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Abstract. A natural generalization of base B expansions is Zeckendorf’s Theorem, which
states that every integer can be uniquely written as a sum of non-consecutive Fibonacci
numbers {Fn}, with Fn+1 = Fn+Fn−1 and F1 = 1, F2 = 2. If instead we allow the coefficients
of the Fibonacci numbers in the decomposition to be zero or ±1, the resulting expression is
known as the far-difference representation. Alpert proved that a far-difference representation
exists and is unique under certain restraints that generalize non-consecutiveness, specifically
that two adjacent summands of the same sign must be at least 4 indices apart and those of
opposite signs must be at least 3 indices apart.

In this paper we prove that a far-difference representation can be created using sets of

Skipponacci numbers, which are generated by recurrence relations of the form S
(k)
n+1 = S

(k)
n +

S
(k)
n−k for k ≥ 0. Every integer can be written uniquely as a sum of the ±S

(k)
n ’s such that

every two terms of the same sign differ in index by at least 2k + 2, and every two terms of
opposite signs differ in index by at least k + 2. Let In = (Rk(n − 1), Rk(n)] with Rk(`) =P

0<`−b(2k+2)≤` S
(k)

`−b(2k+2). We prove that the number of positive and negative terms in given

Skipponacci decompositions for m ∈ In converges to a Gaussian as n →∞, with a computable
correlation coefficient. We next explore the distribution of gaps between summands, and show
that for any k the probability of finding a gap of length j ≥ 2k +2 decays geometrically, with
decay ratio equal to the largest root of the given k-Skipponacci recurrence. We conclude by
finding sequences that have an (s, d) far-difference representation (see Definition 1.11) for any
positive integers s, d.

1. Introduction

In this paper we explore signed decompositions of integers by various sequences. After briefly
reviewing the literature, we state our results about uniqueness of decomposition, number
of summands, and gaps between summands. In the course of our analysis we find a new
way to interpret an earlier result about far-difference representations, which leads to a new
characterization of the Fibonacci numbers.

1.1. Background. Zeckendorf [19] discovered an interesting property of the Fibonacci num-
bers {Fn}; he proved that every positive integer can be written uniquely as a sum of non-
consecutive Fibonacci numbers1, where Fn+2 = Fn+1 + Fn and F1 = 1, F2 = 2. It turns out
this is an alternative characterization of the Fibonacci numbers; they are the unique increasing
sequence of positive integers such that any positive number can be written uniquely as a sum
of non-consecutive terms.

This research was conducted as part of the 2013 SMALL REU program at Williams College and was partially
supported by NSF grant DMS0850577 and Williams College; the fourth named author was also partially
supported by NSF grant DMS1265673.

1If we were to use the standard definition of F0 = 0, F1 = 1 then we would lose uniqueness.
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Zeckendorf’s Theorem inspired many questions about the number of summands in these
and other decompositions. Lekkerkerker [14] proved that the average number of summands
in the decomposition of an integer in [Fn, Fn+1) is n

ϕ2+1
+ O(1), where ϕ = 1+

√
5

2 is the
golden mean (which is the largest root of the characteristic polynomial associated with the
Fibonacci recurrence). More is true; as n →∞, the distribution of the number of summands
of m ∈ [Fn, Fn+1) converges to a Gaussian. This means that as n → ∞ the fraction of
m ∈ [Fn, Fn+1) such that the number of summands in m’s Zeckendorf decomposition is in
[µn−aσn, µn +bσn] converges to 1√

2π

∫ b
a e−t2/2dt, where µn = n

ϕ2+1
+O(1) is the mean number

of summands for m ∈ [Fn, Fn+1) and σ2
n = ϕ

5(ϕ+2)n −
2
25 is the variance (see [12] for the

calculation of the variance). Henceforth in this paper whenever we say the distribution of
the number of summand converges to a Gaussian, we mean in the above sense. There are
many proofs of this result; we follow the combinatorial approach used in [12], which proved
these results by converting the question of how many numbers have exactly k summands to a
combinatorial one.

These results hold for other recurrences as well. Most of the work in the field has focused
on Positive Linear Recurrence Relations (PLRS), which are recurrence relations of the form
Gn+1 = c1Gn+ · · ·+cLGn+1−L for non-negative integers L, c1, c2, . . . , cL with L, c1, and cn > 0
(these are called G-ary digital expansions in [18]). There is an extensive literature for this
subject; see [1, 3, 4, 7, 9, 10, 11, 15, 16, 17] for results on uniqueness of decomposition and
[5, 6, 8, 12, 14, 13, 16, 18] for Gaussian behavior.

Much less is known about signed decompositions, where we allow negative summands in
our decompositions. This opens up a number of possibilities, as in this case we can overshoot
the value we are trying to reach in a given decomposition, and then subtract terms to reach
the desired positive integer. We formally define this idea below.

Definition 1.1 (Far-difference representation). A far-difference representation of a positive
integer x by a sequence {an} is a signed sum of terms from the sequence which equals x.

The Fibonacci case was first considered by Alpert [1], who proved the following analogue
of Zeckendorf’s Theorem. Note that the restrictions on the gaps between adjacent indices
in the decomposition is a generalization of the non-adjacency condition in the Zeckendorf
decomposition.

Theorem 1.2. Every x ∈ Z has a unique Fibonacci far-difference representation such that
every two terms of the same sign differ in index by at least 4 and every two terms of opposite
sign differ in index by at least 3.

For example, 2014 can be decomposed as follows:

2014 = 2584− 610 + 55− 13− 2 = F17 − F14 + F9 − F6 − F2. (1.1)

Alpert’s proof uses induction on a partition of the integers, and the method generalizes easily
to other recurrences which we consider in this paper.

Given that there is a unique decomposition, it is natural to inquire if generalizations of
Lekkerkerker’s Theorem and Gaussian behavior hold as well. Miller and Wang [16] proved
that they do. We first set some notation, and then describe their results (our choice of
notation is motivated by our generalizations in the next subsection).

First, let R4(n) denote the following summation
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R4(n) :=

{∑
0<n−4i≤n Fn−4i = Fn + Fn−4 + Fn−8 + · · · , if n > 0,

0, otherwise.
(1.2)

Using this notation, we state the motivating theorem from Miller-Wang.

Theorem 1.3 (Miller-Wang). Let Kn and Ln be the corresponding random variables denoting
the number of positive summands and the number of negative summands in the far-difference
representation (using the signed Fibonacci numbers) for integers in (R4(n − 1), R4(n)]. As n

tends to infinity, E[Kn] = 1
10n + 371−113

√
5

40 + o(1), and is 1+
√

5
4 = ϕ

2 greater than E[Ln]. The
variance of both is 15+21

√
5

1000 n + O(1). The standardized joint density of Kn and Ln converges
to a bivariate Gaussian with negative correlation 10

√
5−121
179 = −21−2ϕ

29+2ϕ ≈ −0.551, and Kn + Ln

and Kn − Ln converge to independent random variables.

Their proof used generating functions to show that the moments of the distribution of
summands converge to those of a Gaussian. The main idea is to show that the conditions
which imply Gaussianity for positive-term decompositions also hold for the Fibonacci far-
difference representation. One of our main goals in this paper is to extend these arguments
further to the more general signed decompositions. In the course of doing so, we find a simpler
way to handle the resulting algebra.

We then consider an interesting question about the summands in a decomposition, namely
how are the lengths of index gaps between adjacent summands distributed in a given integer
decomposition? Equivalently, how long must we wait after choosing a term from a sequence
before the next term is chosen in a particular decomposition? In [2], the authors solve this
question for the Fibonacci far-difference representation, as well as other PLRS, provided that
all the coefficients are positive. Note this restriction therefore excludes the k-Skipponaccis for
k ≥ 2.

Theorem 1.4 ([2]). As n → ∞, the probability P (j) of a gap of length j in a far-difference
decomposition of integers in (R4(n − 1), R4(n)] converges to geometric decay for j ≥ 4, with
decay constant equal to the golden mean ϕ. Specifically, if a1 = ϕ/

√
5 (which is the coefficient

of the largest root of the recurrence polynomial in Binet’s Formula2 expansion for Fn), then
P (j) = 0 if j ≤ 2 and

P (j) =

{
10a1ϕ
ϕ4−1

ϕ−j , if j ≥ 4,
5a1

ϕ2(ϕ4−1)
, if j = 3.

(1.3)

1.2. New Results. In this paper, we study far-difference relations related to certain gener-
alizations of the Fibonacci numbers, called the k-Skipponacci numbers.

Definition 1.5 (k-Skipponacci Numbers). For any non-negative integer k, the k-Skipponaccis
are the sequence of integers defined by S

(k)
n+1 = S

(k)
n + S

(k)
n−k for some k ∈ N. We index the

k-Skipponaccis such that the first few terms are S
(k)
1 = 1, S

(k)
2 = 2, . . . , S

(k)
k+1 = k + 1, and

S
(k)
n = 0 for all n ≤ 0.

2As our Fibonacci sequence is shifted by one index from the standard representation, for us Binet’s Formula
reads Fn = ϕ√

5
ϕn− 1−ϕ√

5
(1−ϕ)n. For any linear recurrence whose characteristic polynomial is of degree d with

d distinct roots, the nth term is a linear combination of the nth powers of the d roots; we always let a1 denote
the coefficient of the largest root.
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Some common k-Skipponacci sequences are the 0-Skipponaccis (which are powers of 2, and
lead to binary decompositions) and the 1-Skipponaccis (the Fibonaccis). Our first result is
that a generalized Zeckendorf Theorem holds for far-difference representations arising from
the k-Skipponaccis.

Theorem 1.6. Every x ∈ Z has a unique far-difference representation for the k-Skipponaccis
such that every two terms of the same sign are at least 2k + 2 apart in index and every two
terms of opposite sign are at least k + 2 apart in index.

