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ABSTRACT. Motivated by a problem posed by Barwell, we apply graph theory to determine
all n for which the numbers 1,...,n can be ordered so that the sum of any two consecutive
terms is a Fibonacci number. We prove that such an ordering exists if and only if n is 9, 11,
a Fibonacci number, or one less than a Fibonacci number. For each such n, we also prove
that at most two such orderings exist, up to symmetry.

In this paper, we consider a problem posed by Barwell [1]. Barwell asked for an ordering
of the numbers 1,...,34 such that any two consecutive terms sum to a Fibonacci number.
We attack this problem using graph theory, by defining a graph with vertices {1,...,34} and
edges {uv : u + v is a Fibonacci number}. An ordering of the desired form then corresponds
to a spanning path in the graph, i.e. a path that visits each vertex. Using this approach,
we solve a more general problem by determining all n such that the numbers 1,...,n, have
such an ordering: this holds if and only if n is 9, 11, a Fibonacci number, or one less than a
Fibonacci number. We also prove that for each such n there are at most two such orderings
(up to symmetry).

We write [n] to denote {1,2,...,n}. When discussing the Fibonacci numbers, we adopt the
usual convention that Fy = 0, F; = 1, and F, = Fj._1 + Fj,_o for k > 2. We will, at several
points, use the well-known observations that Fj is even if and only if 3|k and that any two
consecutive Fibonacci numbers are relatively prime.

We begin by formally defining the graph we will use to model Barwell’s original problem.

Definition 1. For n > 1, the Fibonacci-sum graph on [n|, denoted G, is the graph with
vertez set [n] and edge set {uv : u+v = F; for some i}. We freely treat the elements of [n]
either as vertices of Gy, or as integers. The sum of an edge in G, is the sum of its endpoints.

As suggested above, a spanning path in G,, corresponds to an ordering of [n] such that any
two consecutive terms sum to a Fibonacci number. When n < 4 the graph G,, is itself a path,
so usually we restrict our attention to the case n > 5. To attack Barwell’s problem, we will
show that when k > 5, the graph G, has a spanning path.

Theorem 2. If k > 5, then the graph Gp, has a spanning path.

Proof. Let Py, be the spanning subgraph of G'r, containing precisely those edges having sums
in {Fj_1, Fy, Fp11}. We claim that in fact Py is a path. To prove this, it suffices to show that
P, contains no cycles and that two vertices of G, have degree 1 in Py, while the rest have
degree 2.

To see that each vertex of G, has degree at most 2 in Py, it suffices to show that each vertex
lies on at most two edges having sums in {Fy_1, Fi, Fi11}. This follows from the observation
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that no vertex in {1,...,Fy_1 — 1} lies on an edge having sum Fj,1, and no vertex in
{Fkx_1,...,F} lies on an edge having sum Fj_;. Conversely, each vertex smaller than Fj_
does lie on an edge having sum Fj_1, except perhaps for the vertex Fj_1/2 when Fj,_; is even.
Likewise, each vertex smaller than Fj lies on an edge having sum F}, except for the vertex
F}/2 when F}, is even. Finally, each vertex in {Fj_1,..., Fi} lies on an edge having sum Fj1,
except for the vertex Fj41/2 when Fj4; is even. Thus each vertex of G, has degree at least
2 in Py, except possibly for Fy, Fi,_1/2, F},/2, and Fy1/2. The vertex Fj, must have degree 1,
and the vertices Fj_1/2, F}/2, and Fj,1/2 have degree 1 precisely when Fj_1, Fj, and Fyq,
respectively, are even. Since exactly one of Fj_1, Fj, and Fjy1 is even, P, has exactly two
vertices of degree 1.

We next claim that Pj contains no cycles. Suppose otherwise, and let C' be a cycle in P.
Each vertex of C lies on exactly two edges in Py; by the arguments in the preceding paragraph,
exactly one of these edges must have sum Fj. Thus the edges in C alternate between those
having sum Fj and those having sum in {Fjy_1, Fy11}. Let o and § denote the numbers of
edges in C having sums Fj,_1 and F}.1, respectively; note that C' has o+ edges with sum Fy.
Now let us sum the vertices in C. Since each vertex lies on exactly one edge having sum Fy,
the sum is (a + () F}; since each vertex lies on exactly one edge having sum in {Fy_1, Fi11},
the sum is aFy_1+ B Fi11. Thus, (a+ ) F = aFx_1+B8Fk+1, 80 a(Fy—Fi—1) = B(Fr11— Fr);
applying the Fibonacci recurrence once on each side yields aFj_s = SFj_1. Since Fy_o and
Fy_1 are relatively prime, it follows that Fj_i|a and Fj_s|8; consequently, o« > Fj_; and
B8 > Fi_s9. Thus, a + 8 > F}, which is impossible since Pj has only Fj, — 1 edges. O

We will next show that the graph G, always has at most two spanning paths: one is Py,
and the other (when it exists) differs from Py in only two edges. Thus [F] has at most two
orderings of the desired form (up to symmetry).

Lemma 3. Let k be an integer greater than 4, and choose m from {k —1,k,k+ 1} so that F,,
is even. In the graph Gp,, the path Py is the only spanning path whose endpoints are F, /2
and Fy,.

Proof. As argued in the proof of Theorem 2, no vertex in G, lies on edges having sums both
Fy_1 and Fj11. From this fact and the observation that F,, /2 lies on no edge having sum F,,,
it follows that F},/2 has degree 1 in Py. Likewise, F}, also has degree 1 in Py, since it is too
large to lie on edges having sums in {Fy_1, Fi}. Thus F},/2 and F} are the endpoints of P,
as claimed.

