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POWERS AND BINOMIAL COEFFICIENTS

TAKAO KOMATSU

Abstract. We investigate several generalized Fibonacci identities including binomial coeffi-
cients by using the method of ordinary power series generating functions. We also discuss some
identities yielding from Tribonacci, Tetranacci numbers, and even from general Fibonacci s-
step numbers.

1. Introduction

Consider the sequence {un}, satisfying the three-term recurrence relation:

un = aun−1 + bun−2 (n ≥ 2), u0 = 0, u1 = 1 , (1.1)

where a and b are any nonzero integers with a2 + 4b > 0. If a = b = 1, then un = Fn is
the nth Fibonacci number. In [1] and [2] linear recurrence sequences linked to the elements
of Pascal triangle, continued fractions expansions of the ratios, and bivariate polynomials are
investigated about the sequence {un}. For example, the ratio of the consecutive terms of un
has the following non-regular continued fraction expansion:

un
un−1

= a+
b

a+ ... +
b

a+
b

u2/u1

= a+
b

a+ · · ·+
b

a
︸ ︷︷ ︸

n−2

.

It is known and is easy to prove by induction that

un =
Ψn − Ψ̄n

√
a2 + 4b

(n ≥ 0) , (1.2)

where

Ψ =
a+

√
a2 + 4b

2
= a+

b

a+

b

a+ · · ·
and

Ψ̄ =
a−

√
a2 + 4b

2
= − b

Ψ
,

satisfying Ψ + Ψ̄ = a, ΨΨ̄ = −b, Ψ− Ψ̄ =
√
a2 + 4b and Ψn = Ψun + bun−1 (n ≥ 1).

In addition, in [1] and [2], by using the method of ordinary power series generating functions,
some new identities for un are obtained, including

n∑

k=0

(
n

k

)(
Ψ

b

)k

uk =
Ψ

b

(
aΨ

b
+ 2

)n−1

(n ≥ 1)
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and
n∑

k=0

(
n

k

)(
Ψ̄

b

)k

uk =
Ψ̄

b

(
aΨ̄

b
+ 2

)n−1

(n ≥ 1) .

Such identities are generalizations of those for Fibonacci numbers Fn in [5].
In this paper, we investigate several generalized Fibonacci identities including binomial

coefficients by using the method of ordinary power series generating functions. We also discuss
some identities yielding from Tribonacci, Tetranacci numbers, and even from general Fibonacci
s-step numbers.

2. Ordinary Power Series Generating Functions

In this section, we show some new generalized identities by using the method of the ordinary
power series generating functions. Let {ak} and {bk} be sequences with the property that ak
is the finite difference of bk, that is, ak = ∆bk := bk+1 − bk, for k ≥ 0. Let gn =

∑n
k=0

(
n
k

)
ak,

and hn =
∑n

k=0

(
n
k

)
bk. In [5] Spivey derives expressions for gn in terms of hn and for hn in

terms of gn. According to Spivey [5], the ordinary power series generating function U(z) of gn
is the generating function of the infinite sum

∑
∞

n=0 gnz
n. By applying his method, we [1, 2]

obtained the following result.

Lemma 2.1. Let {uk} be a generalize Fibonacci-type sequence defined by un = aun−1+ bun−2

(n ≥ 2) with u0 = 0 and u1 = 1, and c be any real number. Then, the ordinary power series
generating function U(z) of

∑

k=0

(
n
k

)
ckuk is given by

U(z) =
cz

1− (ac+ 2)z − (bc2 − ac− 1)z2
.

Namely,
∞∑

n=0

n∑

k=0

(
n

k

)

ckukz
n =

cz

1− (ac+ 2)z − (bc2 − ac− 1)z2
.

Proof. Let bk = ck+1uk+1 and ak = ckuk. Let hn =
∑n

k=0

(
n
k

)
bk and gn =

∑n
k=0

(
n
k

)
ak. We

have δbk = bk+1 − bk = ck+2uk+2 − ck+1uk+1 = (ac − 1)bk + bc2ak. Solving the system
of recurrences hn+1 − 2hn − c = (ac − 1)hn + bc2gn and gn+1 − gn = hn for gn, we get
gn+2 = (ac + 2)gn+1 + (bc2 − ac − 1)gn + c. Hence, the ordinary power series generating
function U(z) of gn satisfies the equation U(z) − (ac + 2)zU(z) − (bc2 − ac − 1)z2U(z) = cz.
Solving for U(z) completes the proof. �

By applying Lemma 2.1, we obtain the following theorems below.