Before stating our results on Gaussianity, we first need to set some new notation, which
generalizes the summation in (1.2).

Rk(n) :=

{∑
0<n−b(2k+2)≤n S

(k)
n−b(2k+2) = S

(k)
n + S

(k)
n−2k−2 + S

(k)
n−4k−4 + · · · , if n > 0;

0, otherwise.
(1.4)

Theorem 1.7. Fix a positive integer k. Let Kn and Ln be the corresponding random variables
denoting the number of positive and the number of negative summands in the far-difference
representation for integers in (Rk(n−1), Rk(n)] from the k-Skipponaccis. As n →∞, expected
values of Kn and Ln both grow linearly with n and differ by a constant, as do their variances.
The standardized joint density of Kn and Ln converges to a bivariate Gaussian with a com-
putable correlation. More generally, for any non-negative numbers a, b not both equal to 0, the
random variable Xn = aKn + bLn converges to a normal distribution as n →∞.

This theorem is an analogue to Theorem 1.3 of [16] for the case of Fibonacci numbers.
Their proof, which is stated in Section 6 of [16], relies heavily on Section 5 of the same paper
where the authors proved Gaussianity for a large subset of sequences whose generating function
satisfies some specific constraints. In this paper we state a sufficient condition for Gaussianity
in the following theorem, which we prove in Section 3. We show that it applies in our case,
yielding a significantly simpler proof of Gaussianity than the one in [16].

Theorem 1.8. Let κ be a fixed positive integer. For each n, let a discrete random variable
Xn in In = {0, 1, . . . , n} have

Prob(Xn = j) =

{
ρj;n/

∑n
j=1 ρj;n, if j ∈ In;

0, otherwise,
(1.5)

for some positive real numbers ρ1;n, . . . , ρn;n. Let gn(x) :=
∑

j ρj;nxj be the generating function
of Xn. If gn has form gn(x) =

∑κ
i=1 qi(x)αn

i (x) where
(i) for each i ∈ {1, . . . , κ}, qi, αi : R → R are three times differentiable functions which do

not depend on n;
(ii) there exists some small positive ε and some positive constant λ < 1 such that for all

x ∈ Iε = [1− ε, 1 + ε], |α1(x)| > 1 and |αi(x)|
|α1(x)| < λ < 1 for all i = 2, . . . , κ;

(iii) α′1(1) 6= 0 and d
dx

[
xα′1(x)
α1(x)

]
|x=1 6= 0 ;

then
(a) The mean µn and variance σ2

n of Xn both grow linearly with n. Specifically,

µn = An + B + o(1), (1.6)

σ2
n = C · n + D + o(1), (1.7)
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where

A =
α′1(1)
α1(1)

, B =
q′1(1)
q1(1)

, (1.8)

C =
(

xα′1(x)
α1(x)

) ∣∣∣∣∣
x=1

=
α1(1)[α′1(1) + α′′1(1)]− α′1(1)2

α1(1)2
, (1.9)

D =
(

xq′1(x)
q1(x)

) ∣∣∣∣∣
x=1

=
q1(1)[q′1(1) + q′′1(1)]− q′1(1)2

q1(1)2
. (1.10)

(b) As n →∞, Xn converges in distribution to a normal distribution.

Next we generalize previous work on gaps between summands. This result makes use of
a standard result, the Generalized Binet’s Formula; see [2] for a proof for a large family of
recurrence relations which includes the k-Skipponaccis. We restate the result here for the
specific case of the k-Skipponaccis.

Lemma 1.9. Let λ1, . . . , λk be the roots of the characteristic polynomial for the k-Skipponaccis.
Then λ1 > |λ2| ≥ · · · ≥ |λk|, λ1 > 1, and there exists a constant a1 such that

S(k)
n = a1λ

n
1 + O(nmax(0,k−2)λn

2 ). (1.11)

Theorem 1.10. Consider the k-Skipponacci numbers {S(k)
n }. For each n, let Pn(j) be the

probability that the size of a gap between adjacent terms in the far-difference decomposition of
a number m ∈ (Rk(n−1), Rk(n)] is j. Let λ1 denote the largest root of the recurrence relation
for the k-Skipponacci numbers, and let a1 be the coefficient of λ1 in the Generalized Binet’s
formula expansion for S

(k)
n . As n → ∞, Pn(j) converges to geometric decay for j ≥ 2k + 2,

with computable limiting values for other j. Specifically, we have limn→∞ Pn(j) = P (j) = 0
for j ≤ k + 1, and

P (j) =


a1λ−3k−2

1

A1,1(1−λ−2k−2
1 )2

(λ1−1)
λ−j

1 , if k + 2 ≤ j < 2k + 2;

a1λ−2k−2
1

A1,1(1−λ−2k−2
1 )2

(λ1−1)
λ−j

1 , if j ≥ 2k + 2,
(1.12)

where A1,1 is a constant defined in (3.24).

Our final results explore a complete characterization of sequences that exhibit far-difference
representations. That is, we study integer decompositions on a sequence of terms in which
same sign summands are s apart in index and opposite sign summands are d apart in index. We
call such representations (s,d) far-difference representations, which we formally define below.

Definition 1.11 ((s, d) far-difference representation). A sequence {an} has an (s, d) far-
difference representation if every integer can be written uniquely as the sum of terms ±an in
which every two terms of the same sign are at least s apart in index and every two terms of
opposite sign are at least d apart in index.

Thus the Fibonaccis lead to a (4, 3) far-difference representation. More generally, the k-
Skipponaccis lead to a (2k + 2, k + 2) one. We can consider the reverse problem; if we are
given a pair of positive integers (s, d), is there a sequence such that each number has a unique
(s, d) far-difference representation? The following theorem shows that the answer is yes, and
gives a construction for the sequence.

Theorem 1.12. Fix positive integers s and d, and define a sequence {an}∞n=1 by
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(i) For n = 1, 2, . . . ,min(s, d), let an = n.
(ii) For min(s, d) < n ≤ max(s, d), let

an =
{

an−1 + an−s, if s < d;
an−1 + an−d + 1, if d ≤ s. (1.13)

(iii) For n > max(s, d), let an = an−1 + an−s + an−d.
Then the sequence {an} has an unique (s, d) far-difference representation.

In particular, as the Fibonaccis give rise to a (4, 3) far-difference representation, we should
have Fn = Fn−1 + Fn−4 + Fn−3. We see this is true by repeatedly applying the standard
Fibonacci recurrence:

Fn = Fn−1 + Fn−2 = Fn−1 + (Fn−3 + Fn−4) = Fn−1 + Fn−4 + Fn−3. (1.14)

To prove our results we generalize the techniques from [1, 2, 16] to our families. In Section 2
we prove that for any k-Skipponacci recurrence relation, a unique far-difference representation
exists for all positive integers. In Section 3 we prove that the number of summands in any
far-difference representation approaches a Gaussian, and then we study the distribution of
gaps between summands in Section 4. We end in Section 5 by exploring generalized (s, d)
far-difference representations.

2. Far-Difference Representation of k-Skipponaccis

Recall the k-Skipponaccis satisfy the recurrence S
(k)
n+1 = S

(k)
n + S

(k)
n−k with S

(k)
i = i for

1 ≤ i ≤ k + 1. Some common k-Skipponacci sequences are the 0-Skipponaccis (the binary
sequence) and the 1-Skipponaccis (the Fibonaccis). We prove that every integer has a unique
far-difference representation arising from the k-Skipponaccis. The proof is similar to Alpert’s
proof for the Fibonacci numbers.

We break the analysis into integers in intervals (Rk(n− 1), Rk(n)], with Rk(n) as in (1.4).
We need the following fact.

Lemma 2.1. Let {S(k)
n } be the k-Skipponacci sequence. Then

S(k)
n −Rk(n− k − 2)−Rk(n− 1) = 1. (2.1)

The proof that follows is a simple induction argument, which for completeness we give in
Appendix A.

Proof of Theorem 1.6. It suffices to consider the decomposition of positive integers, as negative
integers follow similarly. Note the number 0 is represented by the decomposition with no
summands.

We claim that the positive integers are the disjoint union over all closed intervals of the
form [S(k)

n −Rk(n−k−2), Rk(n)]. To prove this, it suffices to show that S
(k)
n −Rk(n−k−2) =

Rk(n− 1) + 1 which follows immediately from Lemma 2.1.
Assume a positive integer x has a k−Skipponacci far-differenced representation in which S

(k)
n

is the leading term, (i.e., the term of largest index). It is easy to see that because of our rule,
the largest number can be decomposed with the leading term S

(k))
n is S

(k)
n +S

(k)
n−2k−2+S

(k)
n−4k−4+

· · · = Rk(n) and the smallest one is S
(k)
n −S

(k)
n−k−2−S

(k)
n−3k−4−· · · = S

(k)
n −Rk(n−k−2), hence,

S
(k)
n −Rk(n− k− 2) ≤ x ≤ Rk(n). Since we proved that {[S(k)

n −Rk(n− k− 2), Rk(n)]}∞n=1 is
a disjoint cover of all positive integers, for any integer x ∈ Z+, there is a unique n such that
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S
(k)
n −Rk(n−k−2) ≤ x ≤ S

(k)
n . Further, if x has a k-Skipponacci far-difference representation,

then S
(k)
n must be its leading term.

Therefore if a decomposition of such an x exists it must begin with S
(k)
n . We are left with

proving a decomposition exists and that it is unique. We proceed by induction.
For the base case, let n = 0. Notice that the only value for x on the interval 0 ≤ x ≤ Rk(0)

is x = 0, and the k-Skipponacci far-difference representation of x is empty for any k. Assume
that every integer x satisfying 0 ≤ x ≤ Rk(n − 1) has a unique far-difference representation.
We now consider x such that Rk(n − 1) < x ≤ Rk(n). From our partition of the integers, x

satisfies S
(k)
n −Rk(n− k − 2) ≤ x ≤ Rk(n). There are two cases.

