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Abstract. As is well-known, the ratio of adjacent Fibonacci numbers tends to φ = (1 +
√

5 )/2, and the ratio of adjacent Tribonacci numbers (where each term is the sum of the
three preceding numbers) tends to the real root η of X3

−X2
−X−1 = 0. Letting αn denote

the corresponding ratio for the generalized Fibonacci numbers, where each term is the sum
of the n preceding, we obtain rapidly converging series for αn, 1/αn, and 1/(2− αn).

1. Introduction

The Fibonacci numbers are defined by the recurrence

Fi = Fi−1 + Fi−2

with initial values F0 = 0 and F1 = 1. The well-known Binet formula (actually already known

to de Moivre) expresses Fi as a linear combination of the zeroes φ
.
= 1.61803 > 0 > φ̂ of the

characteristic polynomial of the recurrence X2 −X − 1:

Fi =
φi − φ̂i

φ− φ̂
.

Here the number φ =
√
5+1
2 is popularly referred to as the golden mean or golden ratio.

Similarly, the “Tribonacci” numbers (the name is apparently due to Feinberg [3]; also see
[9]) are defined by

Ti = Ti−1 + Ti−2 + Ti−3

with initial values T0 = T1 = 0 and T2 = 1. Here we also have that Ti is a linear combination
of ηi1, η

i
2, η

i
3, where η1, η2, η3 are the zeroes of the characteristic polynomial X3 −X2 −X − 1;

see, e.g., [10]. Here

η1 =
1

3

(

1 +
3

√

19 + 3
√
33 +

3

√

19− 3
√
33

)

is the only real zero and η1
.
= 1.839.

The “Tetranacci” (aka “Tetrabonacci”, “Quadranacci”) numbers are defined analogously
by

Ai = Ai−1 +Ai−2 +Ai−3 +Ai−4

with initial values A0 = A1 = A2 = 0 and A3 = 1. Once again, the Ai can be expressed as a
linear combination of the zeroes of the characteristic polynomial X4 −X3 −X2 −X − 1; see,
for example [6].

More generally, we can define the generalized Fibonacci sequence of order n by

G
(n)
i

= G
(n)
i−1 + · · ·+G

(n)
i−n

with appropriate initial terms. Here the associated characteristic polynomial is Xn −Xn−1 −
· · · −X − 1. As is well-known [7, 8], this polynomial has a single positive zero αn, which is
strictly between 1 and 2. (The other zeroes are discussed in [12].) Table 1 gives decimal
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approximations of the first few dominant zeroes. Furthermore, as Dresden and Du have shown
[1, Theorem 2], knowledge of αn suffices to compute the ith generalized Fibonacci number of
order n.

Table 1. Generalized Golden Means

n αn

2 1.61803398874989484820
3 1.83928675521416113255
4 1.92756197548292530426
5 1.96594823664548533719
6 1.98358284342432633039
7 1.99196419660503502110
8 1.99603117973541458982
9 1.99802947026228669866

10 1.99901863271010113866

It is natural to wonder how the generalized golden means αn behave as n → ∞. Dubeau
[2] proved that (αn)n≥2 is an increasing sequence that converges to 2. In fact, it is not hard
to show, using the binomial theorem, that

2− 1

2n − n

2 − n2

2n

< αn < 2− 1

2n − n

2

for n ≥ 2; see [5].
In this paper, we give three series that approximate αn, 1/αn, and 1/(2−αn) to any desired

order. Remarkably, all three have similar forms.

Theorem 1.1. Let n ≥ 2, and define α = αn, the positive real zero of Xn−Xn−1−· · ·−X−1.
Let β = 1/α. Then

(a)

β =
1

2
+

1

2

∑

k≥1

1

k

(

k(n+ 1)

k − 1

)

1

2k(n+1)
.

(b)

α = 2− 2
∑

k≥1

1

k

(

k(n+ 1)− 2

k − 1

)

1

2k(n+1)
.

(c)
1

2− α
= 2n − n

2
− 1

2

∑

k≥1

1

k

(

k(n+ 1)

k + 1

)

1

2k(n+1)
.

The proof is given in the next three sections. Our main tool is the classical Lagrange
inversion formula; see, for example, [4, Section A.6, p. 732].