Theorem 2.2. For n ≥ 0 we have

n∑

k=0

(
n

k

)

ckuk = rn,

where rn (n ≥ 0) satisfies the recurrence relation

rn = (ac+ 2)rn−1 + (bc2 − ac− 1)rn−2 (n ≥ 2) (2.1)

with r0 = 0 and r1 = c.
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Remark. Let ξ be the larger root of the quadratic equation x2−(ac+2)x−(bc2−ac−1) = 0,
and ξ̄ be its conjugate. Namely,

ξ =
ac+ 2 + c

√
a2 + 4b

2
and ξ̄ =

ac+ 2− c
√
a2 + 4b

2
.

Then rn (n ≥ 0) can be expressed as

rn =
1√

a2 + 4b
(ξn − ξ̄n).

If c = 2 and a = b = 1, then uk = Fk, and by F3n = 4F3n−3 + F3n−6 (n ≥ 2) with
F0 = 0 = r0 and F3 = 2 = r1 we have rn = F3n. Hence, we can get the known identity

n∑

k=0

(
n

k

)

2kFk = F3n.

Proof. We shall use the function

U(z) =
cz

1− (ac+ 2)z − (bc2 − ac− 1)z2

in Lemma 2.1 as it is. Let U(z) be expressed as the infinite sum:

U(z) = r0 + r1z + r2z
2 + r3z

3 + · · · (|z| < 1).

Since

U(z)− (ac+ 2)zU(z) − (bc2 − ac− 1)z2U(z)

= r0 +
(
r1 − (ac+ 2)r0 − c

)
z +

∞∑

n=2

(
rn − (ac+ 2)rn−1 − (bc2 − ac− 1)rn−2

)
zn

= 0,

we have r0 = 0, r1 = c and rn = (ac+ 2)rn−1 + (bc2 − ac− 1)rn−2 (n ≥ 2). �

Theorem 2.3. For n ≥ 0 we have
n∑

k=0

(
n

k

)

cn−kdkuk = λn,

where the numbers λn (n ≥ 0) satisfy the recurrence relation

λn = (ad+ 2c)λn−1 + (bd2 − acd− c2)λn−2 (n ≥ 2) (2.2)

with λ0 = 0 and λ1 = d.

Proof. Let c and z be replaced by d/c and cz, respectively in Lemma 2.1. We call this function
V (z) in place of U(z). Namely,

V (z) =
dz

1− (ad+ 2c) − (bd2 − acd− c2)z2
.

Assume that V (z) =
∑

n=0 λnz
n (|z| < 1). Since

V (z)− (ad+ 2c)zV (z) = (bd2 − acd− c2)z2V (z)− dz

= λ0 +
(
λ1 − (ad+ 2c)λ0 − d

)
z +

∞∑

n=2

(
λn − (ad+ 2c)λn−1 − (bd2 − acd− c2)λn−2

)
zn

= 0,
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we have λn − (ad + 2c)λn−1 − (bd2 − acd − c2)λn−2 = 0 (n ≥ 2) with λ0 = 0 and λ1 − (ad +
2c)λ0 − d = 0. Hence, we obtain the desired recurrence relation. �

Let the sequence {un} be as in Section 1. Let the sequence {vn} satisfy the same three-term
recurrence relation as (1.1) with different initial values:

vn = avn−1 + bvn−2 (n ≥ 2), v0 = 2, v1 = a. (2.3)

If a = b = 1, then vn = Ln is the nth Lucas number. Similarly to the identities about un, we
have vn = Ψn + Ψ̄n (n ≥ 0) and

√
a2 + 4bΨn = Ψvn + bvn−1 (n ≥ 1).

Corollary 2.4. For n ≥ 0 we have
n∑

k=0

(
n

k

)

(2b)n−kakuk =

{

(a2 + 4b)
n

2 un if n is even;

(a2 + 4b)
n−1

2 vn if n is odd.

