SOME GENERALIZED FIBONACCI IDENTITIES INCLUDING
POWERS AND BINOMIAL COEFFICIENTS

TAKAO KOMATSU

ABSTRACT. We investigate several generalized Fibonacci identities including binomial coeffi-
cients by using the method of ordinary power series generating functions. We also discuss some
identities yielding from Tribonacci, Tetranacci numbers, and even from general Fibonacci s-
step numbers.

1. INTRODUCTION

Consider the sequence {u,,}, satisfying the three-term recurrence relation:
Up = QUp—1 + bup—o (n>2), uy=0, wu3 =1, (1.1)

where a and b are any nonzero integers with a? +4b > 0. If a = b = 1, then u, = F), is
the nth Fibonacci number. In [1] and [2] linear recurrence sequences linked to the elements
of Pascal triangle, continued fractions expansions of the ratios, and bivariate polynomials are
investigated about the sequence {u,}. For example, the ratio of the consecutive terms of u,,
has the following non-regular continued fraction expansion:

Uy, b b b
=a-+ =a+ — — .
Up—1 a+,"+ b a+t+---+a
b n—2
a+
uz/ul
It is known and is easy to prove by induction that
\I,n_\Ijn
Uy = ——== (n>0), 1.2
" Varn =Y 2
where
a++va®+4b b b
UV=— """  "—g+=- =
2 at+a+---
and
- a—+Va2+4b b
A

satisfying U + V¥ = a, V0¥ = —b, ¥ — ¥ = /a2 + 4b and ¥" = Vu,, + bu,_1 (n > 1).
In addition, in [1] and [2], by using the method of ordinary power series generating functions,
some new identities for u, are obtained, including
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and

B0 () e

Such identities are generalizations of those for Fibonacci numbers F,, in [5].

In this paper, we investigate several generalized Fibonacci identities including binomial
coefficients by using the method of ordinary power series generating functions. We also discuss
some identities yielding from Tribonacci, Tetranacci numbers, and even from general Fibonacci
s-step numbers.

2. ORDINARY POWER SERIES GENERATING FUNCTIONS

In this section, we show some new generalized identities by using the method of the ordinary
power series generating functions. Let {ax} and {b;} be sequences with the property that ay
is the finite difference of by, that is, ar, = Aby 1= byy1 — by, for £ > 0. Let g, = >, (2‘) ag,
and hy, = > }_, (Z) bi. In [5] Spivey derives expressions for g, in terms of h, and for h, in
terms of g,. According to Spivey [5], the ordinary power series generating function U(z) of gy
is the generating function of the infinite sum ) ° ; g,2". By applying his method, we [1, 2]
obtained the following result.

Lemma 2.1. Let {uy} be a generalize Fibonacci-type sequence defined by u, = auy—1 + buy—o
(n > 2) with ug = 0 and u; = 1, and ¢ be any real number. Then, the ordinary power series
generating function U(z) of > ,_o (7) Fuy, is given by

B cz

1—(ac+2)z — (be2 —ac—1)22"

U(z)

Namely,

f:f: Y oy cz
k M T T = (ac+2)z — (b —ac—1)22

n=0 k=0

Proof. Let b, = cfluyp iy and aj, = cFuy. Let hy, = Y7, (Z)bk and g, = > p_g (Z)ak. We
have by = bpr1 — by = T 2upyo — FHlupyy = (ac — Dby, + bc?ay.  Solving the system
of recurrences hyy1 — 2h, — ¢ = (ac — 1)h, + bc?g,, and Jntl — gn = hy for g,, we get
Gnio = (ac+ 2)gni1 + (bc> — ac — 1)g, + c¢. Hence, the ordinary power series generating
function U(z) of g, satisfies the equation U(z) — (ac + 2)2U(2) — (bc? — ac — 1)22U(2) = cz.
Solving for U(z) completes the proof. O

By applying Lemma 2.1, we obtain the following theorems below.
Theorem 2.2. For n > 0 we have

Zn: <Z> ckuk =Tp,

k=0
where r, (n > 0) satisfies the recurrence relation
= (ac+2)rp_1 + (b —ac— Drp_s  (n>2) (2.1)

with rg = 0 and r = c.
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Remark. Let ¢ be the larger root of the quadratic equation 22— (ac+2)x — (bc? —ac—1) =0,
and £ be its conjugate. Namely,

