KEVIN HARE, HELMUT PRODINGER, AND JEFFREY SHALLIT

ABSTRACT. As is well-known, the ratio of adjacent Fibonacci numbers tends to $\phi = (1 +$ $\sqrt{5}$)/2, and the ratio of adjacent Tribonacci numbers (where each term is the sum of the three preceding numbers) tends to the real root η of $X^3 - X^2 - X - 1 = 0$. Letting α_n denote the corresponding ratio for the generalized Fibonacci numbers, where each term is the sum of the n preceding, we obtain rapidly converging series for α_n , $1/\alpha_n$, and $1/(2-\alpha_n)$.

1. Introduction

The Fibonacci numbers are defined by the recurrence

$$F_i = F_{i-1} + F_{i-2}$$

with initial values $F_0 = 0$ and $F_1 = 1$. The well-known Binet formula (actually already known to de Moivre) expresses F_i as a linear combination of the zeroes $\phi \doteq 1.61803 > 0 > \hat{\phi}$ of the characteristic polynomial of the recurrence $X^2 - X - 1$:

$$F_i = \frac{\phi^i - \hat{\phi}^i}{\phi - \hat{\phi}}.$$

Here the number $\phi = \frac{\sqrt{5}+1}{2}$ is popularly referred to as the *golden mean* or *golden ratio*. Similarly, the "Tribonacci" numbers (the name is apparently due to Feinberg [3]; also see

[9]) are defined by

$$T_i = T_{i-1} + T_{i-2} + T_{i-3}$$

with initial values $T_0 = T_1 = 0$ and $T_2 = 1$. Here we also have that T_i is a linear combination of $\eta_1^i, \eta_2^i, \eta_3^i$, where η_1, η_2, η_3 are the zeroes of the characteristic polynomial $X^3 - X^2 - X - 1$; see, e.g., [10]. Here

$$\eta_1 = \frac{1}{3} \left(1 + \sqrt[3]{19 + 3\sqrt{33}} + \sqrt[3]{19 - 3\sqrt{33}} \right)$$

is the only real zero and $\eta_1 \doteq 1.839$.

The "Tetranacci" (aka "Tetrabonacci", "Quadranacci") numbers are defined analogously by

$$A_i = A_{i-1} + A_{i-2} + A_{i-3} + A_{i-4}$$

with initial values $A_0 = A_1 = A_2 = 0$ and $A_3 = 1$. Once again, the A_i can be expressed as a linear combination of the zeroes of the characteristic polynomial $X^4 - X^3 - X^2 - X - 1$; see, for example [6].

More generally, we can define the generalized Fibonacci sequence of order n by

$$G_i^{(n)} = G_{i-1}^{(n)} + \dots + G_{i-n}^{(n)}$$

with appropriate initial terms. Here the associated characteristic polynomial is $X^n - X^{n-1}$ $\cdots - X - 1$. As is well-known [7, 8], this polynomial has a single positive zero α_n , which is strictly between 1 and 2. (The other zeroes are discussed in [12].) Table 1 gives decimal

NOVEMBER 2014 307

THE FIBONACCI QUARTERLY

approximations of the first few dominant zeroes. Furthermore, as Dresden and Du have shown [1, Theorem 2], knowledge of α_n suffices to compute the *i*th generalized Fibonacci number of order n.

Table 1. Generalized Golden Means

n	α_n
2	1.61803398874989484820
3	1.83928675521416113255
4	1.92756197548292530426
5	1.96594823664548533719
6	1.98358284342432633039
7	1.99196419660503502110
8	1.99603117973541458982
9	1.99802947026228669866
10	1.99901863271010113866

It is natural to wonder how the generalized golden means α_n behave as $n \to \infty$. Dubeau [2] proved that $(\alpha_n)_{n\geq 2}$ is an increasing sequence that converges to 2. In fact, it is not hard to show, using the binomial theorem, that

$$2 - \frac{1}{2^n - \frac{n}{2} - \frac{n^2}{2^n}} < \alpha_n < 2 - \frac{1}{2^n - \frac{n}{2}}$$

for $n \geq 2$; see [5].

In this paper, we give three series that approximate α_n , $1/\alpha_n$, and $1/(2-\alpha_n)$ to any desired order. Remarkably, all three have similar forms.

Theorem 1.1. Let $n \ge 2$, and define $\alpha = \alpha_n$, the positive real zero of $X^n - X^{n-1} - \cdots - X - 1$. Let $\beta = 1/\alpha$. Then

(a)
$$\beta = \frac{1}{2} + \frac{1}{2} \sum_{k>1} \frac{1}{k} \binom{k(n+1)}{k-1} \frac{1}{2^{k(n+1)}}.$$

(b)
$$\alpha = 2 - 2\sum_{k>1} \frac{1}{k} \binom{k(n+1)-2}{k-1} \frac{1}{2^{k(n+1)}}.$$

(c)
$$\frac{1}{2-\alpha} = 2^n - \frac{n}{2} - \frac{1}{2} \sum_{k \ge 1} \frac{1}{k} \binom{k(n+1)}{k+1} \frac{1}{2^{k(n+1)}}.$$

The proof is given in the next three sections. Our main tool is the classical Lagrange inversion formula; see, for example, [4, Section A.6, p. 732].