Theorem 1.2. Let Φ(t) and f(t) be formal power series, and suppose t = zΦ(t). If Φ(0) 6= 0,
we can write t = t(z) as a formal power series in z. Then for integers k ≥ 1 we have

(a) [zk]t = 1
k
[tk−1](Φ(t))k;

(b) [zk]f(t) = 1
k
[tk−1]f ′(t)(Φ(t))k;
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where, as usual, [zk]t (resp., [zk]f(t)) denotes the coefficient of zk in the series for t (resp.,
f(t)).

2. A Series for β

In this section, we will prove Theorem 1.1 (a), namely:

β =
1

2
+

1

2

∑

k≥1

1

k

(

k(n+ 1)

k − 1

)

1

2k(n+1)
.

Proof. From

αn = αn−1 + · · ·+ α+ 1

we get

(1− α)αn = 1− αn

and hence,

αn+1 − 2αn + 1 = 0. (2.1)

Recalling that β = 1/α we get

β =
1

2
+

1

2
βn+1. (2.2)

Let Φ(t) = (t+ 1
2)

n+1 and

t = zΦ(t), (2.3)

as in the hypothesis of Theorem 1.2. We notice that t = β − 1
2 and z = 1

2 is a solution
to equation (2.3) as shown in equation (2.2). From the Lagrange inversion formula and the
binomial theorem, we get

[zk]t =
1

k
[tk−1]

(

t+
1

2

)k(n+1)
=

1

k

(

k(n + 1)

k − 1

)

1

2k(n+1)+1−k
.

So

t =
∑

k≥1

1

k

(

k(n+ 1)

k − 1

)

1

2k(n+1)+1−k
zk.

In particular, at z = 1
2 and t = β − 1

2 , we get

β =
1

2
+

1

2

∑

k≥1

1

k

(

k(n+ 1)

k − 1

)

1

2k(n+1)
,

as required. �

3. A Series for α

In this section, we will prove Theorem 1.1 (b), namely:

α = 2− 2
∑

k≥1

1

k

(

k(n+ 1)− 2

k − 1

)

1

2k(n+1)
.

This formula was previously discovered in 1998 by Wolfram [11, Theorem 3.9].
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Proof. From (2.1) we get
αn(α− 2) + 1 = 0

and so
2− α = α−n. (3.1)

Let Φ(t) = (1− t

2)
−n and

t = zΦ(t)

as in the hypothesis of Theorem 1.2. We observe that t = 2− α and z = 2−n is a solution, as
shown in equation (3.1). Using the Lagrange inversion formula again, we find

[zk]t =
1

k
[tk−1]

(

1− t

2

)−kn

=
1

k

(

k(n+ 1)− 2

k − 1

)

1

2k−1
.

Therefore,

t =
∑

k≥1

1

k

(

k(n+ 1)− 2

k − 1

)

zk
1

2k−1
.

In particular, evaluating this at t = 2− α and z = 2−n gives

2− α =
∑

k≥1

1

k

(

k(n+ 1)− 2

k − 1

)

2−nk
1

2k−1
,

or

α = 2− 2
∑

k≥1

1

k

(

k(n+ 1)− 2

k − 1

)

1

2k(n+1)
,

giving us a series for α. �

4. A Series for 1/(2 − α)

In this section we will prove Theorem 1.1 (c), namely:

1

2− α
= 2n − n

2
− 1

2

∑

k≥1

1

k

(

k(n+ 1)

k + 1

)

1

2k(n+1)
.

Proof. Define

S(z) = −1

2

∑

k≥1

1

k
zk[tk+1](1 + t)k(n+1).

At z = 2−(n+1), this gives

S
(

1/2n+1
)

= −1

2

∑

k≥1

1

k

(

k(n+ 1)

k + 1

)

1

2k(n+1)
.

Hence it suffices to show that

S
(

1/2n+1
)

= −2n +
n

2
+

1

2− α
.

We see from equation (3.1) that

2

α
− 1 = α−n−1. (4.1)

Let t = zΦ(t) as before. Further let

Φ(t) = (1 + t)n+1, f ′(t) = −Φ−2.
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We see that z = 1/2n+1 and t = 2
α
− 1 is a solution to t = zΦ(t) by equation (4.1).

To get a series for 1/(2−α), we start from the Lagrange inversion formula, part (b), to get

f(t) = f(0) +
∑

k≥1

1

k
zk[tk−1](Φ(t))kf ′(t).

Differentiating with respect to z gives

d

dz
f(t) =

dt

dz
· f ′(t) =

∑

k≥1

zk−1[tk−1](Φ(t))kf ′(t).

