a Fibonacci number, or one less than a
Fibonacci number. We also prove that for each such n there are at most two such orderings
(up to symmetry).

We write [n] to denote {1, 2, . . . , n}. When discussing the Fibonacci numbers, we adopt the
usual convention that F0 = 0, F1 = 1, and Fk = Fk−1 + Fk−2 for k ≥ 2. We will, at several
points, use the well-known observations that Fk is even if and only if 3|k and that any two
consecutive Fibonacci numbers are relatively prime.

We begin by formally defining the graph we will use to model Barwell’s original problem.

Definition 1. For n ≥ 1, the Fibonacci-sum graph on [n], denoted Gn, is the graph with

vertex set [n] and edge set {uv : u + v = Fi for some i}. We freely treat the elements of [n]
either as vertices of Gn or as integers. The sum of an edge in Gn is the sum of its endpoints.

As suggested above, a spanning path in Gn corresponds to an ordering of [n] such that any
two consecutive terms sum to a Fibonacci number. When n ≤ 4 the graph Gn is itself a path,
so usually we restrict our attention to the case n ≥ 5. To attack Barwell’s problem, we will
show that when k ≥ 5, the graph GFk

has a spanning path.

Theorem 2. If k ≥ 5, then the graph GFk
has a spanning path.

Proof. Let Pk be the spanning subgraph of GFk
containing precisely those edges having sums

in {Fk−1, Fk, Fk+1}. We claim that in fact Pk is a path. To prove this, it suffices to show that
Pk contains no cycles and that two vertices of GFk

have degree 1 in Pk, while the rest have
degree 2.

To see that each vertex of GFk
has degree at most 2 in Pk, it suffices to show that each vertex

lies on at most two edges having sums in {Fk−1, Fk, Fk+1}. This follows from the observation
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that no vertex in {1, . . . , Fk−1 − 1} lies on an edge having sum Fk+1, and no vertex in
{Fk−1, . . . , Fk} lies on an edge having sum Fk−1. Conversely, each vertex smaller than Fk−1

does lie on an edge having sum Fk−1, except perhaps for the vertex Fk−1/2 when Fk−1 is even.
Likewise, each vertex smaller than Fk lies on an edge having sum Fk, except for the vertex
Fk/2 when Fk is even. Finally, each vertex in {Fk−1, . . . , Fk} lies on an edge having sum Fk+1,
except for the vertex Fk+1/2 when Fk+1 is even. Thus each vertex of GFk

has degree at least
2 in Pk, except possibly for Fk, Fk−1/2, Fk/2, and Fk+1/2. The vertex Fk must have degree 1,
and the vertices Fk−1/2, Fk/2, and Fk+1/2 have degree 1 precisely when Fk−1, Fk, and Fk+1,
respectively, are even. Since exactly one of Fk−1, Fk, and Fk+1 is even, Pk has exactly two
vertices of degree 1.

We next claim that Pk contains no cycles. Suppose otherwise, and let C be a cycle in Pk.
Each vertex of C lies on exactly two edges in Pk; by the arguments in the preceding paragraph,
exactly one of these edges must have sum Fk. Thus the edges in C alternate between those
having sum Fk and those having sum in {Fk−1, Fk+1}. Let α and β denote the numbers of
edges in C having sums Fk−1 and Fk+1, respectively; note that C has α+β edges with sum Fk.
Now let us sum the vertices in C. Since each vertex lies on exactly one edge having sum Fk,
the sum is (α + β)Fk; since each vertex lies on exactly one edge having sum in {Fk−1, Fk+1},
the sum is αFk−1+βFk+1. Thus, (α+β)Fk = αFk−1+βFk+1, so α(Fk−Fk−1) = β(Fk+1−Fk);
applying the Fibonacci recurrence once on each side yields αFk−2 = βFk−1. Since Fk−2 and
Fk−1 are relatively prime, it follows that Fk−1|α and Fk−2|β; consequently, α ≥ Fk−1 and
β ≥ Fk−2. Thus, α+ β ≥ Fk, which is impossible since Pk has only Fk − 1 edges. �

We will next show that the graph GFk
always has at most two spanning paths: one is Pk,

and the other (when it exists) differs from Pk in only two edges. Thus [Fk] has at most two
orderings of the desired form (up to symmetry).

Lemma 3. Let k be an integer greater than 4, and choose m from {k− 1, k, k+1} so that Fm

is even. In the graph GFk
, the path Pk is the only spanning path whose endpoints are Fm/2

and Fk.

Proof. As argued in the proof of Theorem 2, no vertex in GFk
lies on edges having sums both

Fk−1 and Fk+1. From this fact and the observation that Fm/2 lies on no edge having sum Fm,
it follows that Fm/2 has degree 1 in Pk. Likewise, Fk also has degree 1 in Pk, since it is too
large to lie on edges having sums in {Fk−1, Fk}. Thus Fm/2 and Fk are the endpoints of Pk,
as claimed.

Now suppose that GFk
has some other spanning path P with these same endpoints. By

definition of Pk, every edge that belongs to Pk but not to P has sum at least Fk−1. Similarly,
every edge that belongs to P but not to Pk has sum less than Fk−1; otherwise, it would belong
to Pk. Since at least one edge belongs to P but not to Pk, we have

∑

uv in Pk

(u+ v) >
∑

uv in P

(u+ v) .