(1) S
(k)
n −Rk(n− k − 2) ≤ x ≤ S

(k)
n .

Note that for this case, it is equivalent to say 0 ≤ S
(k)
n − x ≤ Rk(n − k − 2). It then

follows from the inductive step that S
(k)
n −x has a unique k-Skipponacci far-difference

representation with S
(k)
n−k−2 as the upper bound for the main term.

(2) S
(k)
n ≤ x ≤ Rk(n).

For this case, we can once again subtract S
(k)
n from both sides of the inequality to get

0 ≤ x − S
(k)
n ≤ Rk(n − 2k − 2). It then follows from the inductive step that x − S

(k)
n

has a unique far-difference representation with main term at most S
(k)
n−2k−2.

In either case, we can generate a unique k-Skipponacci far-difference representation for x

by adding S
(k)
n to the representation for x − S

(k)
n (which, from the definition of Rk(m), in

both cases has the index of its largest summand sufficiently far away from n to qualify as a
far-difference representation. �

3. Gaussian Behavior

In this section we follow the method in Section 6 of [16] to prove Gaussianity for the number
of summands. We first find the generating function for the problem, and then analyze that
function to complete the proof.

3.1. Derivation of the Generating Function. Let pn,m,` be the number of integers in
(Rk(n), Rk(n+1)] with exactly m positive summands and exactly ` negative summands in their
far-difference decomposition via the k-Skipponaccis (as k is fixed, for notational convenience
we suppress k in the definition of pn,m,`). When n ≤ 0 we let pn,m,` be 0. We first derive a
recurrence relation for pn,m,` by a combinatorial approach, from which the generating function
immediately follows.

Lemma 3.1. Notation as above, for n > 1 we have

pn,m,` = pn−1,m,` + pn−(2k+2),m−1,` + pn−(k+2),`,m−1. (3.1)

Proof. First note that pn,m,` = 0 if m ≤ 0 or ` < 0. In Section 2 we partitioned the integers
into the intervals [Rk(n − 1) + 1, Rk(n)], and noted that if an integer x in this interval has
a far-difference representation, then it must have leading term S

(k)
n , and thus x − S

(k)
n ∈

[Rk(n− 1) + 1− S
(k)
n , Rk(n)− S

(k)
n ]. From Lemma 2.1 we have

S(k)
n −Rk(n− 1)−Rk(n− k − 2) = 1, (3.2)
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which implies Rk(n−1)+1−S
(k)
n = −Rk(n−k−2). Thus, pn,m,` is the number of far-difference

representations for integers in [−Rk(n−k− 2), Rk(n− 2k− 2)] with m− 1 positive summands
and ` negative summands (as we subtracted away the main term S

(k)
n ).

Let n > 2k + 2. There are two possibilities.
Case 1: (k − 1, `) = (0, 0).
Since S

(k)
n −Rk(n− 1)−Rk(n− k − 2) = 1 by (3.2), we know that S

(k)
n−1 < Rk(n− 1) < S

(k)
n

for all n > 1. This means there must be exactly one k-Skipponacci number on the interval
[Rk(n− 1) + 1, Rk(n)] for all n > 1. It follows that pn,1,0 = pn−1,1,0 = 1, and the recurrence in
(3.1) follows since pn−k−2,0,0 and pn−2k−2,0,0 are both 0 for all n > 2k + 2.

Case 2: (k − 1, `) is not (0, 0).
Let N(I,m, `) be the number of far-difference representations of integers in the interval I with
m positive summands and ` negative summands. Thus,

pn,m,` = N [(0, Rk(n− 2k − 2)],m− 1, `] + N [(−Rk(n− k − 2), 0],m− 1, `]

= N [(0, Rk(n− 2k − 2)],m− 1, `] + N [(0, Rk(n− k − 2)], `, m− 1]

=
n−2k−2∑

i=1

pi,m−1,` +
n−k−2∑

i=1

pi,`,m−1. (3.3)

Since n > 1, we can replace n with n− 1 in (3.3) to get

pn−1,m,` =
n−2k−3∑

i=1

pi,m−1,` +
n−k−3∑

i=1

pi,`,m−1. (3.4)

Subtracting (3.4) from (3.3) gives us the desired expression for pn,m,`. �

The generating function Gk(x, y, z) for the far-difference representations by k-Skipponacci
numbers is defined by

Gk(x, y, z) =
∑

pn,m,`x
my`zn. (3.5)

Theorem 3.2. Notation as above, we have

Gk(x, y, z) =
xz − xz2 + xyzk+3 − xyz2k+3

1− 2z + z2 − (x + y)z2k+2 + (x + y)z2k+3 − xyz2k+4 + xyz4k+4
. (3.6)

Proof. Note that the equality in (3.1) holds for all triples (n, m, `) except for the case where
n = 1, m = 1, and ` = 0 under the assumption that pn,m,` = 0 whenever n ≤ 0. To prove the
claimed formula for the generating function in (3.6), however, we require a recurrence relation
in which each term is of the form pn−n0,m−m0,`−`0 . This can be achieved with some simple
substitutions. Replacing (n, m, `) in (3.1) with (n− k − 2, `, m− 1) gives

pn−k−2,`,m−1 = pn−(k+3),`,m−1 + pn−(3k+4),`−1,m−1 + pn−(2k+4),m−1,`−1, (3.7)

which holds for all triples except (k + 3, 1, 1). Rearranging the terms of (3.1), we get

pn−(k+2),`,m−1 = pn,m,` − pn−1,m,` − pn−(2k+2),m−1,`. (3.8)

We replace (n, m, `) in (3.8) with (n− 1,m, `) and (n− 2k − 2,m, `− 1) which yields

pn−(k+3),l,m−1 = pn−1,m,l − pn−2,m,l − pn−(2k+3),m−1,l, (3.9)

which only fails for the triple (2, 1, 0), and

pn−(3k+4),l−1,m−1 = pn−(2k+2),m,l−1 − pn−(2k+3),m,l−1 − pn−(4k+4),m−1,l−1, (3.10)
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which only fails for the triple (2k + 3, 1, 1). We substitute equations (3.8), (3.9) and (3.10)
into (3.1) and obtain the following expression for pn,m,`:

pn,m,l = 2pn−1,m,l − pn−2,m,l + pn−(2k+2),m−1,l + pn−(2k+2),m,l−1

− pn−(2k+3),m−1,l − pn−(2k+3),m,l−1 + pn−(2k+4),m−1,l−1 − pn−(4k+4),m−1,l−1. (3.11)

Using this recurrence relation, we prove that the generating function in (3.6) is correct.
Consider the following characteristic polynomial for the recurrence in (3.10):

P (x, y, z) = 1− 2z + z2 − (x + y)z2k+2 + (x + y)z2k+3 − xyz2k+4 + xyz4k+4. (3.12)

We take the product of this polynomial with the generating function to get

P (x, y, z)Gk(x, y, z) =
(
1− 2z + z2 − (x + y)z2k+2 + (x + y)z2k+3 − xyz2k+4 + xyz4k+4

)
·
∑
n≥1

pn,m,lx
mylzn

= xmylzn ·
∑
n≥1

pn,m,l − 2pn−1,m,l + pn−2,m,l − pn−(2k+2),m−1,l

− pn−(2k+2),m,l−1 + pn−(2k+3),m−1,l + pn−(2k+3),m,l−1

− pn−(2k+4),m−1,l−1 + pn−(4k+4),m−1,l−1. (3.13)

Notice that the equality from (3.10) appears within the summation, and this quantity is
zero whenever the equality holds. We have shown that the only cases where a triple does not
satisfy the equality is when (n, m, `) is given by (1, 1, 0), (2, 1, 0), (k + 3, 1, 1) or (2k + 3, 1, 1).
Since (3.11) is a combination of (3.8), (3.9), (3.7) and (3.10), where these triples fail, it follows
that they will also not satisfy the equality in (3.11). Thus within the summation in (3.13) we
are left with a non-zero coefficient for xmy`zn. We collect these terms and are left with the
following:

P (x, y, z)Gk(x, y, z) = xz − xz2 + xyzk+3 − xyz2k+3. (3.14)
Rearranging these terms and substituting in our value for P (x, y, z) gives us the desired equa-
tion for the generating function. �

Going forward, we often need the modified version of our generating function in which we
factor out the term (1− z) from both the numerator and the denominator:

Gk(x, y, z) =
xz + 1−zk

1−z xyzk+3

1− z − (x + y)z2k+2 + 1−z2k

1−z (−xyz2k+4)

=
xz + xy

∑2k+2
j=k+3 zj

1− z − (x + y)z2k+2 − xy
∑4k+3

j=2k+4 zj
. (3.15)

For some calculations, it is more convenient to use this form of the generating function because
the terms of the denominator are of the same sign (excluding the constant term).

3.2. Proof of Theorem 1.7. Now that we have the generating function, we turn to proving
Gaussianity. As the calculation is long and technical, we quickly summarize the main idea.
We find, for κ = 4k + 3, that we can write the relevant generating function as a sum of κ
terms. Each term is a product, and there is no n-dependence in the product (the n-dependence
surfaces by taking one of the terms in the product to the nth power). We then mimic the proof
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of the Central Limit Theorem. Specifically, we show only the first of the κ terms contributes in
the limit. We then Taylor expand and use logarithms to understand its behavior. The reason
everything works so smoothly is that we almost have a fixed term raised to the nth power; if
we had that, the Central Limit Theorem would follow immediately. All that remains is to do
some bookkeeping to see that the mean is of size n and the standard deviation of size

√
n.

To prove Theorem 1.7, we first prove that for each non-negative (a, b) 6= (0, 0), Xn =
aKn + bLn converges to a normal distribution as n approaches infinity.