Theorem 1.2. Let $\Phi(t)$ and f(t) be formal power series, and suppose $t = z\Phi(t)$. If $\Phi(0) \neq 0$, we can write t = t(z) as a formal power series in z. Then for integers $k \geq 1$ we have

(a)
$$[z^k]t = \frac{1}{k}[t^{k-1}](\Phi(t))^k$$
;

(b)
$$[z^k]f(t) = \frac{1}{k}[t^{k-1}]f'(t)(\Phi(t))^k;$$

where, as usual, $[z^k]t$ (resp., $[z^k]f(t)$) denotes the coefficient of z^k in the series for t (resp., f(t)).

2. A Series for β

In this section, we will prove Theorem 1.1 (a), namely:

$$\beta = \frac{1}{2} + \frac{1}{2} \sum_{k>1} \frac{1}{k} \binom{k(n+1)}{k-1} \frac{1}{2^{k(n+1)}}.$$

Proof. From

$$\alpha^n = \alpha^{n-1} + \dots + \alpha + 1$$

we get

$$(1 - \alpha)\alpha^n = 1 - \alpha^n$$

and hence,

$$\alpha^{n+1} - 2\alpha^n + 1 = 0. (2.1)$$

Recalling that $\beta = 1/\alpha$ we get

$$\beta = \frac{1}{2} + \frac{1}{2}\beta^{n+1}.\tag{2.2}$$

Let $\Phi(t) = (t + \frac{1}{2})^{n+1}$ and

$$t = z\Phi(t), \tag{2.3}$$

as in the hypothesis of Theorem 1.2. We notice that $t = \beta - \frac{1}{2}$ and $z = \frac{1}{2}$ is a solution to equation (2.3) as shown in equation (2.2). From the Lagrange inversion formula and the binomial theorem, we get

$$[z^k]t = \frac{1}{k}[t^{k-1}]\left(t + \frac{1}{2}\right)^{k(n+1)} = \frac{1}{k}\binom{k(n+1)}{k-1}\frac{1}{2^{k(n+1)+1-k}}.$$

So

$$t = \sum_{k \ge 1} \frac{1}{k} \binom{k(n+1)}{k-1} \frac{1}{2^{k(n+1)+1-k}} z^k.$$

In particular, at $z = \frac{1}{2}$ and $t = \beta - \frac{1}{2}$, we get

$$\beta = \frac{1}{2} + \frac{1}{2} \sum_{k>1} \frac{1}{k} \binom{k(n+1)}{k-1} \frac{1}{2^{k(n+1)}},$$

as required.

3. A Series for α

In this section, we will prove Theorem 1.1 (b), namely:

$$\alpha = 2 - 2\sum_{k>1} \frac{1}{k} \binom{k(n+1) - 2}{k-1} \frac{1}{2^{k(n+1)}}.$$

This formula was previously discovered in 1998 by Wolfram [11, Theorem 3.9].

NOVEMBER 2014 309

THE FIBONACCI QUARTERLY

Proof. From (2.1) we get

$$\alpha^n(\alpha - 2) + 1 = 0$$

and so

$$2 - \alpha = \alpha^{-n}. (3.1)$$

Let $\Phi(t) = (1 - \frac{t}{2})^{-n}$ and

$$t = z\Phi(t)$$

as in the hypothesis of Theorem 1.2. We observe that $t = 2 - \alpha$ and $z = 2^{-n}$ is a solution, as shown in equation (3.1). Using the Lagrange inversion formula again, we find

$$[z^k]t = \frac{1}{k}[t^{k-1}]\left(1 - \frac{t}{2}\right)^{-kn} = \frac{1}{k}\binom{k(n+1) - 2}{k - 1}\frac{1}{2^{k-1}}.$$

Therefore,

$$t = \sum_{k>1} \frac{1}{k} \binom{k(n+1)-2}{k-1} z^k \frac{1}{2^{k-1}}.$$

In particular, evaluating this at $t = 2 - \alpha$ and $z = 2^{-n}$ gives

$$2 - \alpha = \sum_{k>1} \frac{1}{k} {k(n+1) - 2 \choose k-1} 2^{-nk} \frac{1}{2^{k-1}},$$

or

$$\alpha = 2 - 2\sum_{k>1} \frac{1}{k} \binom{k(n+1) - 2}{k-1} \frac{1}{2^{k(n+1)}},$$

giving us a series for α .

