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Abstract. We derive two formulas for the summation
∑

n

i=0
Cr+iDs+i, where both Ck and

Dk satisfy the same generalized second-order recurrence. They lead to many summation and
product formulas for Fibonacci-type, Pell-type, and Jacobsthal-type numbers.

1. Introduction

Closed forms for the summations
∑n

i=1
F 2
i ,

∑n
i=0

L2
i , and

∑n
i=0

FiLi are well-known, see,
for example, [11, 13]. They prompted us to study the summation

n
∑

i=0

Ur+iVs+i,

where both sequences {Uk} and {Vk} satisfy the same recurrence with the Fibonacci numbers:

Uk+2 = Uk+1 + Uk,

Vk+2 = Vk+1 + Vk.

Normally, the recurrence would require k ≥ 0. Nevertheless, such a restriction can be omitted,
because we could push the recurrence backward so as to extend the subscripts to the negative
integers. In effect, the entire sequences {Uk}∞k=−∞

and {Vk}∞k=−∞
satisfy the same recurrence.

All we need is to define any two consecutive values. Naturally, we assume that the values of
U0, U1, V0, and V1 are known. In fact, U−n may be related to Un in a rather simple manner.
For instance, it is well-known, and can be easily proven by induction or via Binet’s formulas,
that F−n = (−1)n−1Fn, and L−n = (−1)nLn.

Fibonacci-type recurrences have been studied extensively. They enjoy many fascinating
properties; see, for example, [11, 13]. We found two simple formulas for the summation
∑n

i=0
Ur+iVs+i. They led to many known and some new results. Encouraged by what we

found, we attempted to extend them to Pell numbers [1, 12] and the accompanying Pell-Lucas
numbers defined by

P0 = 0, P1 = 1, Pk+2 = 2Pk+1 + Pk,
Q0 = 2, Q1 = 2, Qk+2 = 2Qk+1 +Qk.

Similar results were obtained. Next, we investigated the Jacobsthal numbers [7, 8, 9] and the
associated Jacobsthal-Lucas numbers defined by

J0 = 0, J1 = 1, Jk+2 = Jk+1 + 2Jk,
K0 = 2, K1 = 1, Kk+2 = Kk+1 + 2Kk.

Interestingly, a simple shift of the coefficients made the problem harder. Nevertheless, we
were able to obtain results that only required some slight modification. Ultimately, we found
almost identical results for the generalized second-order recurrences, which will be discussed
in Section 2. The special cases are studied in Section 3.
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2. The Main Results

The generalized second-order recurrences have been studied extensively. See, for example,
[4, 5, 10]. We focus our attention to the sum of products of any pair of generalized second-order
recurrences:

Ck+2 = pCk+1 + qCk, (2.1)

Dk+2 = pDk+1 + qDk, (2.2)

where p2 + 4q 6= 0. We find a surprisingly simple closed form.

Theorem 2.1. For any integers r and s, and any nonnegative integer n,

p
n
∑

i=0

qn−iCr+iDs+i =

{

Cr+nDr+n+1 − qn+1CrDs−1 if n is even,

Cr+n+1Ds+n − qn+1CrDs−1 if n is odd.

Proof. By alternately using the two recurrences (2.2) and (2.1), we can write the summation
as

p

n
∑

i=0

qn−iCr+iDs+i

= qnCr · pDs + qn−1 · pCr+1 ·Ds+1 + · · ·+ pCr+nDs+n

= qnCr

(

Ds+1 − qDs−1

)

+ qn−1
(

Cr+2 − qCr

)

Ds+1

+ qn−2Cr+2

(

Ds+3 − qDs+1

)

+ qn−3
(

Cr+4 − qCr+2

)

Ds+3

+ · · ·

+

{

Cr+n

(

Ds+n+1 − qDs+n−1

)

if n is even

qCr+n−1

(

Ds+n − qDs+n−2

)

+
(

Cr+n+1 − qCr+n−1

)

Ds+n if n is odd.

The desired result follows directly from this telescoping summation. �

Using a slightly different approach, we obtain another simple closed form.

Theorem 2.2. For any integers r and s, and any nonnegative integer n,

p
n
∑

i=0

qn−iCr+iDs+i =

{

Cr+n+1Ds+n − qn+1Cr−1Ds if n is even,

Cr+nDs+n+1 − qn+1Cr−1Ds if n is odd.

Proof. The proof is similar to that of Theorem 2.1, except that it alternates between the two
recurrences (2.1) and (2.2). �

Example 2.3. For p = q = 1, we obtain the pair of numbers Uk and Vk. Let r = s = 0.
When Uk = Vk = Fk, then, since F−1 = 1, Theorems 2.1 and 2.2 yield the well-known formula
(see, for example, [11, 13])

n
∑

i=0

F 2
i = FnFn+1.