Let x = wa and y = wb, then the coefficient of zn in (3.6) is given by
∑

m,` pn,m,`x
my` =∑

m,` pn,m,`w
am+b`. Define

gn(w) :=
∑

m>0,`≥0

pn,m,`w
am+b`. (3.16)

Then gn(w) is the generating function of Xn because for each i ∈ {1, . . . , n},

P (Xn = i) =
∑

am+b`=i

pn,m,`. (3.17)

We want to prove gn(w) satisfies all the conditions stated in Theorem 1.8. The following
proposition, which is proved in Appendix B, is useful for that purpose.

Proposition 3.3. There exists ε ∈ (0, 1) such that for any w ∈ Iε = (1− ε, 1 + ε):
(a) Aw(z) has no multiple roots, where Aw(z) is the denominator of (3.6).
(b) There exists a single positive real root e1(w) such that e1(w) < 1 and there exists some

positive λ < 1 such that |e1(w)|/|ei(w)| < λ for all i ≥ 2.
(c) Each root ei(w) is continuous, infinitely differentiable, and

e′1(w) = −
(awa−1 + bwb−1)e1(w)2k+2 + (a + b)wa+b−1

∑4k+3
j=2k+4 e1(w)j

1 + (wa + wb)(2k + 2)e1(w)2k+1 + wa+b
∑4k+3

j=2k+4 je1(w)j−1
. (3.18)

In the next step, we use partial fraction decomposition of Gk(x, y, z) (from Theorem 3.2)
to find a formula for gn(w). Let Aw(z) be the denominator of Gk. Making the substitution
(x, y) = (wa, wb), we have

1
Aw(z)

=
1

wa+b

4k+3∑
i=1

1
(z − ei(w))

∏
j 6=i(ej(w)− ei(w))

=
1

wa+b

4k+3∑
i=1

1
(1− z

ei(w))
· 1
ei(w)

∏
j 6=i(ej(w)− ei(w))

. (3.19)

Using the fact that 1
1− z

ei(w)
represents a geometric series, we combine the numerator of our

generating function with our expression for the denominator in (3.19) to get

gn(w) =
4k+3∑
i=1

1
wben

i (w)
∏

j 6=i(ej(w)− ei(w))
−

4k+3∑
i=1

1
wben−1

i (w)
∏

j 6=i(ej(w)− ei(w))

+
4k+3∑
i=1

1
en−k−2
i (w)

∏
j 6=i(ej(w)− ei(w))

−
4k+3∑
i=1

1
en−2k−2
i (w)

∏
j 6=i(ej(w)− ei(w))

=
4k+3∑
i=1

w−b(1− ei(w)) + ek+2
i (w)− e2k+2

i (w)
en
i (w)

∏
j 6=i(ej(w)− ei(w))

. (3.20)
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Let qi(w) denote all terms of gn(w) that do not depend on n:

qi(w) :=
w−b(1− ei(w)) + ek+2

i (w)− e2k+2
i (w)∏

j 6=i(ej(w)− ei(w))
. (3.21)

Setting αi := 1/ei, we can find gn(w) =
∑4k+3

i=1 qi(w)αn
i . We want to apply Theorem 1.8 to

Xn. All the notations are the same except κ := 4k + 3.
Indeed, by part (c) of Proposition 3.3, ei(w) are infinitely many times differentiable for any

i = 1, . . . , 4k + 3. Since 0 is not a root of Aw(z), for sufficiently small ε, ei(w) 6= 0 for all
w ∈ Iε. Therefore αi and qi, as rational functions of e1, . . . , e4k+3, are also infinitely many
times differentiable; in particular, they are three times differentiable, thus satisfy condition
(i) in Theorem 1.8. By part (b) of Proposition 3.3, |e1(w)| < 1 and |e1(w)|/|ei(w)| < λ < 1
for i ≥ 2. This implies |α1(w)| > 1 and |αi(w)|/|α1(w)| < λ < 1 for i ≥ 2, thus gn satisfies
condition (ii) in Theorem 1.8. The following lemma, whose proof is stated in Appendix C,
verifies the last condition.

Lemma 3.4. Given conditions as above:

α′1(1)
α1(1)

=
−e′1(1)
e1(1)

6= 0. (3.22)

d

dw

[
wα′1(w)
α1(w)

] ∣∣∣
w=1

= − d

dw

[
we′1(w)
e1(w)

] ∣∣∣
w=1

6= 0. (3.23)

We can now apply Theorem 1.8 to conclude that Xn converges to a Gaussian as n approaches
infinity. Moreover, we have formulas for the mean and variance of Xn = aKn + bLn for each
(a, b) non-negative and not both zero. We have

E[aKn + bLn] = Aa,bn + Ba,b + o(1), (3.24)

where Aa,b = α′1(1)/α1(1) and Ba,b = q′1(1)/q1(1), which depend only on our choice of a and
b. Further,

Var(aKn + bLn) = Ca,bn + Da,b + o(1), (3.25)

where Ca,b =
(

wα′1(w)
α1(w)

)′ ∣∣∣
w=1

and Da,b =
(

wq′1(w)
q1(w)

)′ ∣∣∣
w=1

, which depend only on a and b. By
Lemma 3.4, Aa,b and Ca,b are non-zero, thus the mean and variance of Xn always grows linearly
with n.

As proved above, Xn = aKn + bLn converges to a Gaussian distribution as n → ∞. Let
(a, b) = (1, 0) and (0, 1) we get Kn and Ln individually converge to a Gaussian. By (3.24),
their means both grows linearly with n.

E[Kn] = A1,0n + B1,0 + o(1). (3.26)

E[Ln] = A0,1n + B0,1 + o(1). (3.27)

Moreover, Aa,b = Ab,a because Aa,b = α′1(1)
α1(1) = −e′1(1)

e1(1) where e1(1) is a constant and e′1(1) is
symmetric between a and b as shown in (3.18). In particular A1,0 = A0,1, hence, E[Kn]−E[Ln]
converges to a constant as n →∞. This implies the average number of positive and negative
summands differ by a constant.

Equation (3.25) gives us a way to calculate variance of any joint density of Kn and Ln.
We can furthermore calculate the covariance and correlation of any two joint densities as a
function of e1 and q1.
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In particular, we prove that Kn + Ln and Kn − Ln have correlation decaying to zero with
n. Indeed, from (3.25):

Var[Kn] = C1,0n + D1,0 + o(1). (3.28)

Var[Ln] = C0,1n + D0,1 + o(1). (3.29)
Note that C0,1 = C1,0 because again we have

Ca,b =
(

xα′1(w)
α1(w)

)′ ∣∣∣∣∣
w=1

= −
(

we′1(w)
e1(w)

)′ ∣∣∣
w=1

(3.30)

where e1(w) does not depend on a, b and e′1(w) is symmetric between a, b. Therefore,

Cov[Kn + Ln,Kn − Ln] =
Var[2Kn] + Var[2Ln]

4
= Var[Kn]−Var[Ln] = O(1). (3.31)

Therefore,

Corr[Kn,Ln] =
Cov[Kn,Ln]√
Var[Kn]Var[Ln]

=
O(1)
θ(n)

= o(1) (3.32)

(where θ(n) represents a function which is on the order of n). This implies Kn−Ln and Kn,Ln

are uncorrelated as n →∞. This completes the proof of Theorem 1.7. 2

3.3. Proof of Theorem 1.8. We now collect the pieces. The argument here is different than
the one used in [16], and leads to a conceptually simpler proof (though we do have to wade
through a good amount of algebra). The rest of this section is just mimicking the standard
proof of the Central Limit Theorem, while at the same time isolating the values of the mean
and variance.

To prove part (a), we use the generating function gn(x) to calculate µn and σ2
n as follows:

µn = E[Xn] =
∑n

i=1 ρi;n · i∑n
i=1 ρi;n

=
g′n(1)
gn(1)

. (3.33)

σ2
n = E[X2

n]− µ2
n =

∑n
i=1 ρi;n · i2∑n

i=1 ρi;n
− µ2

n =
[xg′n(x)]′

∣∣
x=1

gn(1)
−
(

g′n(1)
gn(1)

)2

. (3.34)

The calculations are then straightforward:

g′n(x) =
κ∑

i=1

[qi(x)αn
i (x)]′ =

κ∑
i=1

[q′i(x)αn
i (x) + qi(x)nαn−1

i (x)α′i(x)]. (3.35)

[xg′n(x)]′ =
κ∑

i=1

(
x[q′i(x)αn

i (x) + qi(x)nαn−1
i (x)α′i(x)]

)′
=

κ∑
i=1

(
q′i(x)αn

i (x) + qi(x)nαn−1
i (x)α′i(x)

+ x
[
q′′i (x)αn

i (x) + 2q′i(x)nαn−1
i (x)α′i(x) + qinαn−1

i α′′i (x)

+ qi(x)n(n− 1)αn−2
i (α′i(x))2

])
. (3.36)

Since |αi(1)/α1(1)| < λ < 1 for each i ≥ 2, we have
κ∑

i=2

qi(1)αn
i (1) = αn

1 (1)
κ∑

i=2

qi(1)
(

αi(1)
α1(1)

)n

= o(λn)αn
1 (1). (3.37)
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Similarly,

κ∑
i=2

[qi(x)αn
i (x)]′

∣∣∣
x=1

= αn
1 (1)

κ∑
i=2

[
q′i(1) +

nqi(1)α′i(1)
α′i(1)

](
αi(1)
α1(1)

)n

= o(λn)αn
1 (1) (3.38)

and
κ∑

i=2

(
x[qi(x)αn

i (x)]′
)′∣∣∣

x=1
= o(λn)αn

1 (1). (3.39)

Hence,

µn =
g′n(1)
gn(1)

