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Abstract. In this article we demonstrate how to obtain, via the manipulation of certain
geometric series, a number of identities arising from a particular infinite family of linear,
second-order, homogeneous, recurrence relations.

1. Introduction

From Binet’s formula [1, 3, 4] we know that

Fn =
1√
5

(

φn −
(

− 1

φ

)n)

,

where φ is the golden ratio given by

φ =
1 +

√
5

2
.

The Fibonacci numbers may thus be regarded as an ‘almost-geometric’ sequence with common
ratio φ in the sense that

lim
n→∞

(

− 1

φ

)n

= 0.

The sum of the series
F1 + F2 + F3 + · · · + Fn

may therefore be approximated using the formula for the sum of the finite geometric progres-
sion [5]

a+ ar + ar2 + · · ·+ arn−1

given by
a (rn − 1)

r − 1
, (1.1)

where a, r ∈ R, n ∈ N and r 6= 1.
We in fact use a related idea here to obtain exact expressions for certain sums of finite series,

the terms of which arise from a particular infinite family of linear, second-order, homogeneous,
recurrence relations. The recurrence relations considered in this paper are all of the form

un = kun−1 ± un−2,

where k ∈ N. As will be seen in due course, these allow us to determine sums having particu-
larly simple forms.
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2. Some Preliminaries

We provide here some results that will be used in later sections, and start by considering
un = kun−1 + un−2, which gives rise to specific instances of the generalized Fibonacci (or
Horadam) sequence [2]. This recurrence relation has auxiliary equation λ2−kλ−1 = 0, which
in turn possesses the solutions

α =
k +

√
k2 + 4

2
and α =

k −
√
k2 + 4

2
= − 1

α
.

Therefore,

un = aαn + bαn = aαn + b

(

− 1

α

)n

for some a, b ∈ R. As will become clear, we are interested here in the cases a = −b and a = b.
The former gives rise to the following generalization of the Binet formula

Un =
1√

k2 + 4

(

αn −
(

− 1

α

)n)

, (2.1)

while the latter results in

Vn = αn +

(

− 1

α

)n

. (2.2)

Note that U0 = 0, U1 = 1, V0 = 2 and V1 = k.
Next we show, by induction, that

αn = αUn + Un−1. (2.3)

First, (2.3) certainly holds for n = 1. Now assume that it is true for some n ≥ 1. Then, on
utilizing both the inductive hypothesis and the recurrence relation for Un, we obtain

αn+1 = α2Un + αUn−1

=

(

k +
√
k2 + 4

2

)2

Un +

(

k +
√
k2 + 4

2

)

Un−1

=
1

2

(

k2 + 2 + k
√

k2 + 4
)

Un +
1

2

(

k +
√

k2 + 4
)

Un−1

=
1

2

(

k +
√

k2 + 4
)

(kUn + Un−1) + Un

=
1

2

(

k +
√

k2 + 4
)

Un+1 + Un

= αUn+1 + Un,

as required. In a similar manner, it may be shown that (2.3) is also true when α is replaced
by α.

3. An Initial Result

In this section we find simple expressions for the sum of the following finite series:

U0 + U2m + U4m + · · · + U2rm, (3.1)

where m, r ∈ N. This is a somewhat more straightforward matter than that of obtaining the
corresponding sum of terms from the sequence (Vn)n≥0, which will be considered in a later
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section. We deal first with the simplest case, in which m is even. We therefore set m = 2p for
some p ∈ N. Let us now consider the following finite geometric series:

1 + α4p + α8p + · · · + α4rp =
r
∑

j=0

α4jp.

Using (1.1) and (2.1), we obtain
r
∑

j=0

α4jp =
α4p(r+1) − 1

α4p − 1

=
α2p(r+1)

(

α2p(r+1) − α−2p(r+1)
)

α2p (α2p − α−2p)

= α2pr

(

α2p(r+1) −
(

− 1
α

)2p(r+1)

α2p −
(

− 1
α

)2p

)

= α2pr





1√
k2+4

(

α2p(r+1) −
(

− 1
α

)2p(r+1)
)

1√
k2+4

(

α2p −
(

− 1
α

)2p
)





= α2prU2p(r+1)

U2p
. (3.2)

Incidentally, the above makes it clear why the case a = −b was chosen in Section 2.
Now, using (2.3), we may write (3.2) as

1 +

r
∑

j=1

(αU4jp + U4jp−1) = (αU2pr + U2pr−1)
U2p(r+1)

U2p
.

