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Abstract. We provide an organizational structure for the irreducible factors of Chebyshev
polynomials of the first and second kind. Several new proofs of known results are given and
extensions to compositions are derived. Finally, the decomposition of the irreducible factors as
linear combinations of Chebyshev polynomials is obtained and a connection to the cyclotomic
polynomials is demonstrated.

1. Introduction

The Chebyshev polynomials of the first and second kind are defined by the formulas
Tn(cos x) = cosnx and Un+1(cos x) = (sin nx)/(sinx). The factorization of these polyno-
mials into irreducible factors has previously been discussed in [4, 6, 7, 10]. It is the goal of this
paper to simplify and extend the results from these works. For related results, see [1, 2, 5, 8, 9].

We consider instead the normalized Chebyshev polynomials Vn and Wn defined by the
properties that Vn(2 cos x) = 2 cos nx and Wn(2 cos x) =

sinnx
sinx . These differ from the standard

Chebyshev polynomials Tn and Un. In particular, Vn(x) = 2Tn(x/2) and Wn(x) = Un+1(x/2).
It is clear that factorization of Vn and Wn immediately gives factorizations of Tn and Un.
One key difference is that Vn and Wn are monic polynomials, which follows from the common
recurrence relation Pn+1(x) = xPn(x) − Pn−1(x) with initial conditions V0(x) = 2, V1(x) =
x,W0(x) = 0, andW1(x) = 1. In particular, we have V2(x) = x2−2, V3(x) = x3−3x,W2(x) =
x,W3(x) = x2 − 1. We also note the identity Vmn = Vn ◦ Vm for n,m ≥ 1.

We define the chebytomic polynomials ψn(x) by setting ψ1(x) = x− 2, ψ2(x) = x+ 2, and

ψn(x) =
∏

gcd(k,n)=1
0<k<n/2

(

x− 2 cos
2πk

n

)

, (1.1)

for n > 2. For example, ψ3(x) = x + 1 and ψ4(x) = x. These polynomials are the same as
the fibotomic polynomials, Q2n(x), Q

even

2n+1(x), and Q
odd

2n+1(x) of Levy [6]. The current notation
seems to be both cleaner and to allow better statements and proofs of results.

2. Basic Factorizations

Theorem 2.1. The chebytomic polynomials are irreducible over Q and have integer coeffi-

cients.

Proof. Let ξ = exp(2πin ) be the primitive nth root of unity. Let G be the Galois group of Q[ξ]

over Q. Each element of G takes ξ to ξk for some k with (k, n) = 1. Furthermore, G acts
transitively on such ξk. Since 2 cos(2πkn ) = ξk + ξ−k, the roots of ψn are acted on transitively
by G. Thus, ψn is irreducible over Q and has rational coefficients. Since the coefficients are
also algebraic integers, they must be integers. �

In particular, ψn is the characteristic polynomial of the algebraic integer 2 cos 2π
n .
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For notational convenience, let en = 1 if n is even and en = 0 if n is odd. We start with a
factorization of Vn − 2.

Proposition 2.2. The polynomial Vn − 2 factors as follows:

Vn − 2 = ψ1ψ
en
2

∏

k|n
k 6=1,2

ψ2
k. (2.1)

Proof. The roots of Vn − 2 are exactly xk = 2cos(2πkn ) for 0 ≤ k ≤ n. All roots are double
roots except x0 = 2 and, in the case n is even, xn/2 = −2. Thus, the two sides of the claimed
equality have the same roots with the same multiplicities. Since both sides are also monic
polynomials, they are equal. �

Proposition 2.3. The polynomial Vn + 2 factors as follows:

Vn + 2 = ψ1−en
2

∏

k|2n
k-n
k 6=2

ψ2
k. (2.2)

In particular, for m odd, we have

Vm + 2 = ψ2

∏

k|m
k 6=1

ψ2
2k, (2.3)

and for n ≥ 1 and m odd, we have

V2nm + 2 =
∏

k|m

ψ2
2n+1k. (2.4)

Proof. Use the fact that Vn + 2 = (V2n − 2)/(Vn − 2) and the previous result. �

This, in turn, gives us the decomposition of Vn into irreducible factors.

