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Abstract. A general method to solve the Pell equation x2
− dy2 = a2 is given under cer-

tain conditions on a and d. As a special case, our method gives a different technique than
the continued fractions technique used by C. T. Long and J. H. Jordan to characterize the
Fibonacci and Lucas numbers as solutions to x2

− 5y2 = ±4.

1. Introduction

Consider the Pell equation
x2 − dy2 = a2, (1.1)

where a2 + d = b2 for some positive integer b. We will give a general method to solve (1.1).
In [1], it was shown that (L2n+2, F2n+2) and (L2n−1, F2n−1) give all the solutions to the Pell
equations x2 − 5y2 = 4, and x2 − 5y2 = −4, respectively. This was done using continued
fractions. Our general solution to (1.1) leads to a different method to show that “unusual
characterization of the Fibonacci and Lucas number” discussed in [1].

2. The Solution to the Pell Equation

Let

xn+1 =
bxn + dyn

a
(2.1)

yn+1 =
xn + byn

a

with the smallest positive solution (x1, y1) = (b, 1). We prove that the system (2.1) generates
a family of solutions to (1.1).

First, we show if (xn, yn) is a solution to (1.1), then (xn+1, yn+1) is also a solution. In fact,

x2n+1 − dy2n+1 =
b2x2n + 2bdxnyn + d2y2n

a2
− d

x2n + 2bxnyn + b2y2n
a2

=
a2x2n − a2dy2n

a2

= x2n − dy2n

= a2.

Now we show that the system (2.1), under certain conditions, gives all the solutions to (1.1).
Assume for a contradiction that there exists a solution (u, v) such that

xn + yn
√
d < u+ v

√
d < xn+1 + yn+1

√
d. (2.2)
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Multiplying (2.2) by xn − yn
√
d leads to

a2 < (u+ v
√
d)(xn − yn

√
d) <

(

bxn + dyn

a
+

xn + byn

a

√
d

)

(xn − yn
√
d). (2.3)

The rightmost expression in (2.3) reduces to

1

a

(

bx2n − bxnyn
√
d+ dxnyn − d

√
dy2n + bxnyn

√
d− bdy2n + x2n

√
d− dxnyn

)

=
1

a

[

b(x2n − dy2n) + (x2n − dy2n)
√
d
]

=
1

a
(ba2 + a2

√
d)

= a(b+
√
d).

Thus,

a2 < (u+ v
√
d)(xn − yn

√
d) < a(b+

√
d). (2.4)

The middle term in (2.4) can be written as

uxn − dvyn + (vxn − uyn)
√
d = r + s

√
d.

Now under the condition that r
a
and s

a
are integers, it follows from dividing (2.4) by a that

a <
r

a
+

s

a

√
d < b+

√
d (2.5)

and so ( r
a
, s
a
) is a solution to (1.1). In fact,

(r

a

)2

− d
( s

a

)2

=

(

uxn − dvyn

a

)2

− d

(

vxn − uyn

a

)2

=
u2x2n − 2duvxnyn + d2v2y2n − dv2x2n + 2duvxnyn − du2y2n

a2

=
(x2n − dy2n)u

2 − dv2(x2n − dy2n)

a2

=
(u2 − dv2)(x2n − dy2n)

a2

= a2.

Now we show that
(

r
a
, s
a

)

is a positive solution. Since a2 < r+s
√
d and (r+s

√
d)(r−s

√
d) = a4,

0 < r − s
√
d < a2. It follows that

2r = r + s
√
d+ r − s

√
d > a2 + 0 > 0

and

2s
√
d = r + s

√
d− (r − s

√
d) > a2 − a2 = 0.

We have shown that if there was a positive solution (u, v) between (xn, yn) and (xn+1, yn+1),

then there would be a positive solution
(

r
a
, s
a

)

such that r
a
+ s

a

√
d < b +

√
d. This is a

contradiction because (b, 1) is the smallest positive solution to (1.1).
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3. The Solution in Closed Form

Let d = 5 and a = 2. Then d+ a2 = 32 and so b = 3. It is simple to see that x2 − 5y2 = 4
implies that xn, yn, u, and v, defined above, have the same parity (for any positive integer
n) and so r and s are even. Thus r

2
and s

2
are integers. Now we use standard linear algebra

techniques to find the solution to (1.1) in closed form. In fact, the recurrence relation in (2.1)

may be written as

[

xn+1

yn+1

]

=

[

3

2

5

2
1

2

3

2

] [

xn
yn

]

= A

[

xn
yn

]

where A =

[

3

2

5

2
1

2

3

2

]

. The eigenvalues

of A are λ1 = 3+
√

5

2
and λ2 = 3−

√

5

2
. The corresponding eigenvectors are v1 =

[√
5
1

]

and

v2 =

[

−
√
5

1

]

. Thus we can write

A =

[√
5 −

√
5

1 1

]

[

3+
√

5

2
0

0 3−
√

5

2

]

[√
5 −

√
5

1 1

]

−1

=

[√
5 −

√
5

1 1

]

[

3+
√

5

2
0

0 3−
√

5

2

] [

1

2
√

5

1

2
−1

2
√

5

1

2

]

.

It follows that
[

xn+1

yn+1

]

= An

[

x1
y1

]

=

[√
5 −

√
5

1 1

]





(

3+
√

5

2

)n

0

0
(

3−
√

5

2

)n





[

1

2
√

5

1

2
−1

2
√

5

1

2

]

[

3
1

]

=









3

2

[(

3+
√

5

2

)n

+
(

3−
√

5

2

)n]

+
√

5

2

[(

3+
√

5

2

)n

−
(

3−
√

5

2

)n]

3

2
√

5

[(

3+
√

5

2

)n

−
(

3−
√

5

2

)n]

+ 1

2

[(

3+
√

5

2

)n

+
(

3−
√

5

2

)n]









. (3.1)

Using the facts β2 = 3−
√

5

2
, α2 = 3+

√

5

2
, Ln = αn + βn, and Fn = αn

−βn

√

5
, the matrix in (3.1)

reduces to

[

α2n+2 + β2n+2

1
√

5

(

α2n+2 − β2n+2
)

]

=

[

L2n+2

F2n+2

]

. We have the “unusual characterization of both

Fibonacci and Lucas numbers” that had been shown in [1].

Now consider the Pell equation

x2 − 5y2 = −4. (3.2)

The smallest positive solution is (1, 1). Following the same arguments and techniques used in
the solution to (2.1), it can be shown that all the solutions to (3.2) are given by the recurrence
relation

xn+1 =
3xn + 5yn

2
(3.3)

yn+1 =
xn + 3yn

2
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with the initial solution (x1, y1) = (1, 1). The only difference is we multiply the inequality in
(2.2) by yn

√
5− xn instead of xn − yn

√
5. Also the contradiction will still be the existence of

a positive solution to (1.1) that is smaller than (3, 1) and not a positive solution to (3.2) that
is smaller than (1, 1). Finally, the closed form of the solution to (3.3) is given by x = L2n−1

and y = F2n−1, where n ≥ 1. The proof is identical to the case of equation (1.1).
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