Remark. If a = b = 1 in Corollary 2.4, then we get
n∑

k=0

(
n

k

)

2n−kFk =

{

5
n

2 Fn if n is even;

5
n−1

2 Ln if n is odd,

which also appeared in [3, Result 3.1].

There are relations between un and vn. The proof is done by induction and omitted.

Lemma 2.5. For any integer n we have

un+1 + bun−1 = vn,

vn+1 + bvn−1 = (a2 + 4b)un.

Proof of Corollary 2.4. Let c = 2b and d = 1 in Theorem 2.3. Then the number λn satisfies
the relation λn = (a2 + 4b)(λn−1 − bλn−2) (n ≥ 2). For n = 0, 1, 2, 3 we have λ0 = 0 = u0,
λ1 = a = v1, λ2 = a(a2 + 4b) = (a2 + 4b)u2 and λ3 = a(a2 + 4b)(a2 + 3b) = (a2 + 4b)v3. For
some n, we assume that

λ2n = (a2 + 4b)nu2n and λ2n+1 = (a2 + 4b)nv2n+1 .

Then by Lemma 2.5 we have

λ2n+2 = (a2 + 4b)(λ2n+1 − bλ2n)

= (a2 + 4b)
(
(a2 + 4b)nv2n+1 − b(a2 + 4b)nu2n

)

= (a2 + 4b)n+1(v2n+1 − bu2n)

= (a2 + 4b)n+1u2n+2

and

λ2n+3 = (a2 + 4b)(λ2n+2 − bλ2n+1)

= (a2 + 4b)
(
(a2 + 4b)n+1u2n+2 − b(a2 + 4b)nv2n+1

)

= (a2 + 4b)n+1
(
(a2 + 4b)u2n+2 − bv2n+1

)

= (a2 + 4b)n+1v2n+3.

By induction, the proof is done. �
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Example 2.6. Let c = −1, d = 4, a = 3 and b = −1 in Theorem 2.3. Then the numbers
λn satisfy the relation λn = 3λn−1 − λn−2 (n ≥ 2). Since u0 = 0 = F0, u1 = 1 = F2 and
F2k = 3F2k−2 − F2k−4 (k ≥ 2), we get uk = F2k. For n = 0, 1, 2, 3 we have λ0 = 0 = F0,
λ1 = 4 = L3, λ2 = 40 = 5F6 and λ3 = 420 = 5L = 9. For some n, we assume that

λ2n = 5nF6n and λ2n+1 = 5nL6n+3.

Then by Fm+3+Fm−3 = LmF3 = 2Lm ([4, p. 97. no. 56]) and Lm+3+Lm−3 = 5FmF3 = 10Fm

([4, p. 91, no. 85])

λ2n+2 = 10λ2n+1 − 5λ2n

= 10 · 5nL6n+3 − 5 · 5nF6n

)

= 5n+1(2L6n+3 − F6n)

= 5n+1F6n+6

and

λ2n+3 = 10λ2n+2 − 5λ2n+1

= 10 · 5n+1F6n+6 − 5 · 5nL6n+3

)

= 5n+1(10F6n+6 − L6n+3)

= 5n+1L6n+9.

By induction, we obtain

n∑

k=0

(
n

k

)

(−1)n−k22kF2k =

{

5
n

2 F3n if n is even;

5
n−1

2 L3n if n is odd,

which also appears in [3].

Example 2.7. Let c = −1, d = 1, a = 3 and b = −1 in Theorem 2.3. Then the numbers
λn satisfy the relation λn = λn−1 + λn−2 (n ≥ 2) with λ0 = 0 and λ1 = 1. Thus, λn = Fn.
Together with uk = F2k we get the well-known identity

n∑

k=0

(
n

k

)

(−1)n−kF2k = Fn

([4, p. 237, no. 8]).

3. Tribonacci Numbers

Let F
(3)
n be Tribonacci numbers defined by F

(3)
n = F

(3)
n−1+F

(3)
n−2+F

(3)
n−3 (n ≥ 3) with F

(3)
0 = 0

and F
(3)
1 = F

(3)
2 = 1.

Theorem 3.1. The ordinary power series generating function T (z) of
∑n

k=0

(
n
k

)
ckF

(3)
k

is given
by

T (z) =
cz(1− z)

1− (c+ 3)z − (c2 − 2c− 3)z2 − (c3 − c2 + c+ 1)z3
.
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Proof. Let bk = ck+1F
(3)
k+1 and hn =

∑n
k=0

(
n
k

)
bk, gn =

∑n
k=0

(
n
k

)
bk−1 and fn =

∑n
k=0

(
n
k

)
bk−2.