=
[q′1(1)αn

1 (1) + q1(1)nαn−1
i (1)α′1(1)] + o(λn)αn

1 (1)
q1(1)αn

1 (1) + o(λn)αn
1 (1)

=
q′1(1) + q1(1)nα′1(1)

α1(1) + o(λn)

q1(1) + o(λn)
=

q′1(1)
q1(1)

+ n
α′1(1)
α1(1)

+ o(1). (3.40)

Similarly,

σ2
n =

[xg′n(x)]′
∣∣
x=1

gn(1)
− µ2

n

=
([x(q1(x)α1(x))′]′

∣∣∣
x=1

+ o(λn)αn
1 (1)

q1(1)αn
1 (1) + o(λn)αn

1 (1)
− µ2

n

=
q′1
q1

+
nα′1
α1

+
q′′1

q1(1)
+

2q′1nα′1
α1

+
nα′′1
α1

+
n(n− 1)(α′1)

2

α2
1

−
(

α′1
α1

n +
q′1
q1

+ o(1)
)2

=
α1(α′1 + α′′1)− (α′1)

2

α2
1

· n +
q1(q′1 + q′′1)− (q′1)

2

q2
1

+ o(1). (3.41)

Here we apply (3.36) and use q1, α1 short for q1(1), α1(1). The last things we need are

α1(1)[α′1(1) + α′′1(1)]− α′1(1)2

α1(1)2
=
(

xα′1(x)
α1(x)

) ∣∣∣∣∣
x=1

(3.42)

and

q1(1)[q′1(1) + q′′1(1)]− q′1(1)2

q1(1)2
=
(

xq′1(x)
q1(x)

) ∣∣∣∣∣
x=1

, (3.43)

which are simple enough to check directly. This completes the proof of part (a) of Theorem
1.8.

To prove part (b) of the theorem, we use the method of moment generating functions,
showing that moment generating function of Xn converges to that of a Gaussian distribution
as n → ∞. (We could use instead the characteristic functions, but the moment generating
functions have good convergence properties here.) The moment generating function of Xn is

MXn(t) = E[etXn ] =
∑

i ρi;neti∑
i ρi;n

=
gn(et)
gn(1)

=
∑κ

i=1 qi(et)αn
i (et)∑κ

i=1 qi(1)αn
i (1)

. (3.44)
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Since |αi(et)| < |α1(et)| for any i ≥ 2, the main term of gn(et) is q1(et)α1(et). Thus we
write

MXn(t) =
∑κ

i=1 qi(et)αn
i (et)∑κ

i=1 qi(1)αn
i (1)

=
q1(et)αn

1 (et)
[
1 +

∑k
i=2

qi(e
t)

q1(et)

(
αi(e

t)
α1(et)

)n]
q1(1)αn

1 (1)
[
1 +

∑κ
i=2

qi(1)
q1(1)

(
αi(1)
α1(1)

)n]
=

q1(et)αn
1 (et)[1 + O(κQλn)]

q1(1)αn
1 (1)[1 + O(κQλn)]

=
q1(et)
q1(1)

(
α1(et)
α1(1)

)n

(1 + O(κQλn)) , (3.45)

where Q = maxi≥2 supt∈[−δ,+δ]
qi(e

t)
q1(et) . As 0 < λ < 1, κQλn rapidly decays when n gets large.

Taking the logarithm of both sides yields

log MXt = log
q1(et)
q1(1)

+ n log
α1(et)
α1(1)

+ log (1 + O(κQλn)) = log
q1(et)
q1(1)

+ n log
α1(et)
α1(1)

+ o(1).

(3.46)
Let Yn = Xn−µn

σn
, then the moment generating function of Yn is

MYn(t) = E[et(Xn−µn)/σn ] = MXn(t/σn)e−tµn/σn . (3.47)

Therefore,

log MYn(t) =
−tµn

σn
+ log

q1(et/σn)
q1(1)

+ n log
α1(et/σn)

α1(1)
+ o(1). (3.48)

Since σn = θ(
√

n), t/σn → 0 as n →∞. Hence,

lim
n→∞

log
q1(et/σn)

q1(1)
= log 1 = 0. (3.49)

Using the Taylor expansion of degree two at 1, we can write α1(x) as

α1(x) = α1(1) + α′(1)(x− 1) +
α′′1(1)

2
(x− 1)2 + O((x− 1)3). (3.50)

Substituting x = et/σn = 1 + t
σn

+ t2

2σ2
n

+ O( t3

σ3
n
) and noting that σn = θ(n1/2)), we get

α1(et/σn) = α1(1)+α′(1)(
t

σn
+

t2

2σ2
n

+O(n−3/2))+
α′′1(1)

2

[
t2

σ2
n

+ O(n−3/2)
]
+O(n−3/2). (3.51)

Taking the logarithm and using the Taylor expansion log(1 + x) = x− x2/2 + O(x3) gives us:

log
α1(et/σn)

α1(1)
= log

(
1 +

α′1(1)
α1(1)

t

σn
+

α′1(1) + α′′1(1)
α1(1)

t2

2σ2
n

+ O(n−3/2

)
=

α′1(1)
α1(1)

t

σn
+

α′1(1) + α′′1(1)
α1(1)

t2

2σ2
n

−
(

α′1(1)
α1(1)

)2 t2

2σ2
n

+ O(n−3/2). (3.52)

Substituting (3.49) and (3.52) into (3.48):

log MYn(t) = − tµn

σn
+ n

(
α′1(1)
α1(1)

t

σn
+

α′1(1) + α′′1(1)
α1(1)

t2

2σ2
n

−
(

α′1(1)
α1(1)

)2 t2

2σ2
n

+ O(n−3/2)

)
+ o(1)

=
(

n
α′1(1)
α1(1)

− µn

)
t

σn
+ n

α1(1)[α′1(1) + α′′1(1)]− α′1(1)2

α1(1)2
t2

2σ2
n

+ o(1). (3.53)
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Using the same notations A,B, C, D as in Theorem 1.8:

log MYn(t) =
An− µn

σn
· t +

Cn

σ2
n

· t2

2
+ o(1)

=
B + o(1)√

Cn + D + o(1)
· t +

Cn

Cn + D + o(1)
· t2

2
+ o(1)

=
t2

2
+ o(1). (3.54)

This implies the moment generating function of Yn converges to that of the standard normal
distribution. So as n → ∞, the moment generating function of Xn converges to a Gaussian,
which implies convergence in distribution. 2

4. Distribution of Gaps

4.1. Notation and Counting Lemmas. In this section we prove our results about gaps
between summands arising from k-Skipponacci far-difference representations. Specifically, we
are interested in the probability of finding a gap of size j among all gaps in the decompositions
of integers x ∈ [Rk(n), Rk(n + 1)]. In this section, we adopt the notation used in [2]. If
εi ∈ {−1, 1} and

x = εjS
(k)
ij

+ εj−1S
(k)
ij−1

+ · · ·+ ε1S
(k)
i1

(4.1)

is a legal far-difference representation (which implies that ij = n), then the gaps are

ij − ij−1, ij−1 − ij−2, . . . , i2 − i1. (4.2)

Note that we do not consider the ‘gap’ from the beginning up to i1, though if we wished
to include it there would be no change in the limit of the gap distributions. Thus in any
k-Skipponacci far-difference representations, there is one fewer gap than summands. The
greatest difficulty in the subject is avoiding double counting of gaps, which motivates the
following definition.

Definition 4.1 (Analogous to Definition 1.4 in [2]).
• Let Xi,i+j(n) denote the number of integers x ∈ [Rk(n), Rk(n + 1)] that have a gap of

length j that starts at S
(k)
i and ends at S

(k)
i+j.

• Let Y (n) be the total number of gaps in the far-difference decomposition for
x ∈ [Rk(n), Rk(n + 1)]:

Y (n) :=
n∑

i=1

n∑
j=0

Xi,i+j(n). (4.3)

Notice that Y (n) is equivalent to the total number of summands in all decompositions
for all x in the given interval minus the number of integers in that interval. The main
term is thus the total number of summands, which is

[A1,1n + B1,1 + o(1)] · [Rk(n + 1)−Rk(n)] = A1,1n[Rk(n + 1)−Rk(n)], (4.4)

as we know from Section 3.2 that E[Kn + Ln] = A1,1n + B1,1 + o(1).
• Let Pn(j) denote the proportion of gaps from decompositions of x ∈ [Rk(n), Rk(n+1)]

that are of length j:

Pn(j) :=
∑n−j

i=1 Xi,i+j(n)
Y (n)

, (4.5)
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and let

P (j) := lim
n→∞

Pn(j) (4.6)

(we will prove this limit exists).

Our proof of Theorem 1.10 starts by counting the number of gaps of constant size in the
k-Skipponacci far-difference representations of integers. To accomplish this, it is useful to
adopt the following notation.

Definition 4.2. Notation for counting integers with particular k-Skipponacci summands.

• Let N(±S
(k)
i ,±S

(k)
j ) denote the number of integers whose decomposition begins with

±S
(k)
i and ends with ±S

(k)
j .

• Let N(±Fi) be the number of integers whose decomposition ends with ±Fi.

The following results, which are easily derived using the counting notation in Definition 4.2,
are also useful.

Lemma 4.3.