- ac+2 4 cva? +4b and £ = ac+2 —cva? 4 4b
B 2 B 2 '
Then 7, (n > 0) can be expressed as
1 n cn
Ty = ——(&" = &").
a? + 4b € =&

If c=2and a =0b =1, then up = Fy, and by F3, = 4F3,_3 + F5,_¢ (n > 2) with
Fy=0=1r9 and F3 =2 =r; we have r, = F3,,. Hence, we can get the known identity

> <"> W, = Fy,.
k

k=0

Proof. We shall use the function

[I(Z) Ccz

T 1 (ac+2)z — (bc? — ac — 1)22

in Lemma 2.1 as it is. Let U(z) be expressed as the infinite sum:

U(z) =rg+r12+71922 + 1325 + -+ (|2 < 1).
Since
U(z) — (ac+2)2U(z) — (bc? — ac — 1)2°U(z)
=719+ (r1 — (ac+2)rog — ¢)z + Z(rn — (ac+2)rp—1 — (bc* — ac — 1)ry_o) 2"
n=2
=0,
we have rg = 0, 71 = c and r,, = (ac + 2)r,_1 + (bc? —ac — 1)ry,_o (n > 2). O

Theorem 2.3. For n > 0 we have
Z <Z> MR dFu, = A,
k=0
where the numbers A, (n > 0) satisfy the recurrence relation
An = (ad +2¢) N1 + (bd* — acd — ) Ao (n > 2) (2.2)
with Ag = 0 and \; = d.
Proof. Let ¢ and z be replaced by d/c and cz, respectively in Lemma 2.1. We call this function
V(z) in place of U(z). Namely,
dz

T 1- (ad + 2¢) — (bd? — acd — ¢?)22
Assume that V(z) =), A2" (|2] < 1). Since

V(2) — (ad +2¢)2V (2) = (bd*> — acd — *)2*V (2) — dz

V(z)

=X+ (M = (ad+20)xo — d)z + > (An — (ad + 20)An_1 — (bd® — acd — ¢*)Ap_2) 2"
n=2

=0,
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we have \, — (ad + 2¢)\,_1 — (bd? — acd — ¢®)Ap_2 = 0 (n > 2) with \g = 0 and \; — (ad +
2¢)\g — d = 0. Hence, we obtain the desired recurrence relation. O

Let the sequence {u,, } be as in Section 1. Let the sequence {v,,} satisfy the same three-term
recurrence relation as (1.1) with different initial values:

Up = aUp—1 +bup_o (R >2), v9=2, v;=a. (2.3)

Ifa=0=1, thel} VUp, = Ly is the nth Lucas number. Similarly to the identities about w,, we
have v, = ¥" + U™ (n > 0) and Va? + 4bV" = You, + bv,—1 (n > 1).

Corollary 2.4. For n > 0 we have

- )3, ifn is even;
Z (:) (2b)"F oy, = (a® + )2u z.fn z.s even;
k=0 (a® + 4b) T v, if n s odd.

Remark. If a = b =1 in Corollary 2.4, then we get

& 52 F, if n is even;
kzzo <Z> 2" Ee = {5”71nLn i 7 is odd,7
which also appeared in [3, Result 3.1].
There are relations between u,, and v,. The proof is done by induction and omitted.
Lemma 2.5. For any integer n we have
Up+1 + bUp—1 = VUn,

Vpg1 + bop_1 = (a® + 4b)u,,

Proof of Corollary 2.4. Let ¢ = 2b and d = 1 in Theorem 2.3. Then the number \,, satisfies
the relation A\, = (a® + 4b)(An_1 — bAn_2) (n > 2). For n = 0,1,2,3 we have \g = 0 = ug,
A = a =1, Ay = a(a® + 4b) = (a® + 4b)ug and A3 = a(a® + 4b)(a® + 3b) = (a® + 4b)v3. For
some n, we assume that

