THE NUMBER OF DIFFERENT PARTS IN THE PARTITIONS OF n

MICHAEL D. HIRSCHHORN

ABSTRACT. Consider the partitions of n. Each partition contains some number of different
parts. We study the statistical distribution of the number of different parts across all the
partitions of n.

1. INTRODUCTION

Consider the partitions of n. Each partition contains some number of different parts. We
study the statistical distribution of the number of different parts across all the partitions of n.
We will see that the distribution is roughly normal with mean and variance given by
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2. EXACT CALCULATIONS

If X denotes the number of different parts in a partition of n > 1, p,, , the number of
partitions with X = m, f,,, the relative frequency with which X = m, then
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and, of course,
o? = B(X?) - B(X)%
(All this is very straightforward.)
We now show that
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We start with the observation that
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It follows by differentiation with respect to a that
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and hence,

If we now set ¢ = 1, we obtain
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The two stated results are immediate.

Note that the mean number of different parts in the partitions of n is precisely the same as
the mean number of 1’s in the partitions of n, a rather remarkable fact! To drive this point
home, consider the following table.

partition of 4 number of different parts number of 1’s

4 1 0
3+1 2 1
2+2 1 0
2+1+1 2 2
1+1+141 1 4
total 7 7
mean % %

3. APPROXIMATE CALCULATIONS

We show that

We begin with the approximation

o = LU (1 (1K)
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(which can be derived from the Hardy-Ramanujan-Rademacher—Selberg formula for p(n)).

where
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We have by the trapezoidal rule,
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This can be written
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It follows that
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as claimed.
Now let

Then
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We have, again by the trapezoidal rule,
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We also have
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again as claimed.

4. TLLUSTRATION

We illustrate the foregoing with the probability distribution function for n = 100 together
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