N(±S
(k)
i ,±S

(k)
j ) = N(±S

(k)
1 ,±S

(k)
j−i+1). (4.7)

N(−S
(k)
1 ,+S

(k)
j ) + N(+S

(k)
1 ,+S

(k)
j ) = N(+S

(k)
j )−N(+S

(k)
j−1). (4.8)

N(+S
(k)
i ) = Rk(i)−Rk(i− 1). (4.9)

Proof. First, note that (4.7) describes a shift of indices, which doesn’t change the number of
possible decompositions. For (4.8), we can apply inclusion-exclusion to get

N(−S
(k)
1 ,+S

(k)
j ) + N(+S

(k)
1 ,+S

(k)
j )

= N(+S
(k)
j )−

[
N(+S

(k)
2 ,+S

(k)
j ) + N(+S

(k)
3 ,+S

(k)
j ) + · · ·

]
= N(+S

(k)
j )−

[
N(+S

(k)
1 ,+S

(k)
j−1) + N(+S

(k)
2 ,+S

(k)
j−1) + · · ·

]
= N(+S

(k)
j )−N(+S

(k)
j−1). (4.10)

Finally, for (4.9), recall that the k-Skipponaccis partition the integers into intervals of the
form [S(k)

n − Rk(n − k − 2), Rk(n)], where S
(k)
n is the main term of all of the integers in this

range. Thus N(+Fi) is the size of this interval, which is just Rk(i)−Rk(i− 1), as desired. �

4.2. Proof of Theorem 1.10. We take a combinatorial approach to proving Theorem 1.10.
We derive expressions for Xi,i+c(n) and Xi,i+j(n) by counting, and then we use the Generalized
Binet’s Formula for the k-Skipponaccis in Lemma 1.9 to reach the desired expressions for Pn(j),
and then take the limit as n →∞.

Proof of Theorem 1.10. We first consider gaps of length j for k + 2 ≤ j < 2k + 2, then show
that the case with gaps of length j ≥ 2k +2 follows from a similar calculation. It is important
to separate these two intervals as there are sign interactions that must be accounted for in
the former that do not affect our computation in the latter. From Theorem 1.6, we know that
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there are no gaps of length k + 1 or smaller. Using Lemma 4.3, we find a nice formula for
Xi,i+j(n). For convenience of notation, we will let Rk denote Rk(n) in the following equations:

Xi,i+j(n) = N(+S
(k)
i )

[
N(+S

(k)
n−i−j+1)−N(+S

(k)
n−i−j)

]
= (Ri −Ri−1) [(Rn−i−j+1 −Rn−i−j)− (Rn−i−j −Rn−i−j−1)]

= Ri−k−1 · (Rn−i−j−k −Rn−i−j−k−1)

= Ri−k−1 ·Rn−i−j−2k−1. (4.11)

To continue, we need a tractable expression for Rk(n). Using the results from the General-
ized Binet’s Formula in Lemma 1.9, we can express Rk(n) as

Rk(n) = S(k)
n + S

(k)
n−2k−2 + S

(k)
n−4k−4 + S

(k)
n−6k−6 + · · ·

= a1λ
n
1 + a1λ

n−2k−2
1 + a1λ

n−4k−4
1 + a1λ

n−6k−6
1 + · · ·

= a1λ
n
1

[
1 + λ−2k−2

1 + λ−4k−4
1 + λ−6k−6

1 + · · ·
]

= a1λ
n
1

[
1 +

(
λ−2k−2

1

)
+
(
λ−2k−2

1

)2
+
(
λ−2k−2

1

)3
+ · · ·

]
=

a1λ
n
1

1− λ−2k−2
1

+ Ok(1) (4.12)

(where the Ok(1) error depends on k and arises from extending the finite geometric series to
infinity). We substitute this expression for Rk(n) into the formula from (4.11) for Xi,i+j(n),
and find

Xi,i+j(n) = Ri−k−1 ·Rn−i−j−2k−1

=
a1λ

i−k−1
1 (1 + Ok(1))
1− λ−2k−2

1

· a1λ
n−i−j−2k−1
1 (1 + Ok(1))

1− λ−2k−2
1

=
a2

1λ
n−j−3k−2
1 (1 + Ok(λ−i

1 + λ−n+i+j
1 )(

1− λ−2k−2
1

)2 . (4.13)

We then sum Xi,i+j(n) over i. Note that almost all i satisfy log log n � i � n − log log n,
which means the error terms above are of significantly lower order (we have to be careful, as
if i or n − i is of order 1 then the error is of the same size as the main term). Using our
expression for Y (n) from Definition 4.1 we find

Pn(j) =
∑n−j

i=1 Xi,i+j(n)
Y (n)

=
a2

1λ
n−j−3k−2
1 (n− j)(1 + ok(nλn

1 ))

[A1,1n + B1,1 + o(1)] ·
(
1− λ−2k−2

1

)2
· a1λn

1 (λ1 − 1) + O(λn
1 )

. (4.14)

Taking the limit as n →∞ yields

P (j) = lim
n→∞

Pn(j) =
a1λ

−3k−2
1

A1,1

(
1− λ−2k−2

1

)2
(λ1 − 1)

λ−j
1 . (4.15)
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For the case where j ≥ 2k + 2, the calculation is even easier, as we no longer have to worry
about sign interactions across the gap (that is, S

(k)
i and S

(k)
i+j no longer have to be of opposite

sign). Thus the calculation of Xi,i+j(n) reduces to

Xi,i+j(n) = N(+S
(k)
i )N(+S

(k)
n−i−j)

= (Ri −Ri−1)(Rn−i−j −Rn−i−j−1)

= Ri−k−1 ·Rn−i−j−k−1. (4.16)

We again use (4.12) to get

Xi,i+c(n) = Ri−k−1 ·Rn−i−j−k−1 =
a2

1λ
n−j−2k−2
1 (1 + ok(λn

1 ))(
1− λ−2k−2

1

)2 . (4.17)

Which, by a similar argument as before, gives us

P (j) =
a1λ

−2k−2
1

A1,1

(
1− λ−2k−2

1

)2
(λ1 − 1)

λ−j
1 , (4.18)

completing the proof. �

5. Generalized Far-Difference Sequences

The k-Skipponaccis give rise to unique far-difference representations where same signed
indices are at least k + 2 apart and opposite signed indices are at least 2k + 2 apart. We
consider the reverse problem, namely, given a pair (s, d) of positive integers, when does there
exist a sequence {an} such that every integer has a unique far-difference representation where
same signed indices are at least s apart and opposite signed indices are at least d apart. We
call such representations (s, d) far-difference representations.

5.1. Existence of Sequences.

Proof of Theorem 1.12. Define

R(s,d)
n =

bn/sc∑
i=0

an−is = an + an−s + an−2s + · · · . (5.1)

For each n, the largest number that can be decomposed using an as the largest summand is
R

(s,d)
n , while the smallest one is an − R

(s,d)
n−d . It is therefore natural to break our analysis up

into intervals In = [an −R
(s,d)
n−d , R

(s,d)
n ].

We first prove by induction that

an = R
(s,d)
n−1 + R

(s,d)
n−d + 1, (5.2)

or equivalently, an − R
(s,d)
n−d = R

(s,d)
n−1 + 1 for all n, so that these intervals {In}∞n=1 are disjoint

and cover Z+.
Indeed, direct calculation proves (5.2) is true for n = 1, . . . ,max(s, d). For n > max(s, d),

assume it is true for all positive integers up to n− 1. We have

an−s = R
(s,d)
n−s−1 + R

(s,d)
n−s−d + 1 = (R(s,d)

n−1 − an−1) + (R(s,d)
n−d − an−d) + 1

⇒ R
(s,d)
n−1 + R

(s,d)
n−d + 1 = an−s + an−1 + an−d = an. (5.3)
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This implies that (5.2) is true for n and thus true for all positive integers.
We prove that every integer is uniquely represented as a sum of ±an’s in which every two

terms of the same sign are at least s apart in index and every two terms of opposite sign are
at least d apart in index. We prove by induction that any number in the interval In has a
unique (s, d) far-difference representation with main term (the largest term) an.

It is easy to check for n ≤ max(s, d). For n > max(s, d), assume it is true up to n− 1. Let
x be a number in In, where an −R

(s,d)
n−d ≤ x ≤ R

(s,d)
n . There are two cases to consider.

(1) If an ≤ x ≤ R
(s,d)
n , then either x = an or 1 ≤ x − an ≤ R

(s,d)
n − an = R

(s,d)
n−s . By the

induction assumption, we know that x − an has a far-difference representation with
main term of at most an−s. It follows that x = an +(x−an) has a legal decomposition.

(2) If an − R
(s,d)
n−d ≤ x < an then 1 ≤ an − x ≤ R

(s,d)
n−d . By the induction assumption, we

know that an − x has a far-difference representation with main term at most an−d. It
follows that x = an − (an − x) has a legal decomposition.

To prove uniqueness, assume that x has two difference decompositions
∑

i±ani =
∑

i±ami ,
where n1 > n2 > . . . and m1 > m2 > . . .. Then it must be the case that x belongs to both
In1 and Im1 . However, these intervals are disjoint, so by contradiction we have n1 = m1.
Uniqueness follows by induction. �

Remark 5.1. As the recurrence relation of an is symmetric between s and d, it is the initial
terms that define whether a sequence has an (s, d) or a (d, s) far-difference representation.

Corollary 5.2. The Fibonacci numbers {1, 2, 3, 5, 8, . . . } have a (4, 3) far-difference represen-
tation.

Proof. We can rewrite the Fibonacci sequence as F1 = 1, F2 = 2, F3 = 3, F4 = F3 + F1 + 1,
and Fn = Fn−1 + Fn−2 = Fn−1 + (Fn−3 + Fn−4) for n ≥ 5. �

Corollary 5.3. The k-Skipponacci numbers, which are defined as an = n for n ≤ k and
an+1 = an + an−k for n > k, have a (2k + 2, k + 2) far-difference representation.

Proof. This follows from writing the recurrence relation as an = an−1 + an−k−1 = an−1 +
an−k−2 + an−2k−2 and using the same initial conditions. �

Corollary 5.4. Every positive integer can be represented uniquely as a sum of ±3n for n =
0, 1, 2, . . . .

Proof. The sequence an = 3n−1 satisfies an = 3an−1, which by our theorem has a (1, 1) far-
difference representation. �

Corollary 5.5. Every positive integer can be represented uniquely as
∑

i±2ni where n1 >
n2 > . . . and ni ≥ ni−1 + 2, so any two terms are apart by at least two.