However, both sums above include Fm/2 and Fk once each and every other vertex in GFk

twice. Thus the two sums must be equal, so we have a contradiction. �

Theorem 4. Let k be an integer greater than 4. If k 6≡ 1 (mod 3), then GFk
has a unique

spanning path. If k ≡ 1 (mod 3), then GFk
has exactly two spanning paths: one has endpoints

Fk and Fk−1/2, while the other has endpoints Fk and Fk − Fk−4/2.

Proof. Since Fk has degree 1 in GFk
, every spanning path has Fk as one endpoint.
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If k ≡ 2 (mod 3), then Fk+1/2 has degree 1, since it cannot lie on an edge having sum Fk+1

and is too large to lie on an edge having sum Fk−1. Thus every spanning path has endpoints
Fk and Fk+1/2; by Lemma 3, Pk is the only such path. Similarly, if k ≡ 0 (mod 3), then Fk/2
has degree 1, and again Pk is the only spanning path.

Finally, suppose k ≡ 1 (mod 3). Let S = {Fk−4/2, Fk−1/2, Fk−1 + Fk−4/2, Fk − Fk−4/2}.
Note that S induces a cycle in GFk

. Moreover, of the vertices in S, only Fk−4/2 has neighbors
outside S, so the vertices of S must occur at one end of any spanning path. Every spanning
path must enter S at Fk−4/2 and hence must end either at Fk−1/2 or at Fk −Fk−4/2. We can
transform any spanning path ending at Fk−1/2 into one ending at Fk−Fk−4/2 (and vice-versa)
by permuting the last three vertices; Lemma 2 shows that GFk

has only one spanning path of
the former type, so it also has only one of the latter type. �

Note that when GFk
has only one spanning path, that path is Pk; when GFk

has two
spanning paths, one is Pk, and the other can be obtained from Pk by permuting the last three
vertices. In this sense, Pk is “essentially” the only spanning path in GFk

.
For our last result, we determine all n such that Gn has a spanning path; here we do not

require that n be a Fibonacci number, although we do make use of our previous results.

Theorem 5. When n ≥ 5, the graph Gn has a spanning path if and only if n = 9 or n = 11
or n ∈ {Fi, Fi − 1} for some i. This spanning path is unique unless n ∈ {Fi, Fi − 1} with i ≡ 1
(mod 3), in which case Gn has two spanning paths.

Proof. Recall that Fi has degree 1 in GFi
. Thus, given a spanning path in GFi

, removing
Fi leaves a spanning path in GFi−1. Likewise, Fi−1 has degree 1 in GFi−1; given a spanning
path in GFi−1, adding the edge Fi−1Fi yields a spanning path in GFi

. Thus, GFi
and GFi−1

have the same number of spanning paths; our claims for GFi−1 now follow by Theorem 4. By
inspection, G9 and G11 have unique spanning paths.

Now suppose that n is not 9 or 11 or of the form Fi or Fi − 1. Choose k such that
Fk−1+1 ≤ n ≤ Fk − 2. Since n < Fk − 1, the vertices Fk−1 and Fk−1+1 can lie only on edges
having sum Fk, so each has degree 1 in Gn. If Fk−1+1 < n < Fk − 2, then Fk−1+2 is present
and likewise has degree 1, which precludes the existence of a spanning path. Hence we may
suppose that n ∈ {Fk−1 + 1, Fk − 2}.

Suppose first that n = Fk−1 + 1, and let P be a spanning path in Gn. The vertex n has
degree 1 in Gn, so it must be an endpoint of P ; removing it yields a spanning path P ′ in
GFk−1

. Note that n is adjacent in Gn to Fk−2 − 1, so P ′ has Fk−2 − 1 as an endpoint. We
established in the proof of Theorem 4 that the endpoints of every spanning path in GFk−1

lie
in {Fk−1, Fk−2/2, Fk−1/2, Fk/2, Fk−1 − Fk−5/2}. Thus Fk−2 − 1 lies in this set; checking each
possibility yields n ∈ {4, 9}, contradicting the choice of n.

Suppose instead that n = Fk − 2, and let P be a spanning path in Gn. Both Fk−1 and
Fk−1+1 have degree 1 in Gn, so they must be the endpoints of any spanning path. Moreover,
in GFk

, we have Fk−1 adjacent to Fk and Fk−1 + 1 adjacent to Fk − 1. Thus we may extend
P to a spanning path P ′ in GFk

having endpoints Fk and Fk − 1. As in the prior case, this
implies that Fk − 1 lies in {Fk, Fk−1/2, Fk/2, Fk+1/2, Fk −Fk−4/2}. Checking each possibility
yields n ∈ {0, 3, 11}, again contradicting the choice of n. �

What if we consider the analogous graphs corresponding to the numbers Ai, where A1 = a,
A2 = b, and Ak = Ak−1 +Ak−2 for k ≥ 3? We call such graphs the generalized Fibonacci-sum

graphs. In the proofs of Theorem 2 and Lemma 3, we only used the Fibonacci recurrence,
the fact that every third Fibonacci number is even, and the fact that consecutive Fibonacci
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numbers are relatively prime; these two facts follow easily for the numbers Ai if we require
that a and b be relatively prime. In fact, this requirement is also needed for the existence of
a spanning path: if a and b have a nontrivial common divisor d, then the endpoints of every
edge in the graph belong to the same congruence class modulo d, so no path contains both 1
and 2. Thus as long as a and b are relatively prime, Theorem 2 and Lemma 3 also hold for the
corresponding generalized Fibonacci-sum graphs; Theorems 4 and 5 hold with a few minor,
straightforward alterations.
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