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Abstract. We evaluate two continued fractions whose elements contain Fibonacci numbers
indexed by the Fibonacci and Lucas sequences. One of the results obtained is
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Similar results with other rapidly growing sequences of subscripts are provided and associated
summation theorems are also given. These results are shown to fit naturally in the context
of a general transformation formula for arbitrary continued fractions due to Oskar Perron.

1. Two Continued Fractions

The purpose of this paper is to prove and provide context for the following two continued
fraction identities which seem to have escaped notice.

Theorem 1.1.
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In the above theorem, {Fn} and {Ln} denote the Fibonacci and Lucas sequences, respec-
tively with F0 = 0 and L0 = 2. Also, the signs of the numerator elements have period 3.
Originally, the identity (1.1) was presented by the author during the Illinois Number Theory
Conference in 1997 [1] as a special case of Perron’s Theorem, Theorem 4.1, described in Section
4.

As a byproduct we also obtain the following summation identities.

Theorem 1.2. √
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, (1.3)
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and √
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These identities bear some resemblance to the Millin series [7, 10],
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In fact, we give a general identity that implies all three and uncover a continued fraction
version of (1.5).

Besides giving new results, another purpose of the paper is to provide a unified approach to
a number of formulas relating to Fibonacci numbers and related infinite processes. Indeed the
fact that a number of beautiful series and continued fraction expansions, as well as Fibonacci
number identities all result from the same principle seems to have escaped widespread notice.
In the context of continued fractions, the same idea also explains the general continued fraction
contraction formula of Oskar Perron [9].

After the proofs Section 4 provides a context for the results and gives some variants as well
as generalizations. Section 2 provides basic facts about continued fractions.

2. Continued Fraction Facts

We employ the usual notation

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · · +

an
bn

(2.1)

for the finite continued fraction

b0 +
a1

b1 +
a2

b2 +
a3

. . .

an−1

bn−1 +
an

bn

.

The non-negative integer n is called the length of (1.2). The numbers ai and bi are called its
numerator and denominator elements, respectively. The notation

b0 +
a1
b1 +

a2
b2 +

a3
b3 + · · · (2.2)

denotes the limit as n → ∞ of (1.2). − signs are sometimes employed instead of + signs to
indicate that the negative of the next numerator element is to be used. The rational function
(2.1) is called the nth classical approximant of the infinite continued fraction (2.2).

Associated with the continued fraction (2.2) are two sequences Pn and Qn called its classical
numerators and classical denominators, respectively. They are defined by the following initial
conditions and recurrences. P0 = b0, Q0 = 1, P1 = b0b1 + a1, Q1 = b1, and for n ≥ 2 by the
fundamental recurrences:

Pn = bnPn−1 + anPn−2

Qn = bnQn−1 + anQn−2.
(2.3)
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Then it is well-known (see[6]) that the quotient Pn/Qn is equal to the nth classical approximant
of (2.2). These recurrences can be put in a convenient matrix form [8] as follows:

n+1
∏

i=1





bi−1 ai

1 0



 =





Pn an+1Pn−1

Qn an+1Qn−1



 . (2.4)

(This equation is easily seen to be equivalent to (2.3) by replacing the first n factors on
the left-hand side of (2.4) with the right-hand side where n has been replaced with n − 1.)
Taking the determinant of both sides yields the determinant formula: PnQn−1 − Pn−1Qn =
(−1)n+1a1a2 · · · an.

To tidy up the continued fractions in the paper, equivalence transformations are employed,
see [6]. Let dn for n ≥ 1 be non-zero. Then the classical approximant (2.1) and

b0 +
d1a1
d1b1 +

d1d2a2
d2b2 +

d2d3a3
d3b3 + · · ·

dn−1dnan
dnbn

(2.5)

are equal. Equation (2.5) is referred to as an equivalence transformation of the continued
fraction (2.2). Note that equivalence transformations do change the classical numerators and
denominators in a simple way, although these relations will not be needed here.