Proof. The sequence an = 2n satisfies an = an−1 + 2an−2, which by our theorem has a (2, 2)
far-difference representation. �

5.2. Non-uniqueness. We consider the inverse direction of Theorem 1.12. Given positive
integers s and d, how many increasing sequences are there that have (s, d) far-difference rep-
resentation?

The following argument suggests that any sequence an that has (s, d) far-difference rep-
resentation should satisfy the recurrence relation an = an−1 + an−s + an−d. If we want the
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intervals [an − Rn−d, Rn] to be disjoint, which is essential for the unique representation, we
must have

an −Rn−d = Rn−1 + 1. (5.4)

Replacing n by n− s gives us

an−s −Rn−d−s = Rn−1−s + 1. (5.5)

When we subtract those two equations and note that Rk −Rk−s = ak, we get

an − an−s − an−d = an−1 (5.6)

or an = an−1 + an−s + an−d, as desired. What complicates this problem is the choice of initial
terms for this sequence. Ideally, we want to choose the starting terms so that we can guarantee
that every integer will have a unique far-difference representation. We have shown this to be
the case for the initial terms defined in Theorem 1.12, which we refer to as the standard (s, d)
sequence. However, it is not always the case that the initial terms must follow the standard
model to have a unique far-difference representation. In fact, it is not even necessary that the
sequence starts with 1.

In other types of decompositions where only positive terms are allowed, it is often obvious
that a unique increasing sequence with initial terms starting at 1 is the desired sequence.
However, in far-difference representations where negative terms are allowed, it may happen
that a small number (such as 1) arises through subtraction of terms that appear later in the
sequence. Indeed, if (s, d) = (1, 1), we find several examples where the sequence need not start
with 1.

Example 5.6. The following sequences have a (1, 1) far-difference representation.

• a1 = 2, a2 = 6 and an = 3n−1 for n ≥ 3.
• a1 = 3, a2 = 4 and an = 3n−1 for n ≥ 3.
• a1 = 1, a2 = 9, a3 = 12 and an = 3n−1 for n ≥ 4.

Example 5.7. For each positive integer k, the sequence Bk, defined by Bk,i = ±2 · 3i−1 for
i = k + 1 and Bk,i = ±3i−1 otherwise, has a (1, 1) far-difference representation.

We prove this by showing that there is a bijection between a decomposition using the
standard sequence bn = ±3n−1 and a decomposition using Bk. First we give an example: For
k = 2, the sequence is 1, 3, 2 · 32, 33, 34, . . .

763 = 1− 3 + 32 + 33 + 36

= 1− 3 + (33 − 2 · 32) + 33 + 36

= 1− 3− 2 · 32 + 2 · 33 + 36

= 1− 3− 2 · 32 + 34 − 33 + 36

= B2,0 −B2,1 −B2,2 −B2,3 + B2,4 + B2,6.
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Conversely,

763 = B2,0 −B2,1 −B2,2 −B2,3 + B2,4 + B2,6

= 1− 3− 2.32 − 33 + 34 + 36

= 1− 3− (33 − 32)− 33 + 34 + 36

= 1− 3 + 32 − 2.33 + 34 + 36

= 1− 3 + 32 − (34 − 33) + 34 + 36

= 1− 3 + 32 + 33 + 36.

To prove the first direction, assume x =
∑

i∈I 3i −
∑

j∈J 3j where I, J are disjoint subsets
of Z+. If k is not in I ∪ J , this representation is automatically a representation of x using
Bk. Otherwise, assume k ∈ I, we replace the term 3k by 3k+1 − 2 · 3k = Bk,k+2 − Bk,k+1. If
k + 1 /∈ I, again x has a (1, 1) far-difference representation of Bk. Otherwise, x has the term
2 · 3k+1 in its representation, we can replace this term by 3k+2 − 3k+1. Continue this process,
stopping if k+2 /∈ I and replacing the extra term if k+2 ∈ I. Hence we can always decompose
x by ±Bk,i.

Conversely, suppose x =
∑

i∈I Bk,i −
∑

j∈J Bk,j . If k + 1 /∈ I ∪ J , this representation
is automatically a representation of x using ±3n. If not, assume k + 1 ∈ I, we replace
Bk,k+1 = 2 · 3k by 3k+1− 3k. If k +2 /∈ I we are done, if not, x has a term 2 · 3k+1, replace this
one by 3k+2 − 3k+1 and continue doing this, we always get a decomposition using ±3n. Since
there is only one such decomposition, the decomposition using ±Bk,i must also be unique. 2

Remark 5.8. From Example 5.7, we know that there is at least one infinite family of sequences
that have (1, 1) far-difference representations. Example 5.6 suggests that there are many other
sequences with that property and, in all examples we have found to date, there exists a number
k such that the recurrence relation an = 3an−1 holds for all n ≥ k.

6. Conclusions and Further Research

In this paper we extend the results of [1, 16, 2] on the Fibonacci sequence to all k-Skipponacci
sequences. Furthermore, we prove there exists a sequence that has an (s, d) far-difference rep-
resentation for any positive integer pair (s, d). This new sequence definition further generalizes
the idea of far-difference representations by uniquely focusing on the index restrictions that
allow for unique decompositions. Still many open questions remain that we would like to
investigate in the future. A few that we believe to be the most important and interesting
include:

(1) Can we characterize all sequences that have (1, 1) far-difference representations? Does
every such sequence converge to the recurrence an = 3an−1 after the first few terms?

(2) For (s, d) 6= (1, 1), are there any non-standard increasing sequences that have an (s, d)
far-difference representation? If there is such a sequence, does it satisfy the recurrence
relation stated in Theorem 1.12 after the first few terms?

(3) Will the results for Gaussianity in the number of summands still hold for any sequence
that has an (s, d) far-difference representation?

(4) How are the gaps in a general (s, d) far-difference representation distributed?
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Appendix A. Proof of Lemma 2.1

Proof of Lemma 2.1. We proceed by induction on n. It is easy to check that (2.1) holds for
n = 1, . . . , 2k + 2. For n ≥ 2k + 2, assume that the relationship in (2.1) holds for all integers
up to to n− 1. We claim that it further holds up to n. We see that

Rk(n− 1) + Rk(n− k − 2) = S
(k)
n−1 + S

(k)
n−k−2 + S

(k)
n−2k−3 + S

(k)
n−3k−4 + ...

= S
(k)
n−1 +

(
S

(k)
n−k−2 + S

(k)
n−2k−3 + S

(k)
n−3k−4 + ...

)
= S

(k)
n−1 + [Rk(n− k − 2) + Rk(n− 2k − 3)]

= S
(k)
n−1 + S

(k)
n−k−1 − 1

= S(k)
n − 1, (A.1)

completing the proof. �

Appendix B. Proof of Proposition 3.3

Before we prove Proposition 3.3, we define a few helpful equations. Let Aw(z) and Âw(z)
denote the denominators of the generating functions in (3.6) and (3.15), respectively. Making
the substitution (x, y) = (wa, wb) in each case gives us the following expressions:

Aw(z) = 1− 2z + z2 − (wa + wb)
(
z2k+2 − z2k+3

)
− wa+b

(
z2k+4 − z4k+4

)
(B.1)

and

Âw(z) = 1− z − (wa + wb)z2k+2 − wa+b
4k+3∑

j=2k+4

zj . (B.2)

Notice that the coefficients of A(z) are polynomials in one variable, and therefore continuous.
This implies that the roots of A(z) are continuous as well. Since we are interested only in the
region near the point w = 1, it is enough to prove the results of part (a) and (b) at w = 1.
Thus we use the following expressions as well, which are formed by substituting w = 1 into
(B.1) and (B.2), respectively:

A(z) = 1− 2z + z2 − 2z2k+2 + 2z2k+3 − z2k+4 + z4k+4 (B.3)

and

Â(z) = 1− z − 2z2k+2 −
4k+3∑

j=2k+4

zj . (B.4)
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Proof of Proposition 3.3(a). It is enough to prove A(z) from (B.3) does not have multiple
roots. We begin by factoring A(z):

A(z) = 1− 2z + z2 − 2z2k+2 + 2z2k+3 − z2k+4 + z4k+4

= (1− 2z2k+2 + z4k+4) + (2z2k+3 − 2z) + (z2 − z2k+4)

= (z2k+2 − 1)2 + 2z(z2k+2 − 1)− z2(z2k+2 − 1)

= (z2k+2 − 1)(z2k+2 − 1 + 2z − z2)

= (z2k+2 − 1)(z2k+2 − (z − 1)2)

= (z2k+2 − 1)(zk+1 + z − 1)((zk+1 − z + 1). (B.5)

Let a(z) = z2k+2−1, b(z) = zk+1 +z−1, and c(z) = zk+1−z +1. We begin by proving that
a(z), b(z) and c(z) are pairwise co-prime. Here we use the fact that gcd(p, q) = gcd(p, q − rp)
for any polynomials p, q, r ∈ Z[x]. We have

gcd(a, b, c) = gcd
(
z2k+2 − 1, z2k+2 − z2 + 2z − 1

)
= gcd

(
z2k+2 − 1, z2 − 2z

)
= 1. (B.6)

The last equality holds because z2 − 2z = z(z − 2) has only two roots z = 0, 2 neither of
which are a root of z2k+2 − 1. It follows that gcd(a, b) = gcd(a, c) = 1. Similarly, gcd(b, c) =
gcd(zk+1 + z − 1, zk+1 − z + 1) = gcd

(
zk+1 + z − 1, 2z − 2

)
= 1 because 2z − 2 has only one

root z = 1 which is not a root of zk+1 + z − 1. It follows that gcd(b, c) = 1 as well.
We prove that the polynomials a(z), b(z) and c(z) do not have repeated roots. The roots

of a(z) = z2k+2 − 1 are eiπ`/(2k+2) for ` = 1, . . . , 2k + 2 and are therefore distinct. For b(z)
and c(z), we prove that gcd (b(z), b′(z)) = gcd (c(z), c′(z)) = 1, and therefore that they do not
have repeated roots either. Indeed, we have

gcd[b(z), b′(z)] = gcd
(
zk+1 + z − 1, (k + 1)zk + 1

)
= gcd

(
zk+1 + z − 1, zk+1 + z − 1− z

k + 1

[
(k + 1)zk + 1

])
= gcd

(
zk+1 + z − 1,

k

k + 1
z − 1

)
= 1, (B.7)

where the last equality again holds since k
k+1z − 1 has only one root z = k+1

k which is not a
root of zk+1 + z − 1. By a similar method, we can prove that gcd[c(z), c′(z)] = 1. It follows
that A(z) = a(z)b(z)c(z) has no repeated roots. �

Proof of Proposition 3.3(b). We need to prove that Â(z) = 1 − z − 2z2k+2 −
∑4k+3

j=2k+4 zj has
only one real root e1 on the interval (0,∞), |e1| < 1, and all other roots ei with i ≥ 2 satisfy
|e1|/|ei| < λ < 1 for some λ.