Aon = (a? 4+ 4b)"ug, and  Agpy1 = (a® 4 4b)"vopy1 .
Then by Lemma 2.5 we have
(a® + 4b)()‘2n+1 — bAap)
= (a® + 4b)((a® + 4b)"van+1 — b(a® + 4b)"uay,)
= (a® + 4b)" " (v 41 — bugy)
= (a® + 4b)

a® +4b n+1UQn+2

Aopt2 =

and
Aonts = (a® 4 4b)(Aapt2 — bAant1)
(a + 4b)( a’ + 4b "+1u2n+2 — b(a + 4b)" v2n+1)
(a + 4b)" T ((a + 4b)ugp 12 — bv2n+1)
= (a® 4 4b)" g, 4 5.
By induction, the proof is done. O
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Example 2.6. Let c = —1, d = 4, a = 3 and b = —1 in Theorem 2.3. Then the numbers
An satisfy the relation Ay, = 3\p,—1 — Ap—2 (n > 2). Since ug = 0 = Fy, uy = 1 = Fy and
For, = 3Fo,_9 — For—y (k > 2), we get up = Fo,. Forn = 0,1,2,3 we have \g = 0 = Fp,
M =4= L3, Ay =40 =5Fg and A3 = 420 = 5L = 9. For some n, we assume that

Xop =5"Fg, and  Aopy1 = 5" Lenys.

Then by Frq3+Fr—3 = Ly F3 = 2L, ([4, p. 97. no. 56]) and Ly,4+3+ Ly,—3 = 5F,,, F5 = 10F,,
([4, p. 91, no. 85])

Aont2 = 10A2, 41 — SA2p
= 105" Lonys — 5 5" Fo)
= 5"t (2Lgns3 — Fon)
= 5" Fnte

and

A2n+3 = 10212 — SA2p41
=10 5" Fyy6 — 5 5" Lont3)
= 5" (10Fsn46 — Lon+3)

= 5" Lgnig.
By induction, we obtain
n n . .
n 52 F: if n is even;
Z <k> (_1)n—k22kF2k _ EBn f '
o 52 Lg, ifn is odd,
which also appears in [3].

Example 2.7. Let c = —1,d =1, a = 3 and b = —1 in Theorem 2.3. Then the numbers
An satisfy the relation Ay, = Ap—1 + Ap—2 (n > 2) with A\g = 0 and Ay = 1. Thus, A\, = F,.
Together with uy, = Fo, we get the well-known identity

En: (Z) (—1)"*Fy = F,

k=0
([4, p. 237, no. 8)).

3. TRIBONACCI NUMBERS
Let F*) be Tribonacci numbers defined by FY = F,E?’_)l +F£3_)2+F753_)3 (n > 3) with Fé3) =0
and F¥ = F® = 1.

Theorem 3.1. The ordinary power series generating function T'(z) of > _j_, (2‘) ckF,ig) 18 given
by

B cz(1—2)

T 1l—(c+3)z—(c2—2c—3)22 — (B -2 +c+1)z3

T(z)
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Proof. Let b, = ck+1F]£i)_)1 and hy =300 (1)bks gn = >peo (1)be—1 and fr. = >0 () br—s2.
We have Ab, = ck+2F]§i’_)2 — ck+1F]§i’_)l = (¢ — 1)by + cby_1 + c3by_2. Solving the system
of recurrences hpy1 — 2h, = (¢ — 1)hy + 29y + S fn and gni1 — gn = hy for g,, we obtain
In+2 = (C+2)gn+1 +(C2_C_ 1)gn+cgfn- By fn—i—l _fn = gn, W€ have fn+3 = (C+3)fn+2+(c2 -
2¢—3) fur1+ (2 —c2+c+1)f,. Thus, the ordinary power series generating function F'(z) of f,
satisfies the equation F'(z) — (c+3)2F (2) — (¢ —2c— 3)22F(2) — (¢* — > + ¢+ 1)23F(2) = cz2.
Solving for F(z), the ordinary power series generating function F(z) of Y p_; (Z) Ay 3 ,g?i)l is
given by

62’2

T 1 (c+3)z—(2—-20-3)2— (B—+ct 1)

Hence, the ordinary power series generating function T'(z) = F(2)(1 — 2)/z of > _, (7)c"F, ,gg)
is given by

F(z)

cz(l—2)

T(z) = .
(2) 1—(c+3)z—(c2—2c—3)z2 = (3= +c+1)z3

By applying Theorem 3.1, we get the following two theorems.
Theorem 3.2. For n > 0 we have

S (3)eH0 =,

k=0
where the numbers t,, satisfy the recurrence relation

tn = (c+3)tp—1 + (02 —2¢—3)tp—2+ (63 — e+ Dtp—z (n>3)
with tg =0, t1 = ¢ and ty = ¢ + 2¢.