We also use the well-known connection with series. For n ≥ 1,

Pn

Qn

= b0 +

n
∑

i=1

(−1)i−1a1a2 · · · ai
Qi−1Qi

. (2.6)

Finally, later in the paper we will use the segments of continued fractions. The segments
of (2.2) are continued fractions having corresponding classical numerators Pv,λ and classical
denominators Qv,λ. These are the classical numerators and denominators of the continued
fraction:

Pv,λ

Qv,λ

= bλ +
aλ+1

bλ+1 +

aλ+2

bλ+2 +

aλ+3

bλ+3 + · · · +
aλ+v

bλ+v

. (2.7)

The determinant formula for segments is then:

Pn, λQn−1, λ − Pn−1, λQn, λ = (−1)n+1aλ+1aλ+2 · · · aλ+n.

3. Proof of the Theorems

This section gives a brief self-contained proof of Theorems 1 and 2. The proof is based on
the following lemma.

Lemma 3.1. Let k ∈ Z and let gv be any sequence of integers with gv−1 6= gv. Then,

Fk+gv+1
=

Fgv+1−gv−1

Fgv−gv−1

Fk+gv +
(−1)gv−gv−1−1Fgv+1−gv

Fgv−gv−1

Fk+gv−1
. (3.1)

The proof follows almost immediately from the bilinear index reduction formula of Johnson
[3, 4]:

FaFb − FcFd = (−1)r[Fa−rFb−r − Fc−rFd−r], (3.2)

where a, b, c, d, r ∈ Z and a+ b = c+ d. Although (3.2) was proved as a solution to problem
B-960 in [11], that proof is just a specialization of equation (3.32) of [2], which is given without
proof in [2]. Johnson [4], however, gives an elegant and short derivation, which is included at
the beginning of the proof below, since it illustrates the theme underlying the results of this
paper.
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Proof. Let

A :=

(

1 1
1 0

)

.

Then it is well-known that for n ∈ Z,
(

Fn+1 Fn

Fn Fn−1

)

= An. (3.3)

Using (3.3) with n = a, b, c, and d, where a + b = c + d, in the associativity identity
AaAb = AcAd and equating the (2, 2) matrix elements on both sides yields after re-arrangement
FaFb − FcFd = (−1)[Fa−1Fb−1 − Fc−1Fd−1]. Equation (3.2) now follows by induction.

The lemma is obtained by setting a = r = gv − gv−1, b = k + gv+1, c = k + gv, and
d = gv+1 − gv−1 in (3.2), and then dividing through by Fgv−gv−1

. �

Proof of Theorems 1.1 and 1.2. We first establish the following identities involving finite
continued fractions of length v.

FFv+2−1

FFv+2

=
1

1 +

FF2
/FF1

FF3
/FF1

+

FF3
/FF2

FF4
/FF2

− · · · +
(−1)Fv−1−1FFv

/FFv−1

FFv+1
/FFv−1

, (3.4)

and
FLv+1−1

FLv+1

=
1

2 −
FL1

/FL0

FL2
/FL0

+

FL2
/FL1

FL3
/FL1

+ · · · +
(−1)Lv−2−1FLv−1

/FLv−2

FLv
/FLv−2

. (3.5)

It is easy to check directly that (3.4) holds for v = 2 and v = 3 and also that (3.5)
holds for v = 1 and v = 2. For v > 3 and v > 2, respectively, one only needs to check
that the fundamental recurrences (2.3) holds for these continued fractions, where for (3.4),
Pv = FFv+2−1, Qv = FFv+2

, av = (−1)Fv−1−1FFv
/FFv−1

, and bv = FFv+1
/FFv−1

; while for (3.5),

Pv = FLv+1−1, Qn = FLv+1
, av = (−1)Lv−2−1FLv−1

/FLv−2
, and bv = FLv

/FLv−2
.

With these values the equalities (2.3) follow from (3.1); to get the recurrences for Pv and
Qv in the case of the continued fraction (3.4), let gv = Fv+1. Then the recurrence for Pv is the
k = −1 case of (3.1), while the recurrence for Qv is the k = 0 case. Similarly, the recurrences
for (3.5) are obtained from the special case gv = Lv, and again k = −1 and k = 0. Thus the
identities (3.4) and (3.5) are established.