In a similar manner, setting Uk = Vk = Lk, we obtain, along with L−1 = −1,

n
∑

i=0

L2
i = LnLn+1 + 2.
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If we set Uk = Fk and Vk = Lk, while Theorem 2.1 gives

n
∑

i=0

FiLi =

{

FnLn+1 if n is even,

Fn+1Ln if n is odd.

Theorem 2.2 produces a slightly different formula

n
∑

i=0

FiLi =

{

Fn+1Ln − 2 if n is even,

FnLn+1 − 2 if n is odd.

Comparing these two results, we conclude that

FnLn+1 − Fn+1Ln =

{

−2 if n is even,

2 if n is odd.

This suggests a more general result can be derived from the summation formulas stated in the
two main theorems. 2

Corollary 2.4. For any integers r and s,

Cr+nDs+n+1 − Cr+n+1Ds+n = (−q)n+1
(

Cr−1Ds − CrDs−1

)

.

Proof. We could obtain the result by comparing the two formulas stated in Theorems 2.1 and
2.2. Alternatively, we note that

CiDj+1 − Ci+1Dj = Ci

(

pDj + qDj−1

)

−
(

pCi + qCi−1

)

Dj

= −q
(

Ci−1Dj − CiDj−1

)

,

a repeated application of which yields the result stated in the corollary. �

The d’Ocagne’s identity

FnFm+1 − Fn+1Fm = (−1)n+1Fm−n

is famous for its connection to a geometric puzzle (see, for example, [3]) that is often credited
to Lewis Carroll, whose real name was Charles Lutwidge Dodgson, the author of Alice’s

Adventures in Wonderland. Our next result, which is obtained by setting r = 0 and s = m−n,
can be regarded as the d’Ocagne’s identity for any two generalized second-order recurrences.

Corollary 2.5. For any integers m and n,

CnDm+1 − Cn+1Dm = (−q)n+1
(

C−1Dm−n − C0Dm−n−1

)

.

The counterparts of Fibonacci and Lucas numbers within the family of generalized second-
order recurrences are

X0 = 0, X1 = 1, Xk+2 = pXk+1 + qXk,
Y0 = 2, Y1 = p, Yk+2 = pYk+1 + qYk,

where p2 + 4q 6= 0. The Binet’s formulas for them are precisely what we expect from any
sequences similar to Fibonacci and Lucas numbers:

Xn =
αn − βn

α− β
, and Yn = αn + βn,

where α =
p+

√
p2+4q

2
, and β =

p−
√

p2+4q

2
. The next result can be found in, among others,

[4, 10].
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Theorem 2.6. For any integer n,

X−n = (−1)n−1 Xn

qn
,

Y−n = (−1)n
Yn

qn
,

qXn−1 +Xn+1 = Yn,

qYn−1 + Yn+1 = (p2 + 4q)Xn.

Proof. Since αβ = −q, we see that

α−n ± β−n =
(−1)n(βn ± αn)

qn
,

Hence, X−n = (−1)n−1Xn/q
n, and Y−n = (−1)nYn/q

n. We also find

q(αn−1 ± βn−1) + (αn+1 ± βn+1) = −αβ(αn−1 ± βn−1) + (αn+1 ± βn+1)

= (α− β)(αn ∓ βn).

Therefore, qXn−1 +Xn+1 = Yn, and qYn−1 + Yn+1 = (α− β)2Xn = (p2 + 4q)Xn. �

Using Corollary 2.5, we obtain a collection of interesting identities. See [6] for other related
results.

Corollary 2.7. The following identities hold for any integers m and n:

XnXm+1 −Xn+1Xm = −(−q)nXm−n, (2.3)

YnYm+1 − Yn+1Ym = (p2 + 4q)(−q)nXm−n, (2.4)

XnYm+1 −Xn+1Ym = −(−q)nYm−n, (2.5)

YnCm = Cm+n + (−q)nCm−n, (2.6)

(p2 + 4q)XnCm =
(

Cm+n+1 + qCm+n−1

)

− (−q)n
(

Cm−n+1 + qCm−n−1

)

, (2.7)

YnXm = Xm+n + (−q)nXm−n, (2.8)

YnYm = Ym+n + (−q)nYm−n, (2.9)

(p2 + 4q)XnXm = Ym+n − (−q)nYm−n. (2.10)

Proof. By letting Ck = Dk = Xk in Corollary 2.5, together with X−1 = 1

q
, and X0 = 0, we

obtain the d’Ocagne’s identity (2.3). Similarly, by setting Ck = Dk = Yk, and recall that
Y−1 = −p

q
, and Y0 = 2, we find

YnYm+1 − Yn+1Ym = (−q)n+1(Y−1Ym−n − Y0Ym−n−1

= (−q)n+1
(

− p
q
Ym−n − 2Ym−n−1

)

= (−q)n
(

pYm−n + 2qYm−n−1

)

= (−q)n
[

(Ym−n+1 − qYm−n−1) + 2qYm−n−1

]

= (−q)n
(

Ym−n+1 + qYm−n−1

)

= (p2 + 4q)(−q)nXm−n.

