SOME IDENTITIES VIA GEOMETRIC SERIES

MARTIN GRIFFITHS

ABSTRACT. In this article we demonstrate how to obtain, via the manipulation of certain
geometric series, a number of identities arising from a particular infinite family of linear,
second-order, homogeneous, recurrence relations.

1. INTRODUCTION

From Binet’s formula [1, 3, 4] we know that

(o ()

where ¢ is the golden ratio given by

oo LT V5
-—
The Fibonacci numbers may thus be regarded as an ‘almost-geometric’ sequence with common

ratio ¢ in the sense that

The sum of the series

Fi+FF+F5+---+F,
may therefore be approximated using the formula for the sum of the finite geometric progres-
sion [5]

atar+ar’*+--+ar"!

given by
a(r"”—1)
_ 1.1
r—1 7 (1.1)
where a,r € R, n € N and r # 1.
We in fact use a related idea here to obtain exact expressions for certain sums of finite series,
the terms of which arise from a particular infinite family of linear, second-order, homogeneous,

recurrence relations. The recurrence relations considered in this paper are all of the form
Un = kun—l + Un—2,

where k € N. As will be seen in due course, these allow us to determine sums having particu-
larly simple forms.
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2. SOME PRELIMINARIES

We provide here some results that will be used in later sections, and start by considering
Up = kup—1 + unp—2, which gives rise to specific instances of the generalized Fibonacci (or
Horadam) sequence [2]. This recurrence relation has auxiliary equation A2 — kX —1 = 0, which
in turn possesses the solutions

k+VkZ+4 _ k—=VEk?+4 1
a=—————9o—— and a=—— = ——
2 2 «Q
Therefore,
1 n
U, = aa” +ba" =aa” +0b <——>
«
for some a,b € R. As will become clear, we are interested here in the cases a = —b and a = b.

The former gives rise to the following generalization of the Binet formula

gt (- ()

Vo=a"+ (—1>n. (2.2)

(07

while the latter results in

Note that Uy =0, U; =1, V=2 and V] = k.
Next we show, by induction, that

o =alU, +U,_1. (2.3)

First, (2.3) certainly holds for n = 1. Now assume that it is true for some n > 1. Then, on
utilizing both the inductive hypothesis and the recurrence relation for U,,, we obtain

"t = Q%U, + alU,_4

2
k+Vk*+4 k+Vk*+4
- # Un+ # Un_l

:%<k2—|—2—|—k:\/k‘2—+4> Un+%(k+x/k2+4) Un—1
_ % (k+ VEZ+4) (KU, + Uy 1) + U,
_ 1 <k‘—|—\/k‘2—|—4>Un+1+Un

= 2Un+1 + Uy,
as required. In a similar manner, it may be shown that (2.3) is also true when « is replaced
by a.
3. AN INITIAL RESULT
In this section we find simple expressions for the sum of the following finite series:
Uo + Uz + Usin + -+ - + Uz, (3.1)
where m,r € N. This is a somewhat more straightforward matter than that of obtaining the

corresponding sum of terms from the sequence (Vn)nzm which will be considered in a later
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section. We deal first with the simplest case, in which m is even. We therefore set m = 2p for
some p € N. Let us now consider the following finite geometric series:

T
1+ o +a 4. 4o =) "o,

j=0
Using (1.1) and (2.1), we obtain
T un adrr+1) _ 1
Z a - ot — 1
§=0
Oé2zo(r+1)( 2p(r+1) _ —2p(r+1))
- a?P (a?P — a=2p)
2p(r+1) 210 (r+1)
_ a2pr
a?p —
1 ( 2p(r+1) _l)2p(r+1)
2pr k2+4 @
-« 1 2 1\2p
o (0 = (-0
_ 2o Tt (3.2)
Usp
Incidentally, the above makes it clear why the case a = —b was chosen in Section 2.

