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Abstract. Let Fn be the nth Fibonacci number. Let m,n be positive integers. Define a
sequence (G(k, n,m))k≥1 by G(1, n,m) = Fm

n , and G(k + 1, n,m) = FnG(k,n,m) for all k ≥ 1.

We show that F k+m−1
n | G(k, n,m) for all k,m, n ∈ N. Then we calculate G(k,n,m)

F
k+m−1
n

(mod Fn).

1. Introduction

The Fibonacci sequence is defined by the recurrence relation F1 = F2 = 1 and Fn =
Fn−1 + Fn−2 for n ≥ 3. These numbers are famous for possessing wonderful properties, see
[1, 6, 7, 16] for additional references and history. The Fibonacci Association was formed in
order to provide enthusiasts an opportunity to exchange ideas about Fibonacci numbers and
related topics. In this article, we would like to share an idea on the divisibility properties of
the sequence (G(k, n,m))k≥1 defined as follows: for each n,m ≥ 1, let

G(1, n,m) = Fm
n and let G(k + 1, n,m) = FnG(k,n,m) for all k ≥ 1.

For example, the first few terms of this sequence are Fm
n , F (nFm

n ), F (nF (nFm
n )), where we

write F (`) instead of F` for convenience. So (G(k, n,m))k≥2 (neglecting the term k = 1) is a
subsequence of Fibonacci numbers. Our work is motivated by the results in [10, 15]. Recall
that for integers d ≥ 2, k ≥ 0, and a ≥ 1 we say that dk exactly divides a and write dk ‖ a if
dk | a and dk+1 - a. Tangboonduangjit and Wiboonton [15] show that F k

n | G(k, n, 1) for all
n, k ∈ N. Then Panraksa, Tangboonduangjit, and Wiboonton [10] show that F k

n ‖ G(k, n, 1)

for all n ≥ 4, k ≥ 1. They [10] also calculate G(k,n,1)
F k
n

(mod Fn) for k = 2 and k = 3. In

this article, we extend their result [10, 15] by showing that F k+m−1
n | G(k, n,m) for every

k,m, n ∈ N. We also calculate G(k,n,m)

F k+m−1
n

(mod Fn) for all k ≥ 2 and m ≥ 1. The precise

statements are as follows.

Theorem 1.1. The following statements hold:

(i) F k+m−1
n | G(k, n,m) for every k,m, n ≥ 1.

(ii) Let k ≥ 2 and n ≥ 3. Then
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G(k, n,m)

F k+m−1
n

≡















































1, if 2 | k and 3 - n or if 2 - k, 3 - n, and 4 - n;

Fn−1, if 2 - k, 3 - n and, 4 | n;
(

Fn−3

2

)k−1
, if 2 - k, 3 | n, and m ≥ 2 or

if 2 | k, 3 | n and m = 1;

(−1)n
(

Fn−3

2

)k−1
, if 2 | k, 3 | n, and m ≥ 2 or

if 2 - k, 3 | n, and m = 1,

where the congruence is taken modulo Fn.

Substituting k = 2, 3 and m = 1 in Theorem 1.1, we obtain the results in [15]. With a bit
more work, we obtain F k+m−1

n ‖ G(k, n,m) for every k ≥ 2, n ≥ 4, and m ≥ 1, which also
extends the results in [10, 15]. Let us record it in the next Corollary.

Corollary 1.2. The following statements hold:

(i) F k+m−1
n ‖ G(k, n,m) for every k ≥ 2, n ≥ 4, m ≥ 1.

(ii) For n ≥ 3, G(2,n,1)
F 2
n

=
FnFn

F 2
n

≡

{

1 (mod Fn), if 3 - n;
1
2Fn−3 (mod Fn), if 3 | n.

(iii) For n ≥ 3, G(3,n,1)
F 3
n

=
F (nFnFn)

F 3
n

≡















1 (mod Fn), if 3 - n and 4 - n;

Fn−1 (mod Fn), if 3 - n and 4 | n;

(−1)n
(

Fn−3

2

)2
(mod Fn), if 3 | n.

To prove Theorem 1.1, we need a number of well-known identities listed in the next section.