This proves (2.4). Letting Ck = Xk and Dk = Yk in Corollary 2.5 yields (2.5).
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The product formula for Yk and Ck in (2.6) can be derived as follows. We start with the
following special case of Corollary 2.5:

XnCm+1 −Xn+1Cm = −(−q)nCm−n. (2.11)

By replacing n with −n, this becomes

X−nCm+1 −X−n+1Cm = −
(

−1

q

)n

Cm+n.

Since X−n = (−1)n−1 Xn

qn
, this reduces to

XnCm+1 + qXn−1Cm = Cm+n. (2.12)

We note that the special case of FnUm+1 +Fn−1Um = Um+n also appeared in [2]. Subtracting
(2.11) from (2.12), and applying the identity qXn−1 +Xn+1 = Yn, yields the desired result.

The product formula for Xk and Ck in (2.7) is more complicated. From Corollary 2.5, we
also find

YnCm+1 − Yn+1Cm = (−q)n+1
(

− p
q
Cm−n − 2Cm−n−1

)

= (−q)n
(

pCm−n + 2qCm−n−1

)

= (−q)n
[

(Cm−n+1 − qCm−n−1) + 2qCm−n−1

]

= (−q)n
(

Cm−n+1 + qCm−n−1

)

.

Replacing n with −n yields

Y−nCm+1 − Y−n+1Cm =

(

−1

q

)n
(

Cm+n+1 + qCm+n−1

)

.

Since Y−n = (−1)n Yn

qn
, the last equation becomes

YnCm+1 + qYn−1Cm = Cm+n+1 + qCm+n−1.

Subtraction yields

(

qYn−1 + Yn+1

)

Cm =
(

Cm+n+1 + qCm+n−1

)

− (−q)n
(

Cm−n+1 + qCm−n−1

)

.

The result follows from the identity Yn−1 + Yn+1 = (p2 + 4q)Xn.
By letting Cm be Xm and Ym, respectively, in (2.6), we obtain the product formulas (2.8)

and (2.9). The product formula for XnXm looks slightly different in (2.10). It is derived from
(2.7) by letting Cm = Xm. �

3. Special Cases

To be able to use Corollaries 2.5 and 2.7, it is important to remember that the recurrences
must all share the same coefficients p and q. When p = q = 1, we have Xk = Fk, and Yk = Lk.
Corollary 2.7 becomes the following.
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Corollary 3.1. The following identities hold for any integers m and n:

FnFm+1 − Fn+1Fm = −(−1)nFm−n,

LnLm+1 − Ln+1Lm = 5(−1)nFm−n,

FnLm+1 − Fn+1Lm = −(−1)nLm−n,

LnUm = Um+n + (−1)nUm−n,

5FnUm =
(

Um+n+1 + Um+n−1

)

− (−1)n
(

Um−n+1 + Um−n−1

)

,

LnFm = Fm+n + (−1)nFm−n,

LnLm = Lm+n + (−1)nLm−n,

5FnFm = Lm+n − (−1)nLm−n.

For p = 2, and q = 1, together with the initial values X0 = 0, X1 = 1, Y0 = Y1 = 2, we
obtain the Pell and Pell-Lucas numbers Pn and Qn, respectively (see Section 1).

Corollary 3.2. The following identities hold for any integers m and n, and for any sequence

Ak that satisfies the recurrence relation Ak+2 = 2Ak+1 +Ak:

PnPm+1 − Pn+1Pm = −(−1)nPm−n,

QnQm+1 −Qn+1Qm = 8(−1)nPm−n,

PnQm+1 − Pn+1Qm = −(−1)nQm−n,

QnAm = Am+n + (−1)nAm−n,

8PnAm =
(

Am+n+1 +Am+n−1

)

− (−1)n
(

Am−n+1 +Am−n−1

)

,

QnPm = Pm+n + (−1)nPm−n,

QnQm = Qm+n + (−1)nQm−n,

8PnPm = Qm+n − (−1)nQm−n.

For the Jacobsthal and Jacobsthal-Lucas numbers Jk and Kk, we need p = 1, and q = 2,
along with the initial values X0 = 0, X1 = 1, Y0 = 2, and Y1 = 1 (see Section 1).

Corollary 3.3. The following identities hold for any integers m and n, and for any sequence

Bk that satisfies the recurrence relation Bk+2 = Bk+1 + 2Bk:

JnJm+1 − Jn+1Jm = −(−2)nJm−n,

KnKm+1 −Kn+1Km = 9(−2)nJm−n,

JnKm+1 − Jn+1Km = −(−2)nKm−n,

KnBm = Bm+n + (−2)nBm−n,

9JnBm =
(

Bm+n+1 + 2Bm+n−1

)

− (−2)n
(

Bm−n+1 + 2Bm−n−1

)

,

KnJm = Jm+n + (−2)nJm−n,

KnKm = Km+n + (−2)nKm−n,

9JnJm = Km+n − (−2)nKm−n.
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