Theorem 2.4. We have, for m odd, and n ≥ 0,

V2nm =
∏

k|m

ψ2n+2k. (2.5)

Proof. We have

V 2
2nm = V2n+1m + 2 =

∏

k|2n+2m

k-2n+1m

ψ2
k =

∏

k|m

ψ2
2n+2k. (2.6)

Since both sides of the proposed factorization are monic polynomials with the same square,
they are equal. �

Corollary 2.5. If m1 and m2 are odd, then gcd(V2nm1
, V2nm2

) = V2n gcd(m1,m2). If n1 6= n2,
then V2n1m1

and V2n2m2
are relatively prime.

This is an alternative statement of a result from [7].
We collect a few more basic factorizations in the next result. Some of these factorizations

are to be found in [6] and [3].

Theorem 2.6. We have the following factorizations of polynomials.
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a)

Wn =
∏

k|2n
k 6=1,2

ψk. (2.7)

b)

Vn+1 + Vn =
∏

k|2n+1

ψ2k. (2.8)

c)

Vn+1 − Vn =
∏

k|2n+1

ψk. (2.9)

d)

Wn+1 −Wn =
∏

k|2n+1
k 6=1

ψ2k. (2.10)

e)

Wn+1 +Wn =
∏

k|2n+1
k 6=1

ψk. (2.11)

f)

Vn+1 − Vn−1 =
∏

k|2n

ψk. (2.12)

Proof. From the Pythagorean identity, V 2
n (x) +W 2

n(x)(4 − x2) = 4, we obtain W 2
n = (V 2

n −

4)/(ψ1ψ2) = (V2n−2)/(ψ1ψ2). The factorization of V2n−2 above shows that both sides of the
first identity have the same square. Since they are also monic polynomials, they are equal.

For the other factorizations, use the identities

(Vn+1 + Vn)
2 = (V2n+1 + 2)ψ2,

(Vn+1 − Vn)
2 = (V2n+1 − 2)ψ1,

(Wn+1 −Wn)
2ψ2 = V2n+1 + 2,

(Wn+1 +Wn)
2ψ1 = V2n+1 − 2,

(Vn+1 − Vn−1)
2 = (V2n − 2)ψ1ψ2,

all of which follow easily from corresponding trigonometric identities. �

We point out that all of these can be used together with the Möbius inversion formula to
obtain ψn for various n. We will find more efficient methods soon. However, a couple of
immediate results should be noted, both of which are previously known, see [7].

Corollary 2.7. We have that V2n = ψ2n+2 is irreducible for each n. These are the only Vn
which are irreducible.

For example, ψ8(x) = x2 − 2 and ψ16(x) = x4 − 4x2 + 2.

Corollary 2.8. The function Vn(x)/x is an irreducible polynomial if and only if n is an odd

prime. For odd prime p, we have Vp(x)/x = ψ4p(x).
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This follows from the factorization of Vn and the fact that ψ4(x) = x. For example, ψ12(x) =
V3(x)/x = x2 − 3. This result is used in [8] to obtain a factorization test.

The following appears to be new.

Corollary 2.9. If p is an odd prime, then ψp = W p+1

2

+ W p−1

2

and ψ2p = W p+1

2

−W p−1

2

.

Hence both expressions are irreducible. Furthermore, Wn+1 ±Wn is irreducible if and only if

n = p−1
2 for p an odd prime.

For example, ψ3(x) = x+ 1, ψ5(x) = x2 + x− 1, ψ6(x) = x− 1, ψ7(x) = x3 + x2 − 2x− 1,
ψ10(x) = x2−x−1, ψ11(x) = x5+x4−4x3−3x2+3x+1, ψ13(x) = x6+x5−5x4−4x3+6x2+3x−1,
and ψ14(x) = x3 − x2 − 2x+ 1.