Proof. We use the function T'(z) in Theorem 3.1 as it is. Let T'(z) = > o7 tn2"™ (|2] < 1).
Then

T(z) — (c43)2T(2) — (2 — 2¢ — 3)2°T(2) — (> — P + ¢+ 1)23T(2) — cz(1 — 2)
=to+ (t1 — (c+3)to — )z + (t2 — (c + 3)t1 — (* — 2¢ — 3)to + c) 2*

oo
+ Z(tn —(c+3tp1 — (> =2c—tpo— (- +c+ Dty—3)2"
n=3

= 0.

Hence, tg = 0, t1 — (c+3)tg —c =0, to — (c +3)t; — (c> —2¢ — 3)tg+c=0and t, — (c +
Ntn—1— (2 —2c—3)tp_2— (2 =+ c+ 1)t,_3 =0 (n > 3), yielding

tn=(c+3)tn1—(=2c=3)tyo— (= +c+ Dtz (n>3)
with tg =0, t; = ¢, and ty = ¢ + 2¢. O
Theorem 3.3. For n > 0 we have

— (7 n—k gk (3
Z<k>c dF,g):sn,

k=0
where the numbers s, satisfy the recurrence relation

$p = (d+3¢)sp_1 + (d* — 2cd — 3¢*)sp_o + (d* — cd® + Pd + P)s,_3  (n>3)
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with so =0, s1 =d and s = d(d + 2¢).
Proof. Replace c and z by ¢~!d and cz, respectively in the function T'(z). Then
B dz(1 — c2)
1—(d+3¢)z — (d? — 2cd — 3¢?)22 — (d® — cd? + 2d + 3)23
Let T(z) = > 02y sn2™ (|z| < 1). Since
T(2) — (d+3¢)2T(2) — (d* — 2cd — 3¢3)2°T(2) — (d* — cd® + Ad + ) 22T (2) — dz(1 — cz)
=50+ (51— (d+3c)so — d)z + (s2 — (d + 3¢)s1 — (d* — 2cd — 3¢?)sg + cd) 22

+ Z(sn — (d+3¢)sp—1 — (d> — 2¢d — 3c*)sp—2 — (d® — cd® + Pd + ¢*)s,_3) 2"
n=3

T(z)

)

we have sg = 0, s1 — (d + 3¢)sg —d = 0, s3 — (d + 3¢)s1 — (d* — 2cd — 3¢?)sg + ed = 0 and
Sp— (d+3¢)sp_1 — (d? — 2cd — 3¢?)sp_o — (d° — cd® + Pd + c3)sp_3 =0 (n > 3). O

4. FIBONACCI s-STEP NUMBERS

In general, for s > 2 let FT(LS) be Fibonacci s-step numbers defined by Ff(LS) = F,(L‘i)l + Ff(i)z +
o+ B (> ) with B =0, F® = F) =1, ¥ =2, .., F¥), = 2573,
Theorem 4.1. The ordinary power series generating function Fs(z) of > p_, (Z)ckF,gs) is
given by
cz(1 — z)572

Fy(z) = 5 .
1= 300 (SRS (A ) ek — (—k () )

The proof is similar in nature to that of Theorem 3.1 and details are available upon request.

Example 4.2. Set s = 4 in Theorem 4.1. FT(LA‘) are called Tetranacci numbers, or Fibonacci

4-step numbers, defined by F = F,£4_)1 + FT(L4_)2 + FT(L4_)3 + Fy(;l_)4 (n > 4) with Fé4) = 0,

F1(4) = F2(4) =1 and F§4) = 2. The ordinary power series generating function Fy(z) of

o (B) ckF,gA‘) is given by

Fa(z) = cz(1 — z)? .
I1—(c+4)z—(c2—=3c—6)22 = (63 —2c2+3c+4)z3 — (P —A+2—c—1)24

By applying Theorem 4.1 we obtain the following two theorems.
Theorem 4.3. For n > 0 we have

n n <
Z<k>ckF*5):p"’

k=0
where the numbers py, satisfy the recurrence relation

pn = Z %(-1)]’ <3 ok +j>ck_j — (-1)F <Z> pnk (0 =)

k=1 \j=0 J
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with pg = 0 and

pn==(2c+1)"+2nc—1) (n=1,2,...,5—1).