Using z = t/Φ(t) we get

dz

dt
=

Φ(t)− tΦ′(t)

Φ(t)2

and so
dt

dz
=

Φ(t)2

Φ(t)− tΦ′(t)
.

This gives us

Φ2

Φ− tΦ′ · f
′(t) =

∑

k≥1

zk−1[tk−1](Φ(t))kf ′(t)

= [t0]Φ(t)f ′(t) + z1[t1](Φ(t))2f ′(t) +
∑

k≥1

zk+1[tk+1](Φ(t)k)(Φ(t))2f ′(t).

Using the fact that f ′(t) = − 1
Φ2 we get

− 1

Φ− tΦ′ = −1−
∑

k≥1

zk+1[tk+1](Φ(t))k.

Observing that S′(z) = −1
2

∑

k≥1 z
k−1[tk+1](1 + t)k(n+1), this simplifies to

2z2S′(z) = 1− 1

Φ− tΦ′ .

Thus,

S′(z) =
1

2z2
− 1

Φ− tΦ′
Φ2

2t2
,

so

S(z) = − 1

2z1
−

∫

1

Φ− tΦ′
Φ2

2t2
dz = − 1

2z
−

∫

Φ− tΦ′

Φ2

1

Φ− tΦ′
Φ2

2t2
dt

and

S(z) = − 1

2z
−

∫

dt
1

2t2
= − 1

2z
+

1

2t
+ C.

In order to compute the integration constant C, we note that S(0) = 0. Then

C =
1

2
lim
z→0

[1

z
− 1

t

]

=
1

2
lim
t→0

Φ− 1

t
=

1

2
lim
t→0

(1 + t)n+1 − 1

t
=

n+ 1

2

and

S(z) = − 1

2z
+

1

2t
+

n+ 1

2
.
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Evaluating at z = 1/2n+1 and t = 2
α
− 1 we have

S(1/2n+1) = − 1

2z
+

1

2t
+

n+ 1

2
= −2n +

α

2(2− α)
+

n+ 1

2
= −2n +

1

2− α
+

n

2
,

as required. �

5. Speed of Convergence

The speed of convergence of the series in Theorem 1.1 is determined by the individual terms
in the sequence. For example, consider the series for 1/α:

β =
1

2
+

1

2

∑

k≥1

1

k

(

k(n+ 1)

k − 1

)

1

2k(n+1)
.

The convergence depends upon the speed of convergence of

f1(k, n)/2
k(n+1) :=

1

k

(

k(n + 1)

k − 1

)

1

2k(n+1)
.

Similarly, define

f2(k, n)/2
k(n+1) :=

1

k

(

k(n+ 1)− 2

k − 1

)

1

2k(n+1)
.

f3(k, n)/2
k(n+1) :=

1

k

(

k(n+ 1)

k + 1

)

1

2k(n+1)

based on the expansion of α and 1/(2 − α).
Notice that by Stirling’s approximation we have

lim
k→∞

log2(f1(k, n))/k ≈ lim
k→∞

log2(f2(k, n))/k

≈ lim
k→∞

log2(f3(k, n))/k

≈ (n+ 1) log2(n+ 1)− n log2(n),

which, as n → ∞, tends to log2(n+ 1) + 1
ln(2) .

Thus, for example, when n = 2 (corresponding to the Fibonacci case), we have

log2 fi(k, n) ∼ (3 log2(3) − 2 log2(2))k ∼ (2.75489 · · · )k.

Since each term of the summation is of the form fi(k, n)/2
k(n+1), in the case n = 2, the kth

term is approximately 2−.24511k. Thus, for example, 1000 terms of the series are expected to
give at least 73 correct digits; in fact, it gives 77 or 78 depending on the series. Here by digits
of accuracy, we mean b− log10 |actual − estimate|c, which is the number of correct decimal
digits after the decimal point. See Table 2 for a summation of various predictions versus
actual accuracy.

We notice that convergence is much much faster for larger n.
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Table 2. Predicted and Actual Accuracy of Truncated Series

n k Predicted Actual Actual Actual
accuracy accuracy (α) accuracy (1/α) accuracy (1/(2 − α))

2 100 7 10 10 9
2 1000 73 78 78 77
2 10000 737 744 743 743
10 10 18 23 23 21
10 100 185 192 191 190
10 1000 1856 1864 1863 1862
100 2 55 87 86 83
100 10 279 311 311 307
100 100 2796 2830 2829 2826
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