ANOTHER PROBABILISTIC PROOF OF A BINOMIAL IDENTITY
TOSHIO NAKATA

ABSTRACT. J. Peterson (2013) gave a simple and interesting proof of a binomial identity
using exponential random variables. In this note, we give another elementary and short proof
using uniformly distributed random variables.

Recently Peterson [2] gave a simple and interesting proof of the binomial identity
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which also appeared in equation (5.41) in [1]. Several properties of exponential random vari-
ables were effectively used in his proof. In this note, we give another elementary and short
proof using uniformly distributed random variables on [0, 1].
For n > 11let Uy, Us,...,U, be independent Unif(]0, 1]) random variables, where Unif(]0, 1])
denotes the uniform distribution on [0, 1]. For ¢ € [0,1] we then have

P( min {U;} >t) =P ﬁ{Ui>t} =(1-t" (2)
1<i<n i1
_ f: <Z> (—1)ktk. (3)
k=0

Although the last equality follows from the binomial theorem, we note that (3) can be also

directly verified by the inclusion-exclusion principle.
Now, let V' be a Unif([0,1]) random variable which is independent of {U;}_ ;. For § > 0 it

follows that
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Applying (2) and (3) to this probability yields two different expressions. Equation (2) provides
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where I'(-) and Beta(:,-) are standard gamma and beta functions, respectively. On the other
hand, equation (3) provides
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This completes the proof.

Remark. Letting Exp(A) be the exponential distribution with parameter A > 0, namely
the density is \e™** for = > 0, we suppose that Xi,..., X, are independent Exp(1) ran-
dom variables, and T is an Exp(f) random variable which is independent of X; for all
i = 1,...,n. Note that the probability in this note P (minlgign{Ui} > Vl/e) is equivalent
to P(max;<j<,{X;} < T) which was studied by Peterson [2], because the distribution of
—log(1 — U)/A is Exp(\), where U is a Unif(]0, 1]) random variable.
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