Theorem 1.1 follows from (3.4) and (3.5) by letting v → ∞, absorbing initial two and three
terms of the continued fractions, respectively, into the quadratic irrational on the left-hand
side, and applying equivalence transformations.

Theorem 1.2 follows immediately from (3.4) and (3.5) by using (2.6) and letting v → ∞. �

It is also possible to absorb the initial segments of (3.4) and (3.5) into the left-hand side
and so obtain a family of variants of Theorems 1.1 and 1.2.

4. Context, Generalizations, and Variants

The continued fractions in Theorem 1.1 can be viewed as arising from accelerating the reg-
ular continued fractions for the golden ratio, which has all elements equal to 1, via the general
contraction theorem of Perron [9], Theorem 4.1 below. Perron’s Theorem allows one to com-
pute the continued fraction whose approximants are a proper subsequence of the approximants
of a given continued fraction. Usually Perron’s Theorem is only applied to relatively simple
subsequences, such as the sequence of even approximants, or odd approximants, (which yield
the even and odd parts of the original continued fraction, respectively [6, 9]) since one usu-
ally does not have “nice” formulas for arbitrary numerators and denominators of segments.
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However, in the case of continued fractions with constant element sequences, the classical nu-
merators and denominator sequences are solutions of second-order linear difference equations
with constant coefficients, i.e. generalized Fibonacci-type sequences. Hence applying Perron’s
Theorem to these continued fractions yields new continued fractions with elements that are
simple functions of Fibonacci-type sequences. The theorems of the previous section are a
special case of this idea.

We present the contraction theorem from Perron [9] in the following form.

Theorem 4.1. Let {ni}i≥0 be a strictly increasing sequence of integers with n0 ≥ 0. Then

Pni

Qni

= δ0 +
γ1
δ1 +

γ2
δ2 + · · · +

γi
δi
, (4.1)

where δ0 = Pn0
/Qn0

, δ1 = Qn1
,

γ1 = (−1)n0a1a2 · · · an0+1

Qn1−n0−1,n0+1

Qn0

,

γ2 = (−1)n1−n0−1an0+2an0+3 · · · an1+1

Qn0
Qn2−n1−1,n1+1

Qn1−n0−1,n0+1

,

δ2 =
Qn2−n0−1,n0+1

Qn1−n0−1,n0+1

,

and for v > 2,

γv = (−1)nv−1−nv−2−1anv−2+2anv−2+3 · · · anv−1+1

· Qnv−nv−1−1,nv−1+1

Qnv−1−nv−2−1,nv−2+1

,

and

δv =
Qnv−nv−2−1,nv−2+1

Qnv−1−nv−2−1,nv−2+1

.

Moreover, for i > 0, Pni
(resp. Qni

) is the ith classical numerator (resp. denominator) of
the continued fraction in equation (4.1). This remains true for i = 0, if the 0th classical
denominator on the right is taken to be Qn0

, instead of 1.

Employing (2.6) immediately gives the following corollary.

Corollary 1. Under the hypotheses of Theorem 4.1,

Pnv

Qnv

=
Pn0

Qn0

+

v
∑

k=1

(−1)nk−1
Qnk−nk−1−1,nk−1+1

Qnk−1
Qnk

a1a2 · · · ank−1+1.

This corollary is equivalent to the case of Theorem 3.1 of [5] in which f is strictly increasing.
Remarks.

(1) The continued fraction in the contraction theorem given by Perron on page 12 of
[9] is actually an equivalence transformation of the one above so that the continued
fraction elements are polynomials instead of rational functions. However applying the
equivalence transformations destroys the correspondence between the numerator and
denominator of the fraction on the left-hand side of (4.1) with the classical numerators
and denominators of the continued fraction on the right-hand side. Thus we have
given the theorem in the form of its penultimate step of the derivation from page 11
of [9], where the numerator and denominator on the left-hand side are actually equal
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to the classical numerators and denominators of the continued fraction on the right.
This form is important for employing (2.6) to obtain Corollary 1. After (4.1), one can
always polish the resulting continued fraction with an equivalence transformation to
suit one’s aesthetic taste.