;-bl}—‘

Theorem 4.4. For n > 0 we have

n n\ ,_ .
2 (i) ert? =
k=0
where the numbers u, satisfy the recurrence relation
(3 k:+j ;o S
=30 (S0 (I e - o () e iz
k=1 \ j=0

with po = 0 and

((c+2d)" +2nc"td—c") (n=1,2,...,s—1). (4.1)

;-bl»—‘

M =

Proof of Theorem 4.4. We shall prove Theorem 4.4. Theorem 4.3 can be similarly proven.
Replace ¢ and z by ¢~ 'd and cz, respectively in the function Fy(z). We call the function G(z)
in place of Fy(z); Namely,

_dz(l—cz)¥?
G = 1= DI ERRIELE
where
= s—k+j s
R e L e
j=0

Let G(z) = 307 o 2™ (|2| < 1). Since

<1 — kaz ) —dz(1—¢2) 2 =0,

we have pg = 0,

. —2
—Z{kun_k+(—l)"<s )dc"_lzo n=1,2,...,s—1)
k=1

n—1
and

- was—k =0 (n=>s).
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We shall prove (4.1) by induction. It is clear that pq = d. Assume that (4.1) holds for uq, us,
vevy ftp—1- Then

o= 3 e (5o

k=1
n—1
— % <Z d(C + d)k—l ((c + d)n—k . cn—k + 2(71 _ k)dcn—k—l)
k=1
+ 4(—1)n_1((_$)fn_11)?!dcn—l>

= %<(C +2d)" — (c+2d)(c + d)n—l — (e + d)n—l o

+ 2nd((c + dnt — c"_l) +2¢c(c+d)" = 2¢" —2(n — 1)d(c + d)"_1>

= %((c +2d)" — " + 2ndc" ).

This completes the proof of Theorem 4.4. O
By setting s = 4 in Theorem 4.3 and Theorem 4.4, respectively, we have the following results

(4)

about Tetranacci numbers F} ™.
Example 4.5. For n > 0 we have

> (1) =

k=0
where the numbers t,, satisfy the recurrence relation

tn = (c+Dtp_1 + (> =3¢ — 6)ty_o + (¢ — 262 + 3¢ + 4)t,_3
+ (@ =+ —c—Dtyy (n>4)
with tg = 0, t1 = ¢, to = c(c + 2) and t3 = ¢(2¢% + 3¢ + 3).
Example 4.6. For n > 0 we have

n n\ A
Z <k>c kdkF,g ) = Sn,

k=0
where the numbers s, satisfy the recurrence relation
$p = (d44¢)sp_1 + (d* = 3ed — 6¢)s_o + (d° — 2¢d® + 3c2d + 4¢)s,_3
+(d —ed® + P - Ed—Msu_y  (n>4)
with sg =0, 51 = d, s2 = d(d + 2¢) and s3 = d(2d* + 3cd + 3c?).

In the method of ordinary generating functions, an integer n for (z) is restricted to be
nonnegative. However, identities mentioned in previous sections hold for negative n too.

Notice that forn = —r <0
- r+k—1
= (—=1)k )
Go)=o ()
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For example, consider the identity in Theorem 2.3. Notice that for any integer n

1 _
)\n - "—p" )
N A
where
5= (ad + 2¢) + dva® + 4b and = (ad + 2¢) — dva? + 4b
B 2 N 2 '

Since d¥ + ¢ = 8, we have for any integer n

2 (1) -2 () (%)

k=0 k=0

Il

o

3
7 N\

—

_l_
IS
Q‘e
N———
3

Similarly, by dV¥ + ¢ = 3, we have

Thus,
Z <Z> Cn_kdk(\I/k - \i,k) — /Bn - Bn

k=0
Dividing both sides by v/a? + 4b, we obtain the following result, which is a generalization of
Theorem 2.3.

Theorem 4.7. For any integer n,

Z (Z) M E Ay, = Ay,

k=0
where the numbers A, (n > 0) are defined in Theorem 2.3.

5. FUTURE RESEARCH PROBLEMS

It would be interesting to investigate the ordinary power series generating functions about

generalized s-step Fibonacci numbers Fr(ls), satisfying the recurrence relation 13’,({9) = alﬁ',(f_)l +

B, 4 4 a B
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