2. Preliminaries and Lemmas

Let m, n, and r be positive integers. The following results are well-known and will be used
throughout this article :

gcd(Fm, Fn) = Fgcd(m,n). (2.1)

Fnr =

r
∑

j=1

(

r

j

)

F j
nF

r−j
n−1Fj . (2.2)

If m ≥ 3, then Fm | Fn if and only if m | n. (2.3)

Fn+1Fn−1 − F 2
n = (−1)n. (2.4)

F 2
n−1 ≡ F 2

n+1 ≡ (−1)n (mod Fn). (2.5)

Fm+n = Fm+1Fn + FmFn−1. (2.6)

If m ≡ n (mod 6), then Fm ≡ Fn (mod 4). (2.7)

For the reader’s convenience, let us give references for the above identities. The relation (2.1)
and (2.3) can be found in [7, p. 197-198], (2.4) is the Cassini’s identity [7, p. 74], (2.5) follows
from Cassini’s identity and the fact that Fn+1 ≡ Fn−1 (mod Fn). The identity (2.2) is an
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important tool in proving our theorem and can be found in several articles such as [2, 4, 5].
The identity (2.6) is proved in [3, p. 294]. For the relation (2.7), noticing that F0 ≡ F6 and
F1 ≡ F7 (mod 4), we see from the recursive definition of the Fibonacci sequence that (Fn)
(mod 4) has period 6. Therefore (2.7) holds. The following is a consequence of (2.7) which
will be used repeatedly.

If 3 - n and 2 - n, then Fn ≡ 1 (mod 4). (2.8)

The proof of (2.8) is as follows. Assume that 3 - n and 2 - n. Then n ≡ 1, 5 (mod 6).
Therefore Fn ≡ F1, F5 (mod 4) by (2.7). Since F1 = 1 ≡ 1, F5 = 5 ≡ 1 (mod 4), we have
Fn ≡ 1 (mod 4). We refer the reader to [1, 6, 7, 8, 12, 13, 16, 17] for more details and
references. The next lemma is an important tool to prove our results.

Lemma 2.1. [2, 5] For each positive integer n, r, and s, if F s−1
n | r, then F s

n | Fnr.

Note that Lemma 2.1 was first proved in 1977 by V. E. Hoggatt, Jr., and Marjorie Bicknell-
Johnson [5] but it or its consequence has been proved again recently [2, 9, 14] by a different
method. It is worth noting that many authors [2, 9, 14] do not seem to realize the existence of
Lemma 2.1 which was first proved in [5]. For example, since F k

n | F k
n , we obtain from Lemma

2.1 immediately that

F k+1
n | FnF k

n
. (2.9)

It was mentioned by D. Marques [9, p. 241] that to the best of his knowledge, (2.9) was first
proved by Benjamin and Rouse [2, 2006], using a combinatorial approach, and a second proof
of (2.9) is due to Seibert and Trojovsky [14, 2008] by using mathematical induction together
with an identity for Fnm

Fm
. D. Marques [9, 2012] himself also gave another proof of (2.9) by

applying Lengyel’s Theorem [8] on the p-adic order of Fibonacci and Lucas numbers. So it is
nice to bring Lemma 2.1 back to the literature.

The following lemmas are of our own. We also prove Lemma 2.2 and Lemma 2.3 in [11]
but our manuscript has not been formally published in a journal. So we give a proof here for
completeness.

Lemma 2.2. Let a, j ≥ 1 and s ≥ 2 be positive integers. Assume that c is the smallest
nonnegative integer such that j | asc. Then there exists a prime p such that p | s and pc | j.

Proof. If c = 0, then we can choose any prime p that divides s. So we assume that c ≥ 1.
Since j | asc, there is q ∈ N such that asc = jq. If s | q, then asc−1 = j

(

q
s

)

and therefore

j | asc−1 which contradicts the minimality of c. Thus, s - q. Then there exists a prime p such
that pα ‖ s, pβ ‖ q, and α > β ≥ 0. Since q | asc, we see that

q

pβ
| a

(

s

pα

)c

. (2.10)