We have ∆bk = ck+2F
(3)
k+2 − ck+1F

(3)
k+1 = (c − 1)bk + c2bk−1 + c3bk−2. Solving the system

of recurrences hn+1 − 2hn = (c − 1)hn + c2gn + c3fn and gn+1 − gn = hn for gn, we obtain
gn+2 = (c+2)gn+1+(c2−c−1)gn+c3fn. By fn+1−fn = gn, we have fn+3 = (c+3)fn+2+(c2−
2c−3)fn+1+(c3−c2+c+1)fn. Thus, the ordinary power series generating function F (z) of fn
satisfies the equation F (z)− (c+3)zF (z)− (c2−2c−3)z2F (z)− (c3− c2+ c+1)z3F (z) = cz2.

Solving for F (z), the ordinary power series generating function F (z) of
∑n

k=1

(
n
k

)
ck−1F

(3)
k−1 is

given by

F (z) =
cz2

1− (c+ 3)z − (c2 − 2c− 3)z2 − (c3 − c2 + c+ 1)z3
.

Hence, the ordinary power series generating function T (z) = F (z)(1− z)/z of
∑n

k=0

(
n
k

)
ckF

(3)
k

is given by

T (z) =
cz(1− z)

1− (c+ 3)z − (c2 − 2c− 3)z2 − (c3 − c2 + c+ 1)z3
.

�

By applying Theorem 3.1, we get the following two theorems.

Theorem 3.2. For n ≥ 0 we have
n∑

k=0

(
n

k

)

ckF
(3)
k = tn,

where the numbers tn satisfy the recurrence relation

tn = (c+ 3)tn−1 + (c2 − 2c− 3)tn−2 + (c3 − c2 + c+ 1)tn−3 (n ≥ 3)

with t0 = 0, t1 = c and t2 = c2 + 2c.

Proof. We use the function T (z) in Theorem 3.1 as it is. Let T (z) =
∑

∞

n=0 tnz
n (|z| < 1).

Then

T (z)− (c+ 3)zT (z) − (c2 − 2c− 3)z2T (z)− (c3 − c2 + c+ 1)z3T (z)− cz(1− z)

= t0 +
(
t1 − (c+ 3)t0 − c

)
z +

(
t2 − (c+ 3)t1 − (c2 − 2c− 3)t0 + c

)
z2

+

∞∑

n=3

(
tn − (c+ 3)tn−1 − (c2 − 2c− 3)tn−2 − (c3 − c2 + c+ 1)tn−3

)
zn

= 0.

Hence, t0 = 0, t1 − (c + 3)t0 − c = 0, t2 − (c + 3)t1 − (c2 − 2c − 3)t0 + c = 0 and tn − (c +
3)tn−1 − (c2 − 2c− 3)tn−2 − (c3 − c2 + c+ 1)tn−3 = 0 (n ≥ 3), yielding

tn = (c+ 3)tn−1 − (c2 − 2c− 3)tn−2 − (c3 − c2 + c+ 1)tn−3 (n ≥ 3)

with t0 = 0, t1 = c, and t2 = c2 + 2c. �

Theorem 3.3. For n ≥ 0 we have
n∑

k=0

(
n

k

)

cn−kdkF
(3)
k = sn,

where the numbers sn satisfy the recurrence relation

sn = (d+ 3c)sn−1 + (d2 − 2cd − 3c2)sn−2 + (d3 − cd2 + c2d+ c3)sn−3 (n ≥ 3)
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with s0 = 0, s1 = d and s2 = d(d+ 2c).

Proof. Replace c and z by c−1d and cz, respectively in the function T (z). Then

T (z) =
dz(1− cz)

1− (d+ 3c)z − (d2 − 2cd− 3c2)z2 − (d3 − cd2 + c2d+ c3)z3
.