Now, using (2.3), we may write (3.2) as

T U ,
14 E (aU4jp + U4jp_1) = (angr + U2p7’—1) 72§2+1) .
j=1 P

Since « is irrational, it is the case that, for a,b,¢,d € Q, aa + b = ca + d if, and only if, a = ¢
and b = d. It follows from this that

d U2 rU r
Z U4jp _ pr Y 2p(r+1)

j=0 Vo
and
. Uapr—1Usgp(r
Z Usjp_1 = pU—MH) —1, (3.3)
2p

j=1
remembering that Uy = 0.

4. COMPANION SERIES

Before obtaining more identities associated with (Up),,~, we need to consider the sequence
(Vi),>0» Which, for a given k € N, may be regarded as a companion to (U,), -, Not only do
these two sequences share the same recurrence relation, but (Vi) p>o also satisfies an identity
corresponding to (2.3), as follows: -

o"Vk2+4=aV,+V,_1. (4.1)

It is easily verified that this is true for n = 1, noting, from the definition of this sequence in
(2.2), that Vo = 2 and V; = k. In order to show that (4.1) is true in general, induction may
be utilized once more, and indeed interested readers might like to check the details.
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5. FURTHER RESULTS

We are now in a position to be able to consider the sum of the series
UO+U2m+U4m+”’+U2rma

where m is odd. The cases r odd and r even are dealt with separately. To this end, let
m =2p—1and r = 2¢ — 1. We start by looking at the following finite geometric series:

2q—1
1+a2(2p—1)+a4(2p—1)+___+ 2(2¢—1)(2p—1) Za2](2p 1

We have
2q—1 _
2iepen) _ oMY -1
2 Q2@ — |
j=0

a24(2p=1) (a2q(2p—1) — a—2q(2p—1))

a2p—1 (a2p—1 _ a—(2p—1))

1 <a2q(2p—l) _ (_1)24(211—1))
a2e=D@p-1) fr2 g [ YR “
i (A
_ qeanern), fr g (L (5.1)
Vap—1
Using (2.3) and (4.1), we may write (5.1) as
= _ Uzq(24-1)
1+ D (aUsjap-1) + Usjap-1)-1) = (aVizg-1)(2p-1) + Vieg-1)(2p-1)-1) Vg1
i=1 -
which, because « is irrational, leads to the results
2g—1
i: Uyin gy — D2aCp-0 V20 Dep-)
j(2p—1) V2p_1
and
2q—1
Z U _ V- Vieg-nep--1
25(2p—1)— ‘/ép—l .

Finally, in this section, we obtain the sum of the series (3.1) where m is odd and r is even;
say m = 2p — 1 and r = 2¢q. We consider the following finite geometric series:

1+a2(2p—1) +a4(2p—1) +.. 4q 2p—1) Za2](2p 1
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We then have

2 _
ian(zP_l) _ o2(2¢+1)(2p-1) _q
, a2(2p-1) _ 1
7=0
a2¢+1)(2p—1) (a(2q+1)(2p—1) — a—(2q+1)(2p—1))
a2r—1 (a2p—1 _ a—(2p—1))

_ (2¢+1)(2p—1)
B o

— o2a(2p—1) V(2q+1)(2p—1)' (5.2)
Vap—1
Using (2.3), we may write (5.2) as
S _ Vizg+1)2p-1)
L+ > (alsjzp-1) + Usjep-1)-1) = (aUsg(2p—1) + Ugzp-1)-1) —
i=1 -

from which it follows that

2
Eq: Usjap—1) = Uag(2p-1) Vizg+1)2p-1)
g J(2p Vap1

and

2

! . _ Uanep-n-1Vearne-y
Z 2j(2p—1)—1 = v - L
= 2p—1

6. SuMS INVOLVING V,,

We now go on to obtain formulas for the following sum
‘/()+‘/ém+‘/zlm+"'+‘/érm-

Suppose first that m = 2p for some p € N. This time we consider
T
VE2+4(1+a®+a® 4. 4 a¥P) = V244 ) aP
§=0
Using (1.1), we obtain, via similar manipulations to those used in obtaining (3.2),

