ON APPROXIMATING EULER’S CONSTANT

JENICA CRINGANU

ABSTRACT. The aim of this paper is to improve the result obtained by Hirschhorn in 2011
about the inequalities for the Euler-Mascheroni constant.

1. INTRODUCTION

The sequence defined by
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is convergent to a limit denoted v = 0,5772... now known as the Euler-Mascheroni constant.

Several estimates for v, — v have been given in the literature, for example:
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Using the elementary technique of the Maclaurin series for In(1 4 z), Hirschhorn [2] obtained
in 2011 the following estimate:

In this paper we obtain a better estimate for the right inequality and, for the left inequality
we remark that % is the best constant using an elementary sequence method.

2. THE MAIN RESULT

Theorem 2.1. (i) For every a > %8 we have
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(ii) For every 0 < a < & there exists n, € N such that

1
Y=V < 1 for all n > ny,.
2n+ -+ —
3 n
Consequently, a = % is the best constant for the inequality of (i).

Proof. We consider the sequence

1
Un =Y =Y = =1 g for a > 0,
2n+ -+ —
3 n

and we show that a, >0 foralln > 1, if a > 1—18, and, for 0 < a < 1—18 there exists n, € N such
that a, < 0 for all n > n,.

(i) Since (a,,) converges to zero we prove that (a,) is strictly decreasing. Then we should look
at ap+1 — an = f(n), where

1 1 1
f(n):n+1—ln(n+l)+lnn— = o T
2n+ 5 + 2n+ -+ —

3 n+1 3

The derivative of function f is equal to

) = e T 126 T n + 30)2(6n2 + 1B 1 3a T 7

where
P(n) = 216(18a — 1)n® 4 312(45a — 2)n° + (2916a* + 20322a — 551)n*
+ (7020a* + 14961a — 94)n® + (648a> + 63184 + 5526a + 49)n>
+ (7560 + 2430a® + 735a)n + 81la* 4 378a® 4 4414

If a = %8 then

4553n3 N 6761n2 9421171 N 1849 >0
18 1944 1296 ’
for all n > 1, and then f is strictly increasing. We have f(oco) = 0 and then it follows that

f(n) <0 for all n > 1, so that (an)p>1 is strictly decreasing. Since (a,) converges to zero it
follows that a, > 0 for all n > 1, so that

P(n) = 156n° + 578n* +

1
—1 1 <"~ for all n > 1.
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(i) Ifa < 1—18 then there exists n, € N such that P(n) < 0 for all n > n, and then f is strictly
decreasing on [ng, 00). Since f(o0) = 0 it follows that f(n) > 0 for all n > ng,, so that (an)n>n,
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is strictly increasing. The sequence (a,) converges to zero and then it follows that a, < 0 for
all n > ng, so that
1
L L for all n > n,.
2n+ -+ —
3 n
O

. . . _ 1 1 1
Now we find the constant n, in some particular cases. For example, if @ = 37 € (53, 13),

then
2808 5304 5 103387 , 380477 5 6966751 o 782421 435600
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for all n > 2, and so
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If a = %9 € (3%, %8), then
216 ¢ 2184 5 190123 , 251027 5 2451667 , 312261 166464
— n n" -+ n- +

P(n) = — 22
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for all n > 13 and so
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Let us remark that a direct calculus shows that these inequalities hold and for n € {9, 10,11, 12},
and then

1 1
ﬁ<’yn—’7<ﬁ, foralanQ.
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