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Abstract. J. Peterson (2013) gave a simple and interesting proof of a binomial identity
using exponential random variables. In this note, we give another elementary and short proof
using uniformly distributed random variables.

Recently Peterson [2] gave a simple and interesting proof of the binomial identity
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which also appeared in equation (5.41) in [1]. Several properties of exponential random vari-
ables were effectively used in his proof. In this note, we give another elementary and short
proof using uniformly distributed random variables on [0, 1].

For n ≥ 1 let U1, U2, . . . , Un be independent Unif([0, 1]) random variables, where Unif([0, 1])
denotes the uniform distribution on [0, 1]. For t ∈ [0, 1] we then have
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Although the last equality follows from the binomial theorem, we note that (3) can be also
directly verified by the inclusion-exclusion principle.

Now, let V be a Unif([0, 1]) random variable which is independent of {Ui}
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Applying (2) and (3) to this probability yields two different expressions. Equation (2) provides
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where Γ(·) and Beta(·, ·) are standard gamma and beta functions, respectively. On the other
hand, equation (3) provides
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This completes the proof.
Remark. Letting Exp(λ) be the exponential distribution with parameter λ > 0, namely

the density is λe−λx for x > 0, we suppose that X1, . . . ,Xn are independent Exp(1) ran-
dom variables, and T is an Exp(θ) random variable which is independent of Xi for all

i = 1, . . . , n. Note that the probability in this note P
(

min1≤i≤n{Ui} > V 1/θ
)

is equivalent
to P(max1≤i≤n{Xi} < T ) which was studied by Peterson [2], because the distribution of
− log(1− U)/λ is Exp(λ), where U is a Unif([0, 1]) random variable.
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