VK2 +4 Z ¥ | = a2 \/k2 + 4 <.U2PU<T+1)> 7
j=0

2p

which, using (4.1), may be rewritten as

T U ,
VE? 44+ Z (aVajp + Vijp-1) = (aVopr + Vapr—1) 2552“) :
j=1 P

Since Vk? +4 = 2a — k, this in turn gives

T U ,
200+ Y (@Vigp + Vigp-1) =k + (aVapr + Vapr—1) 255;1) ' (6.1)
j=1 i
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Finally then, on using (6.1) and remembering that Vj = 2, we obtain the following results:

: V2prU2 (r+1)
Z Vzljp = Up
j=0 o

and

- ‘/2 r—lU T
Zvéljp—l = ) U 2p(r+1) + k.
j=1 o

Next, let m =2p —1 and r = 2g — 1. We start by considering the following finite geometric
series:

2q—1
VE2+4 (1 + 2@ (A2l o a2(2q—1)(2p—1)) = k24+4 (Z a2j(2p1)) .
j=0

From (5.1), we have

2q—1
; Usg(2p—1)
VE2 + 4 a21=1) | — (2¢=1)(2p=1) (2 4 4 < a\<p ) )
(Z ( ) V2;n—1
7=0
This result, in conjunction with (2.3) and (4.1), gives
2q—1
2444 ) (aVajp-1) + Vajp-1)-1)
j=1
— (k2 + 4 U2q(2p—1)
= (" +4) (0Uzg-nyep-1) + Uza-nep-1)-1) ===
Using Vk2 + 4 = 2a — k and V = 2 once more, we have
2q—1
U. U,
2 2q(2p—1)~ (2¢—1)(2p—1)
> Vajap-n) = (K +4) == ==
j=0 P
and -
g—
Uzq(2p-1)U2q-1)(2p—1)—1
Z Vaj(ap—1)—1 = (k;2 +4) a(2p )V( a—)@p—1)=1 | 4
j=1 2p—1

With m = 2p — 1 and r = 2¢, we may use (5.2) to obtain

2q
NCETIDYrEC e :a2q<2p—1>\/—k2+4<w>,
j=0

Vop—1
Then (4.1) gives

Vieg+1)2p-1)

2q
VI 44 ) (aVajp1) + Vajp-1)-1) = (@Vagzp-1) + Vaggap-1)-1) ==
j=1 P

from which it follows that

2
Eq: Vaj(op—1) = Vag(ep—1) Vizg+1)2p-1)
7=0 7 V2p—1
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and

2q
S 1, _ VagzpyViognee-n
2j(2p—1)—1 — V2 ) .
j=1 P
7. THE ALTERNATIVE RECURRENCE RELATION
We now briefly consider the corresponding situation for the recurrence relation
Up = KUp—1 — Up—2,

where k is an integer such that k& > 3. The auxiliary equation in this case is A2 — kA + 1 = 0,
which has the solutions

k+Vk?—4 — k—Vk2—-4 1
f=———— and f=———=—.
2 2 3
Therefore,
—n b
up, = af" + b8 :aﬁ"—l—@
for some a,b € R. As before, we are interested here in the cases a = —b and a = b. The former

gives rise to the following series:

1 "
Xo = (5 1)

1
Note that Xo =0, X1 =1, Yy = 2 and Y; = k. Furthermore, it is straightforward to show
that

while the latter results in

/Bn = BXn - Xn—ly (71)

/Bn\/ k% — :/BYn_Yn—l-

The form of 4 and B means that, unlike the situation for the sum (3.1), it is not necessary
to split the results into cases. The sum of the series

and

X0+X2m+X4m+"'+X2rm

is in fact given by

d erXm(r—i-l)
2 Xoim ==
7=0

We also have

- Xrm—1X
> Xojm-1 = —— ;( D 4,
=1 "

noting that, because of the form of (7.1), the sign of the final term is different to that in (3.3).
Similarly

: Y;‘me(r—i-l)
s e
7=0
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and

d Y;“m—le(r-‘rl)
ZYQjm_l = X—m — k.
7j=1

Again here, interested readers might like to verify the results in this section for themselves.
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