3. Factoring Compositions

Theorem 3.1. If n ≥ 3 is odd and gcd(m,n) = 1, then ψn ◦ Vm =
∏

k|m ψnk.

Proof. In fact, for n odd and gcd(m,n) = 1, we have

Vnm − 2 = ψ1ψ
em
2

∏

k|mn
k 6=1,2

ψ2
k

= ψ1ψ
em
2









∏

k|m
k 6=1,2

ψ2
k









∏

k|n
k 6=1





∏

`|m

ψ2
k`



 .

Alternatively, we have, noting ψ1(x) = x− 2,

Vnm − 2 = Vn ◦ Vm − 2

= (ψ1 ◦ Vm)
∏

k|n
k 6=1

ψ2
k ◦ Vm

= ψ1ψ
em
2









∏

k|m
k 6=1,2

ψ2
k









∏

k|n
k 6=1

ψ2
k ◦ Vm.

Comparing these two expressions, using Möbius inversion, and noting that ψk ◦Vm is a monic
polynomial gives the result. �

The following reduces the computation of ψn to the case where n is square-free.

Theorem 3.2. Suppose that n is not a power of 2 and that n = pn1

1 · · · pnk

k is the factorization

of n into primes with nj 6= 0 for all j. Let m = p1 · · · pk be the square-free part of n. Then

ψn = ψm ◦ Vn/m.

This follows by repeated use of the following lemmas.

Lemma 3.3. If p is an odd prime, then ψpn+1 = ψp ◦ Vpn and ψ2pn+1 = ψ2p ◦ Vpn.

Proof. We have, from Proposition 2.2, ψ2
p =

Vp−2
ψ1

and ψ2
pn+1 =

V
pn+1−2

Vpn−2 =
Vp◦Vpn−2
ψ1◦Vpn

= ψ2
p ◦Vpn .

We get the other expression from the factorization of Vpn+1 + 2 in the same way. �
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In particular, ψ9(x) = V3(x) + 1 = x3 − 3x+ 1.

Lemma 3.4. Let n ≥ 3 be odd, p a prime with p - n. Then

a) ψnp =
ψn◦Vp
ψn

.

b) ψn ◦ Vpm =
∏m
k=0 ψnpk .

c) ψnpm+1 = ψnp ◦ Vpm.
d) If, in addition, p is odd, ψ2npm+1 = ψ2np ◦ Vpm.

Proof. The first two statements are direct applications of Theorem 3.1. For the third, notice
that

ψnpm+1 =
ψn ◦ Vpm+1

ψn ◦ Vpm
=
ψn ◦ Vp ◦ Vpm

ψn ◦ Vpm
, (3.1)

while

ψnp =
ψn ◦ Vp
ψn

. (3.2)

Again by the theorem, and noting that Vm ◦ Vn = Vmn = Vn ◦ Vm, we have

ψ2npm+1 =
ψnpm+1 ◦ V2

ψnpm+1

=
ψnp ◦ Vpm ◦ V2
ψnp ◦ Vpm

=
ψnp ◦ V2 ◦ Vpm

ψnp ◦ Vpm
, (3.3)

and

ψ2np =
ψnp ◦ V2
ψnp

, (3.4)

which gives the last result. �

As an example, if p 6= 3 is an odd prime, then ψ3p(x) = (Vp(x) + 1)/(x + 1). So, ψ15(x) =
x4 − x3 − 4x2 + 4x+ 1. We will return to this example below. This completes the evaluation
of ψn for n ≤ 16.