Let n =
a
(

s
pα

)c

q

pβ

· p(α−1)c−β . Then pcn = asc

q
= j. Now by (2.10) and the fact that α > β, we

see that n ∈ N, pc | j, and p | s. �

Lemma 2.3. Let k, `, r, s ∈ N and sk | r. Then sk+` |
(

r
j

)

sj for all 1 ≤ j ≤ r satisfying

2j−`+1 > j. In particular, sk+2 |
(

r
j

)

sj for all 3 ≤ j ≤ r.
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Proof. Note that the result holds trivially when s = 1 or j ≥ k + `. So we assume that s ≥ 2
and 1 ≤ j < k + ` satisfying 2j−`+1 > j. Since sk | r, there is b ∈ N such that r = skb. Then

(

r

j

)

=
r

j

(

r − 1

j − 1

)

=
skb

j

(

r − 1

j − 1

)

= sk−j+` ·
sj−`b

(

r−1
j−1

)

j
.

Suppose for a contradiction that j - sj−`b
(

r−1
j−1

)

. Since j | skb
(

r−1
j−1

)

, there exists the smallest

nonnegative integer c such that j | scb
(

r−1
k−1

)

. Then

j − `+ 1 ≤ c ≤ k. (2.11)

By Lemma 2.2, there exists a prime p such that pc | j. Now j ≥ pc ≥ 2c ≥ 2j−`+1 > j, a

contradiction. Hence, j | sj−`b
(

r−1
j−1

)

and therefore sk−j+` |
(

r
j

)

as required. �

Lemma 2.4. Let m,n ≥ 1, k ≥ 2, and r = G(k, n,m). Then the following statements hold.

(i) 2 | r if and only if 3 | n or 4 | n.
(ii) If 2 - n and 3 - n, then r ≡ 1 (mod 4).
(iii) If 3 | n, then r ≡ 0 (mod 8).

Proof. Throughout the proof, we will apply (2.3) repeatedly for the case m = 3, 4 so let us
record it here again.

3 | n if and only if 2 | Fn and 4 | n if and only if 3 | Fn.

We will prove (i) by induction on k. Consider the equivalence:

2 | G(2, n,m) ⇔ F3 | FnFm
n

⇔ 3 | nFm
n ⇔ 3 | n ∨ 3 | Fn

⇔ 3 | n ∨ F4 | Fn ⇔ 3 | n ∨ 4 | n.

This proves (i) when k = 2. Next, we consider the case k = 3.

2 | G(3, n,m) ⇔ 3 | nG(2, n,m) ⇔ 3 | n ∨ 3 | G(2, n,m)

⇔ 3 | n ∨ 4 | nFm
n . (2.12)

If 4 | nFm
n and 3 - n, then (2, Fn) = 1 which implies that 4 | n. So (2.12) is equivalent to the

condition 3 | n or 4 | n. This proves (i) for k = 3. Now assume that k ≥ 3 and (i) holds for
2, 3, . . . , k. Then

2 | G(k + 1, n,m) ⇔ 3 | nG(k, n,m)

⇔ 3 | n ∨ 3 | G(k, n,m)

⇔ 3 | n ∨ 4 | nG(k − 1, n,m). (2.13)

If 2 | G(k − 1, n,m), we can apply the induction hypothesis to conclude that 3 | n or 4 | n. If
2 - G(k − 1, n,m), then gcd(4, G(k − 1, n,m)) = 1, and therefore 4 | n. So (2.13) is equivalent
to 3 | n or 4 | n. This shows that (i) holds for all k ≥ 2.
For (ii), we assume that 2 - n and 3 - n. Again we will prove that r ≡ 1 (mod 4) by induction
on k. Similar to the proof of (i), we see that 3 | nFm

n ⇔ 3 | n or 4 | n and 2 | nFm
n ⇔ 2 | n or

3 | n. Since 2 - n and 3 - n, we see that 3 - nFm
n and 2 - nFm

n . By (2.8), G(2, n,m) = FnFm
n

≡ 1
(mod 4). The case k = 3 can be obtained similarly. Next assume that k ≥ 3 and (ii) holds for
2, 3, . . . , k. Then

3 | nG(k, n,m) ⇔ 3 | n ∨ 4 | nG(k − 1, n,m)