Since α is irrational, it is the case that, for a, b, c, d ∈ Q, aα+ b = cα+ d if, and only if, a = c

and b = d. It follows from this that
r
∑

j=0

U4jp =
U2prU2p(r+1)

U2p

and
r
∑

j=1

U4jp−1 =
U2pr−1U2p(r+1)

U2p
− 1, (3.3)

remembering that U0 = 0.

4. Companion Series

Before obtaining more identities associated with (Un)n≥0, we need to consider the sequence

(Vn)n≥0, which, for a given k ∈ N, may be regarded as a companion to (Un)n≥0. Not only do

these two sequences share the same recurrence relation, but (Vn)n≥0 also satisfies an identity

corresponding to (2.3), as follows:

αn
√

k2 + 4 = αVn + Vn−1. (4.1)

It is easily verified that this is true for n = 1, noting, from the definition of this sequence in
(2.2), that V0 = 2 and V1 = k. In order to show that (4.1) is true in general, induction may
be utilized once more, and indeed interested readers might like to check the details.
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5. Further Results

We are now in a position to be able to consider the sum of the series

U0 + U2m + U4m + · · · + U2rm,

where m is odd. The cases r odd and r even are dealt with separately. To this end, let
m = 2p− 1 and r = 2q − 1. We start by looking at the following finite geometric series:

1 + α2(2p−1) + α4(2p−1) + · · ·+ α2(2q−1)(2p−1) =

2q−1
∑

j=0

α2j(2p−1).

We have

2q−1
∑

j=0

α2j(2p−1) =
α4q(2p−1) − 1

α2(2p−1) − 1

=
α2q(2p−1)

(

α2q(2p−1) − α−2q(2p−1)
)

α2p−1
(

α2p−1 − α−(2p−1)
)

= α(2q−1)(2p−1)
√

k2 + 4





1√
k2+4

(

α2q(2p−1) −
(

− 1
α

)2q(2p−1)
)

α2p−1 +
(

− 1
α

)2p−1





= α(2q−1)(2p−1)
√

k2 + 4

(

U2q(2p−1)

V2p−1

)

. (5.1)

Using (2.3) and (4.1), we may write (5.1) as

1 +

2q−1
∑

j=1

(

αU2j(2p−1) + U2j(2p−1)−1

)

=
(

αV(2q−1)(2p−1) + V(2q−1)(2p−1)−1

) U2q(2q−1)

V2p−1
,

which, because α is irrational, leads to the results

2q−1
∑

j=0

U2j(2p−1) =
U2q(2p−1)V(2q−1)(2p−1)

V2p−1

and

2q−1
∑

j=1

U2j(2p−1)−1 =
U2q(2p−1)V(2q−1)(2p−1)−1

V2p−1
− 1.

Finally, in this section, we obtain the sum of the series (3.1) where m is odd and r is even;
say m = 2p− 1 and r = 2q. We consider the following finite geometric series:

1 + α2(2p−1) + α4(2p−1) + · · · + α4q(2p−1) =

2q
∑

j=0

α2j(2p−1).
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We then have
2q
∑

j=0

α2j(2p−1) =
α2(2q+1)(2p−1) − 1

α2(2p−1) − 1

=
α(2q+1)(2p−1)

(

α(2q+1)(2p−1) − α−(2q+1)(2p−1)
)

α2p−1
(

α2p−1 − α−(2p−1)
)

= α2q(2p−1)

(

α(2q+1)(2p−1) +
(

− 1
α

)(2q+1)(2p−1)

α2p−1 +
(

− 1
α

)2p−1

)

= α2q(2p−1)V(2q+1)(2p−1)

V2p−1
. (5.2)

Using (2.3), we may write (5.2) as

1 +

2q
∑

j=1

(

αU2j(2p−1) + U2j(2p−1)−1

)

=
(

αU2q(2p−1) + U2q(2p−1)−1

) V(2q+1)(2p−1)

V2p−1
,

from which it follows that
2q
∑

j=0

U2j(2p−1) =
U2q(2p−1)V(2q+1)(2p−1)

V2p−1

and
2q
∑

j=1

U2j(2p−1)−1 =
U2q(2p−1)−1V(2q+1)(2p−1)

V2p−1
− 1.

6. Sums Involving Vn

We now go on to obtain formulas for the following sum

V0 + V2m + V4m + · · · + V2rm.

Suppose first that m = 2p for some p ∈ N. This time we consider

√

k2 + 4
(

1 + α4p + α8p + · · · + α4rp
)

=
√

k2 + 4





r
∑

j=0

α4jp



 .