(2) We outline the proof of this theorem and describe the role played by the associativity
of the matrix product to illustrate the similarity to the proof in Section 3.

To find the elements of a continued fraction having a given set of classical numerators
and denominators, one considers the system (2.3), and for each n, solves for an and
bn. By Cramer’s rule, the resulting formulas are ratios of determinants. This result is
known as Bernoulli’s Theorem in the theory of continued fractions [6]. If we desire the
numerators and denominators to be a subsequence of the numerators and denominators
of a given continued fraction (denoted by Pni

and Qni
), then the determinants that

occur are of the form Pni−1
Qni

− Pni
Qni−1

and Pni−2
Qni

− Pni
Qni−2

. But due to the
fact that the sequences P and Q are themselves classical numerators and denominators,
simplification is possible. The reason for the simplification is the associativity of the
matrix product. Specifically,

m+n
∏

k=0





bλ+k aλ+k+1

1 0



 =
n
∏

i=0





bλ+i aλ+i+1

1 0





m
∏

j=1





bλ+n+j aλ+n+j+1

1 0



 ,

which by (2.4) and (2.7) can be written as




Pn+m, λ aλ+n+m+1Pn+m−1, λ

Qn+m,λ aλ+n+m+1Qn+m−1, λ



 =





Pn, λ aλ+n+1Pn−1, λ

Qn, λ aλ+n+1Qn−1, λ









Pm−1, λ+n+1 aλ+n+m+1Pm−2, λ+n+1

Qm−1, λ+n+1 aλ+n+m+1Qm−2, λ+n+1



 .

Computing the first column in this matrix product (the second is redundant) gives
the classical numerator segment associativity relations [8]:

Pn+m, λ = Pn, λPm−1, λ+n+1 + aλ+n+1Pn−1, λQm−1, λ+n+1,

Qn+m,λ = Qn, λPm−1, λ+n+1 + aλ+n+1Qn−1, λQm−1, λ+n+1.

Finally, multiplying the first of these equations by Qn, λ and the second by Pn, λ, taking
the difference between the resulting equations, and employing the determinant formula
for segments yields the generalized segment determinant formula [8]:

Pn, λQn+m,λ − Pn+m, λQn, λ = (−1)n+1aλ+1 · · · aλ+n+1Qm−1, λ+n+1.

Using this formula to simplify the determinants in Bernoulli formula gives Perron’s
contraction theorem.

Although Theorem 4.1 may appear a bit unwieldy, there are three cases in which it simplifies
substantially.

First: if the differences ni−ni−1 and ni−ni−2 are bounded. Then one only has to deal with
polynomials of bounded degree (in the variables ai and bj). For example, making the sequence
ni equal to the sequence of even numbers yields the “even part” of a continued fraction. Then
the difference ni − ni−2 is equal to 4. After an equivalence transformation this gives rise
to partial numerators in the contracted continued fraction which are of fourth degree in the
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variables ai and bj, see [6, 9]. Even and odd parts of continued fractions are frequently seen
and are not considered here.

Second: if an = a and bn = b, for constants a and b, for all n ∈ Z
+, then the segments of

the continued fraction reduce to the classical numerators and classical denominators. In this
situation it is easy to compute these sequences as they are solutions of linear homogeneous
second order difference equations with constant coefficients.

Third: if the sequence ni is of Fibonacci type (satisfying ni = ni−1 + ni−2), then the
differences ni − ni−1 and ni − ni−2 will be the same sequence (shifted) and a simplification in
the formula will occur.

Notice that the results from the first section of this paper arise in the confluence of the last
two cases. This confluence explains the rather pleasant appearance of the resulting identities.

The nicest example of Theorem 4.1 in the second case is obtained when the theorem is
applied to the continued fraction for the golden ratio. In this situation, Pn = Fn+2 and
Qn = Fn+1. Indeed Qν,λ = Fν+1.