⇔ 3 | n ∨ 4 | n (2.14)
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where the penultimate equivalence is done by applying (i). From (2.14) and the fact that
3 - n and 2 - n, we see that 3 - nG(k, n,m). We also have by the induction hypothesis that
2 - G(k, n,m) and therefore 2 - nG(k, n,m). Since 3 - nG(k, n,m) and 2 - nG(k, n,m), we
obtain by (2.8) that G(k + 1, n,m) = FnG(k,n,m) ≡ 1 (mod 4). This proves (ii). The proof of
(iii) is similar. Hence the proof is complete. �

3. Proof of the Main Results

Proof of Theorem 1.1(i). Since G(1, n,m) = Fm
n , the result holds for k = 1. If k ≥ 1 and

F k+m−1
n | G(k, n,m), then we obtain by Lemma 2.1 that F k+1+m−1

n divides FnG(k,n,m) =
G(k + 1, n,m). Therefore the result follows by induction on k. �

Proof of Theorem 1.1(ii).
Case m = 1. Basis Step: We let m = 1 and we will prove the statement by induction on
k. The case k = 2 is proved in [10]. But we will prove it again here. Our proof is shorter
and gives an idea on the proof of the induction step and the proof of the case m ≥ 2. The
statement we want to prove is as follows:

FnFn

F 2
n

≡

{

1 (mod Fn), if 3 - n;
1
2Fn−3 (mod Fn), if 3 | n.

Let r = Fn, A = F r−1
n−1 , and B = r(r−1)

2 F r−2
n−1 . Since Fn | r, we obtain by Lemma 2.3 that

F 3
n |
(

r
j

)

F
j
n for all 3 ≤ j ≤ r. That is Fn |

(

r
j

)

F
j−2
n for each 3 ≤ j ≤ r. Then by (2.2), we have

Fnr

F 2
n

=

r
∑

j=1

(

r

j

)

F j−2
n F

r−j
n−1Fj ≡

2
∑

j=1

(

r

j

)

F j−2
n F

r−j
n−1Fj ≡ A+B (mod Fn).

Case 1. Assume that 3 - n. Then n ≡ 1, 2, 4, 5 (mod 6). If n ≡ 1, 2, 5, then Fn ≡ F1, F2, F5 ≡ 1
(mod 4), by (2.7). Therefore Fn is odd and r−1

2 = Fn−1
2 is even. This implies that

B =

(

r − 1

2

)

FnF
r−2
n−1 ≡ 0 (mod Fn),

and

A = F r−1
n−1 = F

2( r−1
2 )

n−1 ≡ (−1)n(
r−1
2 ) ≡ 1 (mod Fn), by (2.5).

Hence, Fnr

F 2
n

≡ A +B ≡ 1 (mod Fn). In what follows, (2.5) and (2.7) may be applied without

mentioning. Case 2. Assume that 3 | n. Then n ≡ 0, 3 (mod 6). If n ≡ 0 (mod 6), then n is
even, Fn ≡ F0 ≡ 0 (mod 4), and therefore

F r−2
n−1 ≡ (−1)n(

r−2
2 ) ≡ 1 (mod Fn).

Similarly, if n ≡ 3 (mod 6), then Fn ≡ F3 ≡ 2 (mod 4) so r−2
2 = Fn−2

2 is even and F r−2
n−1 ≡ 1

(mod Fn). In any case, we have F r−2
n−1 ≡ 1 (mod Fn). Therefore

Fnr

F 2
n

≡ A+B = F r−2
n−1

(

Fn−1 −
1

2
Fn +

1

2
F 2
n

)

= F r−2
n−1

(

1

2
Fn−3 +

1

2
F 2
n

)

≡
1

2
Fn−3 (mod Fn).
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This completes the proof of the basis step k = 2.
Induction Step: Next, let k ≥ 2 and assume that the statement is true for k. Let r = G(k, n, 1).
Consider

G(k + 1, n, 1)

F k+1
n

=
Fnr

F k+1
n

=
r
∑

j=1

(

r

j

)

F j−k−1
n F

r−j
n−1Fj .