Using (1.1), we obtain, via similar manipulations to those used in obtaining (3.2),

√

k2 + 4





r
∑

j=0

α4jp



 = α2pr
√

k2 + 4

(

U2p(r+1)

U2p

)

,

which, using (4.1), may be rewritten as

√

k2 + 4 +

r
∑

j=1

(αV4jp + V4jp−1) = (αV2pr + V2pr−1)
U2p(r+1)

U2p
.

Since
√
k2 + 4 = 2α− k, this in turn gives

2α+

r
∑

j=1

(αV4jp + V4jp−1) = k + (αV2pr + V2pr−1)
U2p(r+1)

U2p
. (6.1)
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Finally then, on using (6.1) and remembering that V0 = 2, we obtain the following results:
r
∑

j=0

V4jp =
V2prU2p(r+1)

U2p

and
r
∑

j=1

V4jp−1 =
V2pr−1U2p(r+1)

U2p
+ k.

Next, let m = 2p− 1 and r = 2q− 1. We start by considering the following finite geometric
series:

√

k2 + 4
(

1 + α2(2p−1) + α4(2p−1) + · · ·+ α2(2q−1)(2p−1)
)

=
√

k2 + 4





2q−1
∑

j=0

α2j(2p−1)



 .

From (5.1), we have

√

k2 + 4





2q−1
∑

j=0

α2j(2p−1)



 = α(2q−1)(2p−1)
(

k2 + 4
)

(

U2q(2p−1)

V2p−1

)

.

This result, in conjunction with (2.3) and (4.1), gives

√

k2 + 4 +

2q−1
∑

j=1

(

αV2j(2p−1) + V2j(2p−1)−1

)

=
(

k2 + 4
) (

αU(2q−1)(2p−1) + U(2q−1)(2p−1)−1

) U2q(2p−1)

V2p−1
.

Using
√
k2 + 4 = 2α− k and V0 = 2 once more, we have

2q−1
∑

j=0

V2j(2p−1) =
(

k2 + 4
) U2q(2p−1)U(2q−1)(2p−1)

V2p−1

and
2q−1
∑

j=1

V2j(2p−1)−1 =
(

k2 + 4
) U2q(2p−1)U(2q−1)(2p−1)−1

V2p−1
+ k.

With m = 2p − 1 and r = 2q, we may use (5.2) to obtain

√

k2 + 4





2q
∑

j=0

α2j(2p−1)



 = α2q(2p−1)
√

k2 + 4

(

V(2q+1)(2p−1)

V2p−1

)

.

Then (4.1) gives

√

k2 + 4 +

2q
∑

j=1

(

αV2j(2p−1) + V2j(2p−1)−1

)

=
(

αV2q(2p−1) + V2q(2p−1)−1

) V(2q+1)(2p−1)

V2p−1
,

from which it follows that
2q
∑

j=0

V2j(2p−1) =
V2q(2p−1)V(2q+1)(2p−1)

V2p−1
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and
2q
∑

j=1

V2j(2p−1)−1 =
V2q(2p−1)−1V(2q+1)(2p−1)

V2p−1
+ k.

7. The Alternative Recurrence Relation

We now briefly consider the corresponding situation for the recurrence relation

un = kun−1 − un−2,

where k is an integer such that k ≥ 3. The auxiliary equation in this case is λ2 − kλ+ 1 = 0,
which has the solutions

β =
k +

√
k2 − 4

2
and β =

k −
√
k2 − 4

2
=

1

β
.

Therefore,

un = aβn + bβ
n
= aβn +

b

βn

for some a, b ∈ R. As before, we are interested here in the cases a = −b and a = b. The former
gives rise to the following series:

Xn =
1√

k2 − 4

(

βn − 1

βn

)

,

while the latter results in

Yn = βn +
1

βn
.

Note that X0 = 0, X1 = 1, Y0 = 2 and Y1 = k. Furthermore, it is straightforward to show
that

βn = βXn −Xn−1, (7.1)

and

βn
√

k2 − 4 = βYn − Yn−1.

The form of β and β means that, unlike the situation for the sum (3.1), it is not necessary
to split the results into cases. The sum of the series

X0 +X2m +X4m + · · · +X2rm

is in fact given by
r
∑

j=0

X2jm =
XrmXm(r+1)

Xm

.

We also have
r
∑

j=1

X2jm−1 =
Xrm−1Xm(r+1)

Xm

+ 1,

noting that, because of the form of (7.1), the sign of the final term is different to that in (3.3).
Similarly

r
∑

j=0

Y2jm =
YrmXm(r+1)

Xm
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and
r
∑

j=1

Y2jm−1 =
Yrm−1Xm(r+1)

Xm

− k.

Again here, interested readers might like to verify the results in this section for themselves.
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