Now suppose that G, has some other spanning path P with these same endpoints. By
definition of Py, every edge that belongs to P, but not to P has sum at least Fj_;. Similarly,
every edge that belongs to P but not to P has sum less than Fj_1; otherwise, it would belong
to Py. Since at least one edge belongs to P but not to P, we have

Z (u+v)> Z (u+w).
uv in Py uv in P

However, both sums above include F,/2 and Fj, once each and every other vertex in Gp,
twice. Thus the two sums must be equal, so we have a contradiction. O

Theorem 4. Let k be an integer greater than 4. If k # 1 (mod 3), then Gp, has a unique
spanning path. If k =1 (mod 3), then G, has exactly two spanning paths: one has endpoints
Fy and Fj;_1/2, while the other has endpoints Fy, and Fy, — Fy_4/2.

Proof. Since Fj, has degree 1 in GF,, every spanning path has F}, as one endpoint.
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If k=2 (mod 3), then Fj,1/2 has degree 1, since it cannot lie on an edge having sum Fj 1
and is too large to lie on an edge having sum Fj_;. Thus every spanning path has endpoints
Fy and Fj11/2; by Lemma 3, Py is the only such path. Similarly, if k =0 (mod 3), then F}/2
has degree 1, and again Py is the only spanning path.

Finally, suppose k = 1 (mod 3). Let S = {Fy_4/2,Fy_1/2,Fx—1 + Fy_4/2, Fx, — Fy,_4/2}.
Note that S induces a cycle in Gf,. Moreover, of the vertices in S, only Fj_4/2 has neighbors
outside S, so the vertices of S must occur at one end of any spanning path. Every spanning
path must enter S at Fj_4/2 and hence must end either at Fj,_1/2 or at Fj, — Fj,_4/2. We can
transform any spanning path ending at Fj,_1/2 into one ending at Fy — Fj_4/2 (and vice-versa)
by permuting the last three vertices; Lemma 2 shows that G'r, has only one spanning path of
the former type, so it also has only one of the latter type. O

Note that when Gg, has only one spanning path, that path is Py; when G, has two
spanning paths, one is P, and the other can be obtained from P, by permuting the last three
vertices. In this sense, P}, is “essentially” the only spanning path in Gp,.

For our last result, we determine all n such that GG, has a spanning path; here we do not
require that n be a Fibonacci number, although we do make use of our previous results.

Theorem 5. When n > 5, the graph G, has a spanning path if and only if n =9 or n =11
orn € {F;, F; — 1} for some i. This spanning path is unique unless n € {F;, F; — 1} with i =1
(mod 3), in which case Gy, has two spanning paths.

Proof. Recall that F; has degree 1 in Gf,. Thus, given a spanning path in G'p,, removing
F; leaves a spanning path in Gg,_;. Likewise, F;_; has degree 1 in GF,_;; given a spanning
path in Gr,_1, adding the edge F;_F; yields a spanning path in Gg,. Thus, Gf, and G,
have the same number of spanning paths; our claims for Gr,_1 now follow by Theorem 4. By
inspection, Gy and G171 have unique spanning paths.

Now suppose that n is not 9 or 11 or of the form F; or F; — 1. Choose k such that
Fr_1+1<n<F,—2. Since n < Fy, — 1, the vertices Fj,_1 and Fj_1 + 1 can lie only on edges
having sum Fy, so each has degree 1 in G,,. If Fj_1+1 <n < Fy, — 2, then Fj,_1 + 2 is present
and likewise has degree 1, which precludes the existence of a spanning path. Hence we may
suppose that n € {F_1 + 1, F}, — 2}.

Suppose first that n = F_1 + 1, and let P be a spanning path in G,,. The vertex n has
degree 1 in Gy, so it must be an endpoint of P; removing it yields a spanning path P’ in
GF,_,- Note that n is adjacent in G, to Fy_o — 1, so P’ has Fj,_y — 1 as an endpoint. We
established in the proof of Theorem 4 that the endpoints of every spanning path in G, _, lie
in {Fy_1, Fx—2/2,Fy_1/2,F} /2, Fx_1 — Fy,_5/2}. Thus Fy_o — 1 lies in this set; checking each
possibility yields n € {4,9}, contradicting the choice of n.

Suppose instead that n = F, — 2, and let P be a spanning path in G,,. Both Fj_; and
Fy_1+1 have degree 1 in G,, so they must be the endpoints of any spanning path. Moreover,
in Gp,, we have Fj,_; adjacent to Fj, and Fj_; + 1 adjacent to Fj, — 1. Thus we may extend
P to a spanning path P’ in G, having endpoints Fj, and Fj, — 1. As in the prior case, this
implies that Fj, — 1 lies in {F}, Fi_1/2, F./2, Fx11/2, Fy, — F,_4/2}. Checking each possibility
yields n € {0, 3,11}, again contradicting the choice of n. O

What if we consider the analogous graphs corresponding to the numbers A;, where A; = a,
Ao =0b,and Ay = Ap_1 + Ap_o for k > 37 We call such graphs the generalized Fibonacci-sum
graphs. In the proofs of Theorem 2 and Lemma 3, we only used the Fibonacci recurrence,
the fact that every third Fibonacci number is even, and the fact that consecutive Fibonacci
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numbers are relatively prime; these two facts follow easily for the numbers A; if we require
that a and b be relatively prime. In fact, this requirement is also needed for the existence of
a spanning path: if @ and b have a nontrivial common divisor d, then the endpoints of every
edge in the graph belong to the same congruence class modulo d, so no path contains both 1
and 2. Thus as long as a and b are relatively prime, Theorem 2 and Lemma 3 also hold for the
corresponding generalized Fibonacci-sum graphs; Theorems 4 and 5 hold with a few minor,
straightforward alterations.
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