Since F k
n | r, we obtain by Lemma 2.3 that F k+2

n |
(

r
j

)

F
j
n for each 3 ≤ j ≤ r. Therefore,

Fn |
(

r
j

)

F
j−k−1
n for each 3 ≤ j ≤ r. So the above sum is congruent to A+B modulo Fn where

A = rF−k
n F r−1

n−1 , B =
(

r
2

)

F−k+1
n F r−2

n−1 . We have 6 cases to consider.
Case 1. Assume that 2 - k, 3 - n, and 4 - n. By Lemma 2.4(i), r is odd. Therefore,

B =

(

r − 1

2

)

r

F k
n

FnF
r−2
n−1 ≡ 0 (mod Fn).

By the induction hypothesis, r
F k
n
≡ 1 (mod Fn). Therefore,

A ≡ F r−1
n−1 ≡ (−1)n(

r−1
2 ) (mod Fn).

If 2 | n, then A ≡ 1 (mod Fn). If 2 - n, then by Lemma 2.4(ii), r ≡ 1 (mod 4), which implies
that A ≡ 1 (mod Fn). In any case, A ≡ 1 (mod Fn) and hence A+B ≡ 1 (mod Fn).
Case 2. Assume that 2 | k, 3 - n, and 4 - n. Then r is odd, by Lemma 2.4(i). The calculation
of A+B (mod Fn) is the same as that in Case 1 and we obtain A+B ≡ 1 (mod Fn).
Case 3. Suppose that 2 - k, 3 - n, and 4 | n. Then r is even by Lemma 2.4(i). We write
2(A+B) = r

F k
n
F r−2
n−1(2Fn−1 + (r − 1)Fn). By the induction hypothesis,

r

F k
n

≡ Fn−1 (mod Fn).

Since r and n are even, we obtain F r−2
n−1 ≡ (−1)n(

r−2
2

) ≡ 1 (mod Fn). Therefore,

2(A+B) ≡ Fn−1(2Fn−1) ≡ 2F 2
n−1 ≡ 2(−1)n ≡ 2 (mod Fn).

Since 3 - n, we see that (2, Fn) = 1 and thus A+B ≡ 1 (mod Fn).
Case 4. Suppose that 2 | k, 3 - n, and 4 | n. Then by Lemma 2.4(i), r is even. The calculation
of A+B (mod Fn) is similar to the one in Case 3 except that, in this case, r

F k
n
≡ 1 (mod Fn).

We obtain A+B ≡ Fn−1 (mod Fn).
Case 5. Assume that 2 - k and 3 | n. Then Fn is even and, by Lemma 2.4(iii), r ≡ 0 (mod 8).
We write

A+B =
r

F k
n

F r−2
n−1

(

Fn−1 +
r − 1

2
Fn

)

.

We have r
F k
n
≡ (−1)n

(

Fn−3

2

)k−1
(mod Fn), by the induction hypothesis. In addition F r−2

n−1 ≡

(−1)n(
r−2
2 ) ≡ (−1)n (mod Fn) and Fn−1+

r−1
2 Fn = Fn−1−

Fn

2 + rFn

2 = 1
2Fn−3+

rFn

2 ≡ 1
2Fn−3

(mod Fn). Therefore, A+B ≡
(

Fn−3

2

)k

(mod Fn).
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Case 6. Suppose that 2 | k and 3 | n. Then Fn is even and, by Lemma 2.4(iii), r ≡ 0 (mod 8).
Similar to Case 5, we obtain the following

r

F k
n

≡

(

Fn−3

2

)k−1

,

F r−2
n−1 ≡ (−1)n(

r−2
2 ) ≡ (−1)n, and

Fn−1 +
r − 1

2
Fn ≡

1

2
Fn−3,

where all congruences are taken modulo Fn. Therefore A+B ≡ (−1)n
(

Fn−3

2

)k

(mod Fn).

Combining the results in Case 1 to Case 6, we obtain

G(k + 1, n, 1)

F k+1
n

≡







































1, if 2 - k and 3 - n or if 2 | k and

3 - n, 4 - n (by Case 1, Case 2, and Case 3),

Fn−1, if 2 | k and 3 - n, 4 | n (by Case 4),
(

Fn−3

2

)k

, if 2 - k and 3 | n (by Case 5),

(−1)n
(

Fn−3

2

)k

, if 2 | k and 3 | n (by Case 6).