Indeed, first note that Â(0) > 0 while Â(1) < 0, thus Â(x) must have at least one root e1

on (0, 1). Moreover, since Â′(z) = −1 − 2(2k + 2)z2k+1 −
∑4k+3

j=2k+4 jzj−1, which is negative
whenever z ≥ 0, the function is strictly decreasing on (0,∞). It follows that e1 is the only real
root of Â in this interval. Let ei be another root of Â(z), and assume that |ei| ≤ e1. Then
|ei|j ≤ |e1|j = ej

1 for any j ∈ Z+. Rearranging Â(ei) = 0 to be 1 = ei + 2e2k+2
i +

∑4k+3
j=2k+4 ej

i
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and applying the generalized triangle inequality, we find

1 = |1| =

∣∣∣∣∣∣ei + 2e2k+2
i +

4k+3∑
j=2k+4

ej
i

∣∣∣∣∣∣ ≤ |ei|+ 2|ei|2k+2 +
4k+3∑

j=2k+4

|ei|j

≤ |e1|+ 2|e1|2k+2 +
4k+3∑

j=2k+4

|e1|j = e1 + 2e2k+2
1 +

4k+3∑
j=2k+4

ej
1 = 1. (B.8)

Hence the equalities hold everywhere, which implies that |ei| = e1 and all the complex numbers
ei, e

2k+2
i and ej

i lie on the same line in the complex plane. Since their sum is 1, they must all
be real numbers, and since e2k+2

i > 0, ei will be positive. It follows that ei = e1. However, this
is a contradiction because, as we proved before, e1 is a non-repeated root of Â(z). It follows
that |ei| > |e1| for any i ≥ 2. Let λ = maxi≥2

√
e1/|ei|, then |e1|/|ei| < λ < 1 for all i ≥ 2. 2

Proof of Proposition 3.3(c). Since Â(e1(w)) = 0 and the function is continuous, in some small
neighborhood ∆w we have Â[e1(w + ∆w)] = ε for some small ε. This implies

ε = Â[e1(w)]− Â[e1(w + ∆w)]

=

1− e1(w)− (wa + wb)e1(w)2k+2 − wa+b
4k+3∑

j=2k+4

e1(w)j

− [1− e1(w + ∆w)

− ((w + ∆w)a + (w + ∆w)b)e1(w + ∆w)2k+2 − (w + ∆w)a+b
4k+3∑

j=2k+4

e1(w + ∆w)j


= e1(w + ∆w)− e1(w) + (wa + wb)

[
e1(w + ∆w)2k+2 − e1(w)2k+2

+ wa+b
4k+3∑

j=2k+4

[
e1(w + ∆w)j − e1(w)j

]]
+ e1(w + ∆w)2k+2

[
(w + ∆w)a − wa

+ (w + ∆w)b − wb
]

+
4k+3∑

j=2k+4

[
e1(w + ∆w)j ][(w + ∆w)a+b − wa+b

]

= [e1(w + ∆w)− e1(w)] ·

[
1 + (wa + wb)

2k+1∑
i=0

e1(w + ∆w)ie1(w)2k+1−i

+ wa+b
4k+3∑

j=2k+4

j−1∑
i=0

e1(w + ∆w)ie1(w)j−1−i


+ [∆w] ·

[
e1(w + ∆w)2k+2

a−1∑
i=0

(w + ∆w)iwa−1−i +
b−1∑
i=0

(w + ∆w)iwb−1−i

+
4k+3∑

j=2k+4

e1(w + ∆w)j ·
a+b−1∑

i=0

(w + ∆w)iwa+b−1−i

]
. (B.9)
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Since ei(w) is continuous, the coefficient of |ei(w + ∆)− ei(w)| converges as ∆w → 0, and its
limit is

1 + (wa + wb)(2k + 2)e1(w)2k+1 + wa+b
4k+3∑

j=2k+4

je1(w)j−1. (B.10)

This is the derivative of −Aw(z) at ei(w), which is non-zero since Aw(z) has no multiple roots.
Then, similar to the arguments in [16], since wa, wb and wa+b are differentiable at w = 1, the
coefficient of ∆w in (B.9) converges as well, with limit(

awa−1 + bwb−1
)

e1(w)2k+2 + (a + b)wa+b−1
4k+3∑

j=2k+4

e1(w)j . (B.11)

Thus we can rearrange the terms in (B.9) and take the limit. Note that when ∆w → 0, ε → 0
we have

e′1(w) = lim
∆w→0

e1(w + ∆w)− e1(w)
∆w

= −
(awa−1 + bwb−1)e1(w)2k+2 + (a + b)wa+b−1

∑4k+3
j=2k+4 e1(w)j

1 + (wa + wb)(2k + 2)e1(w)2k+1 + wa+b
∑4k+3

j=2k+4 je1(w)j−1
, (B.12)

as desired. Further notice that since e1(w) is a positive real root of our generating function,
it is easy to see that the denominator of this derivative is also a positive real number. Since
taking further derivatives will utilize the quotient rule (and thus will only include larger powers
of the denominator) it is clear that this root is ` times differentiable for any positive integer `.

Appendix C. Proof of Lemma 3.4

Proof of (3.22). To prove the first equality note that

α′1(w) =
(

1
e1(w)

)′
= −e′1(w)

e2
1(w)

, (C.1)

which implies
α′1(w)
α1(w)

=
−e′1(w)
e2
1(w)

· 1
1/e1(w)

= −e′1(w)
e1(w)

. (C.2)

By (3.18),

e′(1) =
(a + b)e1(1)2k+2 +

∑4k+3
j=2k+4 e1(1)j

1 + 2(2k + 2)e1(1)2k+1 +
∑4k+3

j=2k+4 je1(1)j−1
> 0 (C.3)

because a + b > 0 and e1(1) > 0. Thus −e′1(1)/e1(1) 6= 0.
Proof of (3.23). The first equality follows directly from (C.2). Let ha,b(w) := −we′1(w)

e1(w) . We
want to prove h′a,b(1) 6= 0. By (3.18), we have

ha,b(w) =
we′1
e1

=
(awa + bwb)e1(w)2k+2 + (a + b)wa+b

∑4k+3
j=2k+4 e1(w)j

e1 + (wa + wb)(2k + 2)e1(w)2k+2 + wa+b
∑4k+3

j=2k+4 je1(w)j
. (C.4)

Let the numerator and denominator of (C.4) be h1(w) and h2(w), respectively. Further

assume that h′a,b(1) = 0, or equivalently
(

h1(w)
h2(w)

)′ ∣∣∣
w=1

= 0. Then by the quotient rule, we get
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h′1(1)h2(1)− h1(1)h′2(1) = 0. This implies that

h′1(1)
h′2(1)

=
h1(1)
h2(1)

= −e′1(1)
e1(1)

⇒ 0 = h′1(1)e1(1) + h′2(1)e′1(1). (C.5)

For simplicity, we return to our previous notation in which we let e1 represent e1(1) and e′1
represent e′1(1). Direct calculation of h′1 and h′2 yields

0 = (a2 + b2)e2k+2
1 + (a + b)(2k + 2)e2k+1

1 e′1 + (a + b)2
4k+3∑

j=2k+4

ej
1 + (a + b)

4k+3∑
j=2k+4

jej−1
1

+ e′1 + (a + b)(2k + 2)e2k+2
1 + 2(2k + 2)2e2k+1

1 e′1 + (a + b)
4k+3∑

j=2k+4

jej
1 +

4k+3∑
j=2k+4

j2ej−1
1

= e2k+1
1

[
(a2 + b2)e2

1 + 2(a + b)(2k + 2)e1e
′
1 + 2(2k + 2)(e′1)

2
]

+
4k+3∑

j=2k+4

ej−1
1

[
(a + b)2e2

1 + 2(a + b)je1e
′
1 + j2(e′1)

2
]

≥ e2k+1
1

1
2
[
(a + b)e1 + 2(2k + 2)e′1

]2 +
4k+3∑

j=2k+4

ej−1
1

[
(a + b)e1 + je′1

]2 ≥ 0. (C.6)

Here we used the fact that a2 + b2 ≥ 1
2(a + b)2, and that x2 > 0 for any real x 6= 0. In the

last line of (C.6), this implies that (a + b)e1 + je′1 = 0. We can re-express this as j = − (a+b)e1

e′1
(since e′1(1) 6= 0) for every j ∈ {2k + 4, . . . , 4k + 3}. This is a contradiction, since j must be
an integer, and it follows that h′a,b(1) 6= 0. �
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