Theorem 3.5. If n > 2, then

ψn ◦ Vm =
∏

k|m
gcd(k,n)=1

ψmn
k
. (3.5)

Proof. Write n = pn1

1 · · · pnk

k for the factorization into primes with nj > 0 and write m =
pm1

1 · · · pmk

k · a where mj ≥ 0 for all j and gcd(n, a) = 1. Then, ψn ◦ Vm = ψn ◦ Vm
a
◦ Va =

ψnm
a

◦ Va. �

We note that ψ1 ◦Vn = Vn−2 and ψ2 ◦Vn = Vn+2 have already been factored above. With
n = 3 and n = 6, we obtain factorizations of Vn + 1 and Vn − 1, respectively.

4. Additive Properties

Since Vn, n ≥ 1 is a monic polynomial of degree n, it is clear that every integer polynomial
can be written as a linear combination of the Vn with integer coefficients plus a constant term.
The question then arises how ψn can be written in this way. If n ≥ 8 is a power of 2, we have
that ψn = Vn

4
, so this case is trivial. We explore a couple of other special cases before giving

the general result.
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Proposition 4.1. Suppose that p is an odd prime. Then

ψp = 1 +

(p−1)/2
∑

n=1

Vn.

Proof. Consider the sequence of trigonometrical identities

ψp(2 cos x) =W p−1

2

(2 cos x) +W p−1

2

(2 cos x)

=
sin px

2

sin x
2

= 1 + 2

(p−1)/2
∑

n=1

cos(nx)

= 1 +

(p−1)/2
∑

n=1

Vn(2 cos x).

The claimed equality follows. �

Proposition 4.2. Let p 6= 3 be an odd prime. Let rp = 1 if p ≡ 1 (mod 3), and let rp = V1−1
if p ≡ 2 (mod 3). Then

ψ3p = rp +
∑

k<(p−2)/3

(Vp−1−3k − Vp−2−3k) .

Proof. First notice that (x+ 1)ψ3p(x) = ψ3(x)ψ3p(x) = Vp(x) + 1.

Vn(x) + 1 = xVn−1(x)− Vn−2(x) + 1

= (x+ 1)Vn−1(x)− Vn−1(x)− Vn−2(x) + 1

= (x+ 1)Vn−1(x)− xVn−2(x)− Vn−2(x) + Vn−3(x) + 1

= (x+ 1)(Vn−1(x)− Vn−2(x)) + Vn−3(x) + 1.

Now proceed inductively until either V2(x) + 1 = (x + 1)(V1(x) − 1) or V1(x) + 1 = x + 1 is
reached. �

Of course, the previous technique gives a factorization of Vn + 1 for any n not divisible by
3. But it is only in the case of n prime that the factor other than x+ 1 is irreducible.

We now give the general decomposition of ψn in terms of the Vk.

Theorem 4.3. Let n > 2 and write the cyclotomic polynomial Φn(x) =
∑

akx
k where k runs

from 0 to d = φ(n) and ad−k = ak. Then,

ψn = ad/2 +

d/2
∑

k=1

a d−2k
2

· Vk. (4.1)
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Proof. Let f(x) be the polynomial of the right side of this equation and ξ = exp(2πin ), so Φn
is the characteristic polynomial of ξ. Then,

0 = Φn(ξ) · ξ
−d/2

=
d

∑

k=0

akξ
(2k−d)/2

= ad/2 +

d/2−1
∑

k=0

ak

(

ξ(2k−d)/2 + ξ(d−2k)/2
)

= ad/2 +

d/2
∑

k=1

a d−2k
2

·
(

ξk + ξ−k
)

= ad/2 +

d/2
∑

k=1

a d−2k
2

· 2 cos

(

2πk

n

)

= ad/2 +

d/2
∑

k=1

a d−2k
2

· Vk

(

2 cos
2π

n

)

= f

(

2 cos
2π

n

)

.

Hence, 2 cos
(

2π
n

)

is a root of the monic (a0 = 1) integer polynomial f(x). But ψn is the
characteristic polynomial of this root, has the same degree and is also monic. Hence, f(x) =
ψn. �
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