To simplify matters, it is helpful to let the sequence nν be the sum of a sequence of positive
integers, so that the differences in the subscripts on the right-hand sides of Theorem 3 simplify.
That is, let n0 = m0 ≥ 0, and for ν ≥ 1 put nν = m0 + m1 + · · · + mν , where mi ∈ Z

+ for
i ≥ 1. Then nν − nν−1 = mν , and nν − nν−2 = mν−1 +mν for ν ≥ 2. Note that the increased
complexity of the left-hand side is not a problem, since one knows the limit. Finally, one can
apply an equivalence transformation to the right-hand side of (4.1) to simplify the continued
fraction. Applying these substitutions to Theorem 4.1 and Corollary 1 yields the following
corollary.

Corollary 2. Let the sequences {mi}i≥0 and {ni}i≥0 be as in the last paragraph. Then for
i ≥ 1,

(−1)m1−1Fm0
Fni+1−m0−m1

Fni+1−m0

=

(−1)m1−1Fm0
Fm2

Fm1+m2
+

(−1)m2−1Fm1
Fm3

Fm2+m3
+ · · · +

(−1)mi−1Fmi−1
Fmi+1

Fmi+mi+1

.

(4.2)

Also

Fni+2

Fni+1

=
Fn0+2

Fn0+1

+

i
∑

k=1

(−1)nk−1
Fnk−nk−1

Fnk−1+1Fnk+1

. (4.3)

Note that (4.3) is equivalent to the case of Corollary 3.3 of [5] in which g is strictly increasing.
We consider a few special cases. Setting mi = 2i in (4.2) yields after routine simplification

F2i+2−1

F2i+2−2

= F3·20 −
F20 · F22

F3·21
−

F21 · F23

F3·22
− · · ·

F2i−1 · F2i+1

F3·2i
. (4.4)

Letting i → ∞ in (4.4) gives
√
5− 1

2
= F3·20 −

F20 · F22

F3·21
−

F21 · F23

F3·22
− · · · . (4.5)

For this choice of ni, after letting i → ∞, (4.3) simplifies to (1.5). This shows how (4.5) is the
continued fraction manifestation of Milin’s series. The cases mi = Fi+1 and mi = Li+1 yield
(1.3) and (1.4), respectively (and also (1.1) and (1.2)). Setting mi = i! and ni = (i + 1)! − 1
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in (4.2) and (4.3), respectively and letting i → ∞ yield, respectively,
√
5− 1

2
=

F0! · F2!

F3·1! −
F1! · F3!

F4·2! −
F2! · F4!

F5·3! − · · · , (4.6)

and
5−

√
5

2
=

F1·1!

F1!F2!

+
F2·2!

F2!F3!

+
F3·3!

F3!F4!

+ · · · . (4.7)

Of course many of the generalizations and variants of (1.5) follow similarly.
Finally consider the third case discussed above. Let Ni satisfy Ni = Ni−1 +Ni−2, for i ≥ 1

and assume that Ni > Ni−1 for i ≥ 1. (Note that N−1 > 0.) We have the following corollary.

Corollary 3 (Fibonacci Contraction Formula). For i ≥ 0

PNi+1−N0−1

QNi+1−N0−1

= δ0 +
γ1
δ1 +

γ2
δ2 + · · · +

γi
δi
,

where δ0 = PN
−1−1/QN

−1−1, δ1 = QN1−1,

γ1 = (−1)N1−1a1a2 · · · aN
−1

QN0,N−1

QN
−1−1

,

and for v ≥ 2,

γv = (−1)Nv−2−1aNv−1−N0+1aNv−1−N0+2 · · · aNv−N0

·QNv−3−1,Nv−1−N0
QNv−1−1,Nv−N0

,

and
δv = QNv−1,Nv−1−N0+1.

Proof. This follows immediately from Theorem 4.1 by letting ni = Ni+1−N0−1 and simplifying
using the recurrence for the sequence Ni. Note that this selection for the sequence ni satisfies
the required conditions. �

5. Conclusion

This paper shows that a number of results from the literature relating to continued fraction,
Fibonacci numbers, and infinite series have their genesis in the associativity of the matrix
product. The core of the proof of the general contraction theorem of Perron is an example of
this idea.

The methods here do not seem to easily give evaluations for continued fractions involving
elements of the forms LFv

or LLv
. It would be interesting to know if similar results involving

these sequences can be obtained in any way.
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