Let T (z) =
∑

∞

n=0 snz
n (|z| < 1). Since

T (z)− (d+ 3c)zT (z) − (d2 − 2cd− 3c2)z2T (z)− (d3 − cd2 + c2d+ c3)z3T (z)− dz(1 − cz)

= s0 +
(
s1 − (d+ 3c)s0 − d

)
z +

(
s2 − (d+ 3c)s1 − (d2 − 2cd − 3c2)s0 + cd

)
z2

+

∞∑

n=3

(
sn − (d+ 3c)sn−1 − (d2 − 2cd− 3c2)sn−2 − (d3 − cd2 + c2d+ c3)sn−3

)
zn

= 0 ,

we have s0 = 0, s1 − (d + 3c)s0 − d = 0, s2 − (d + 3c)s1 − (d2 − 2cd − 3c2)s0 + cd = 0 and
sn − (d+ 3c)sn−1 − (d2 − 2cd − 3c2)sn−2 − (d3 − cd2 + c2d+ c3)sn−3 = 0 (n ≥ 3). �

4. Fibonacci s-Step Numbers

In general, for s ≥ 2 let F
(s)
n be Fibonacci s-step numbers defined by F

(s)
n = F

(s)
n−1 +F

(s)
n−2 +

· · ·+ F
(s)
n−s (n ≥ s) with F

(s)
0 = 0, F

(s)
1 = F

(s)
2 = 1, F

(s)
3 = 2, . . ., F

(s)
s−1 = 2s−3.

Theorem 4.1. The ordinary power series generating function Fs(z) of
∑n

k=0

(
n
k

)
ckF

(s)
k is

given by

Fs(z) =
cz(1− z)s−2

1−∑s
k=1

(
∑k−1

j=0(−1)j
(
s−k+j

j

)
ck−j − (−1)k

(
s
k

))

zk
.

The proof is similar in nature to that of Theorem 3.1 and details are available upon request.

Example 4.2. Set s = 4 in Theorem 4.1. F
(4)
n are called Tetranacci numbers, or Fibonacci

4-step numbers, defined by F
(4)
n = F

(4)
n−1 + F

(4)
n−2 + F

(4)
n−3 + F

(4)
n−4 (n ≥ 4) with F

(4)
0 = 0,

F
(4)
1 = F

(4)
2 = 1 and F

(4)
3 = 2. The ordinary power series generating function F4(z) of

∑n
k=0

(
n
k

)
ckF

(4)
k

is given by

F4(z) =
cz(1 − z)2

1− (c+ 4)z − (c2 − 3c− 6)z2 − (c3 − 2c2 + 3c+ 4)z3 − (c4 − c3 + c2 − c− 1)z4
.

By applying Theorem 4.1 we obtain the following two theorems.

Theorem 4.3. For n ≥ 0 we have
n∑

k=0

(
n

k

)

ckF
(s)
k = ρn ,

where the numbers ρn satisfy the recurrence relation

ρn =

s∑

k=1





k−1∑

j=0

(−1)j
(
s− k + j

j

)

ck−j − (−1)k
(
s

k

)


 ρn−k (n ≥ s)
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with ρ0 = 0 and

ρn =
1

4

(
(2c+ 1)n + 2nc− 1

)
(n = 1, 2, . . . , s − 1).

Theorem 4.4. For n ≥ 0 we have

n∑

k=0

(
n

k

)

cn−kdkF
(s)
k = µn,

where the numbers µn satisfy the recurrence relation

µn =

s∑

k=1





k−1∑

j=0

(−1)j
(
s− k + j

j

)

dk−jcj − (−1)k
(
s

k

)

ck



µn−k (n ≥ s)

with µ0 = 0 and

µn =
1

4

(
(c+ 2d)n + 2ncn−1d− cn

)
(n = 1, 2, . . . , s− 1). (4.1)

Proof of Theorem 4.4. We shall prove Theorem 4.4. Theorem 4.3 can be similarly proven.
Replace c and z by c−1d and cz, respectively in the function Fs(z). We call the function G(z)
in place of Fs(z); Namely,

G(z) =
dz(1 − cz)s−2

1−∑s
k=1 ξkz

k
,

where

ξk =

k−1∑

j=0

(−1)j
(
s− k + j

j

)

dk−jcj − (−1)k
(
s

k

)

ck.