Since 2 | k if and only if 2 - k + 1, we can write the above congruence in the following form:

G(k + 1, n, 1)

F k+1
n

≡







































1, if 2 | k + 1 and 3 - n or if 2 - k + 1 and

3 - n, 4 - n,

Fn−1, if 2 - k + 1 and 3 - n, 4 | n,
(

Fn−3

2

)k

, if 2 | k + 1 and 3 | n,

(−1)n
(

Fn−3

2

)k

, if 2 - k + 1 and 3 | n,

where the congruences are taken modulo Fn. This proves the induction step and hence the
proof of the case m = 1 and k ≥ 2 is complete.

Case m ≥ 2. Basis Step: We let m ≥ 2 and we will prove this statement by induction on
k. First we will consider the case k = 2. Similar to the proof of the Case m = 1, we let

r = Fm
n and we obtain that G(2,n,m)

Fm+1
n

is congruent to A+B modulo Fn, where A = F r−1
n−1 and

B = 1
2Fn(r − 1)F r−2

n−1 . If 3 - n, then we can follow the same argument of the proof of Case
m = 1, and we obtain A+B ≡ 1 (mod Fn). Now assume that 3 | n. The process of calculation
is still the same as the proof of the Case m = 1. Only at this time, m ≥ 2, so F r−2

n−1 ≡ (−1)n

(mod Fn). Therefore,

A+B = F r−2
n−1

(

1

2
Fn−3 +

1

2
rFn

)

≡
(−1)n

2
Fn−3 (mod Fn).

In conclusion,

G(2, n,m)

F 1+m
n

≡

{

1 (mod Fn), if 3 - n;

(−1)n
(

Fn−3

2

)

(mod Fn), if 3 | n.

This proves the basis step.
Induction Step: Next let k ≥ 2 and assume that the statement is true for k. Let r = G(k, n,m).
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Then following the same argument as in proof of the Case m = 1, we see that G(k+1,n,m)

F k+m
n

is

congruent to A+B modulo Fn, where A = rF 1−k−m
n F r−1

n−1 and B =
(

r
2

)

F−k−m+2
n F r−2

n−1 .
Case 1. If 2 | k, 3 - n, and 4 - n or 2 - k, 3 - n, and 4 - n, then we can follow the argument of
Case 1 and Case 2 in the proof of the Case m = 1. We obtain A+B ≡ 1 (mod Fn).
Case 2. If 2 - k, 3 - n, and 4 | n or 2 | k, 3 - n, and 4 | n, then the proof is similar to Case 3 in
the proof of the Case m = 1. We obtain

A+B ≡

{

1 (mod Fn), if 2 - k, 3 - n, and 4 | n;

Fn−1 (mod Fn), if 2 | k, 3 - n, and 4 | n.

Case 3. If 2 | k and 3 | n, then the proof is similar to Case 5 and we obtain A+B ≡
(

Fn−3

2

)k

(mod Fn). If 2 - k and 3 | n, then the proof is similar to Case 6 and we have A + B ≡

(−1)n
(

Fn−3

2

)k

(mod Fn).

This completes the proof. �

Proof of Corollary 1.2. Let k ≥ 2, n ≥ 4, and m ≥ 1 be positive integers. Since 1 6≡ 0
(mod Fn) and Fn−1 6≡ 0 (mod Fn), we see that F k+m−1

n ‖ G(k, n,m) for every n such that
3 - n. So we assume that 3 | n. Suppose for a contradiction that

Fn |

(

Fn−3

2

)k−1

. (3.1)

Since gcd (Fn, Fn−3) = Fgcd(n,n−3) = F3 = 2, we obtain gcd
(

Fn

2 ,
Fn−3

2

)

= 1.

Then gcd

(

Fn

2 ,
(

Fn−3

2

)k−1
)

= 1. But from (3.1), we have Fn

2 |
(

Fn−3

2

)k−1
. Therefore,

1 = gcd

(

Fn

2
,

(

Fn−3

2

)k−1
)

=
Fn

2
,

which implies n = 3. This contradicts the fact that n ≥ 4. Hence, Fn -
(

Fn−3

2

)k−1
and thus

F k+m−1
n ‖ G(k, n,m). This proves (i). By substituting k = 2 and k = 3 in Theorem 1.1, we

immediately obtain (ii) and (iii). This completes the proof. �
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