Let G(z) =
∑

∞

n=0 µnz
n (|z| < 1). Since

(

1−
s∑

k=1

ξkz
k

)

G(z) − dz(1 − cz)s−2 = 0,

we have µ0 = 0,

µn −
n∑

k=1

ξkµn−k + (−1)n
(
s− 2

n− 1

)

dcn−1 = 0 (n = 1, 2, . . . , s− 1)

and

µn −
s∑

k=1

ξkµs−k = 0 (n ≥ s).
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We shall prove (4.1) by induction. It is clear that µ1 = d. Assume that (4.1) holds for µ1, µ2,
. . ., µn−1. Then

µn =
n∑

k=1

ξkµn−k − (−1)n
(
s− 2

n− 1

)

dcn−1

=
1

4

(n−1∑

k=1

d(c+ d)k−1
(
(c+ d)n−k − cn−k + 2(n − k)dcn−k−1

)

+ 4(−1)n−1 (−1)n−1n!

(n− 1)!
dcn−1

)

=
1

4

(

(c+ 2d)n − (c+ 2d)(c + d)n−1 − c(c+ d)n−1 + cn

+ 2nd
(
(c+ d)n−1 − cn−1

)
+ 2c(c + d)n−1 − 2cn − 2(n − 1)d(c + d)n−1

)

=
1

4

(
(c+ 2d)n − cn + 2ndcn−1

)
.

This completes the proof of Theorem 4.4. �

By setting s = 4 in Theorem 4.3 and Theorem 4.4, respectively, we have the following results

about Tetranacci numbers F
(4)
k

.

Example 4.5. For n ≥ 0 we have
n∑

k=0

(
n

k

)

ckF
(4)
k = tn,

where the numbers tn satisfy the recurrence relation

tn = (c+ 4)tn−1 + (c2 − 3c− 6)tn−2 + (c3 − 2c2 + 3c+ 4)tn−3

+ (c4 − c3 + c2 − c− 1)tn−4 (n ≥ 4)

with t0 = 0, t1 = c, t2 = c(c+ 2) and t3 = c(2c2 + 3c+ 3).

Example 4.6. For n ≥ 0 we have
n∑

k=0

(
n

k

)

cn−kdkF
(4)
k

= sn,

where the numbers sn satisfy the recurrence relation

sn = (d+ 4c)sn−1 + (d2 − 3cd− 6c2)sn−2 + (d3 − 2cd2 + 3c2d+ 4c3)sn−3

+ (d4 − cd3 + c2d2 − c3d− c4)sn−4 (n ≥ 4)

with s0 = 0, s1 = d, s2 = d(d + 2c) and s3 = d(2d2 + 3cd+ 3c2).

In the method of ordinary generating functions, an integer n for
(
n
k

)
is restricted to be

nonnegative. However, identities mentioned in previous sections hold for negative n too.
Notice that for n = −r < 0 (−r

k

)

= (−1)k
(
r + k − 1

k

)

.
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For example, consider the identity in Theorem 2.3. Notice that for any integer n

λn =
1√

a2 + 4b
(βn − β̄n),

where

β =
(ad+ 2c) + d

√
a2 + 4b

2
and β̄ =

(ad+ 2c)− d
√
a2 + 4b

2
.

Since dΨ+ c = β, we have for any integer n

∞∑

k=0

(
n

k

)

cn−kdkΨk = cn
∞∑

k=0

(
n

k

)(
dΨ

c

)k

= cn
(

1 +
dΨ

c

)n

= (dΨ+ c)n = βn.

Similarly, by dΨ̄ + c = β̄, we have

∞∑

k=0

(
n

k

)

cn−kdkΨ̄k = β̄n.

Thus,
∞∑

k=0

(
n

k

)

cn−kdk(Ψk − Ψ̄k) = βn − β̄n.

Dividing both sides by
√
a2 + 4b, we obtain the following result, which is a generalization of

Theorem 2.3.

Theorem 4.7. For any integer n,

∞∑

k=0

(
n

k

)

cn−kdkuk = λn,

where the numbers λn (n ≥ 0) are defined in Theorem 2.3.

5. Future Research Problems

It would be interesting to investigate the ordinary power series generating functions about

generalized s-step Fibonacci numbers F̂
(s)
n , satisfying the recurrence relation F̂

(s)
n = a1F̂

(s)
n−1 +

a2F̂
(s)
n−2 + · · ·+ asF̂

(s)
n−s.
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