4. A Series for
$$1/(2-\alpha)$$

In this section we will prove Theorem 1.1 (c), namely:

$$\frac{1}{2-\alpha} = 2^n - \frac{n}{2} - \frac{1}{2} \sum_{k \ge 1} \frac{1}{k} \binom{k(n+1)}{k+1} \frac{1}{2^{k(n+1)}}.$$

Proof. Define

$$S(z) = -\frac{1}{2} \sum_{k>1} \frac{1}{k} z^k [t^{k+1}] (1+t)^{k(n+1)}.$$

At $z = 2^{-(n+1)}$, this gives

$$S(1/2^{n+1}) = -\frac{1}{2} \sum_{k>1} \frac{1}{k} {k(n+1) \choose k+1} \frac{1}{2^{k(n+1)}}.$$

Hence it suffices to show that

$$S(1/2^{n+1}) = -2^n + \frac{n}{2} + \frac{1}{2-\alpha}$$

We see from equation (3.1) that

$$\frac{2}{\alpha} - 1 = \alpha^{-n-1}.\tag{4.1}$$

Let $t = z\Phi(t)$ as before. Further let

$$\Phi(t) = (1+t)^{n+1}, \quad f'(t) = -\Phi^{-2}.$$

We see that $z=1/2^{n+1}$ and $t=\frac{2}{\alpha}-1$ is a solution to $t=z\Phi(t)$ by equation (4.1). To get a series for $1/(2-\alpha)$, we start from the Lagrange inversion formula, part (b), to get

$$f(t) = f(0) + \sum_{k>1} \frac{1}{k} z^k [t^{k-1}] (\Phi(t))^k f'(t).$$

Differentiating with respect to z gives

$$\frac{d}{dz}f(t) = \frac{dt}{dz} \cdot f'(t) = \sum_{k>1} z^{k-1} [t^{k-1}] (\Phi(t))^k f'(t).$$

Using $z = t/\Phi(t)$ we get

$$\frac{dz}{dt} = \frac{\Phi(t) - t\Phi'(t)}{\Phi(t)^2}$$

and so

$$\frac{dt}{dz} = \frac{\Phi(t)^2}{\Phi(t) - t\Phi'(t)}.$$

This gives us

$$\frac{\Phi^2}{\Phi - t\Phi'} \cdot f'(t) = \sum_{k \ge 1} z^{k-1} [t^{k-1}] (\Phi(t))^k f'(t)
= [t^0] \Phi(t) f'(t) + z^1 [t^1] (\Phi(t))^2 f'(t) + \sum_{k \ge 1} z^{k+1} [t^{k+1}] (\Phi(t)^k) (\Phi(t))^2 f'(t).$$

Using the fact that $f'(t) = -\frac{1}{\Phi^2}$ we get

$$-\frac{1}{\Phi - t\Phi'} = -1 - \sum_{k \ge 1} z^{k+1} [t^{k+1}] (\Phi(t))^k.$$

Observing that $S'(z) = -\frac{1}{2} \sum_{k \geq 1} z^{k-1} [t^{k+1}] (1+t)^{k(n+1)}$, this simplifies to

$$2z^2S'(z) = 1 - \frac{1}{\Phi - t\Phi'}$$

Thus,

$$S'(z) = \frac{1}{2z^2} - \frac{1}{\Phi - t\Phi'} \frac{\Phi^2}{2t^2},$$

so

$$S(z) = -\frac{1}{2z^1} - \int \frac{1}{\Phi - t\Phi'} \frac{\Phi^2}{2t^2} dz = -\frac{1}{2z} - \int \frac{\Phi - t\Phi'}{\Phi^2} \frac{1}{\Phi - t\Phi'} \frac{\Phi^2}{2t^2} dt$$

and

$$S(z) = -\frac{1}{2z} - \int dt \frac{1}{2t^2} = -\frac{1}{2z} + \frac{1}{2t} + C.$$

In order to compute the integration constant C, we note that S(0) = 0. Then

$$C = \frac{1}{2} \lim_{z \to 0} \left[\frac{1}{z} - \frac{1}{t} \right] = \frac{1}{2} \lim_{t \to 0} \frac{\Phi - 1}{t} = \frac{1}{2} \lim_{t \to 0} \frac{(1 + t)^{n+1} - 1}{t} = \frac{n + 1}{2}$$

and

$$S(z) = -\frac{1}{2z} + \frac{1}{2t} + \frac{n+1}{2}.$$

NOVEMBER 2014

THE FIBONACCI QUARTERLY

Evaluating at $z=1/2^{n+1}$ and $t=\frac{2}{\alpha}-1$ we have

$$S(1/2^{n+1}) = -\frac{1}{2z} + \frac{1}{2t} + \frac{n+1}{2} = -2^n + \frac{\alpha}{2(2-\alpha)} + \frac{n+1}{2} = -2^n + \frac{1}{2-\alpha} + \frac{n}{2},$$

as required.

5. Speed of Convergence

The speed of convergence of the series in Theorem 1.1 is determined by the individual terms in the sequence. For example, consider the series for $1/\alpha$:

$$\beta = \frac{1}{2} + \frac{1}{2} \sum_{k>1} \frac{1}{k} \binom{k(n+1)}{k-1} \frac{1}{2^{k(n+1)}}.$$

The convergence depends upon the speed of convergence of

$$f_1(k,n)/2^{k(n+1)} := \frac{1}{k} {k(n+1) \choose k-1} \frac{1}{2^{k(n+1)}}.$$

Similarly, define

$$f_2(k,n)/2^{k(n+1)} := \frac{1}{k} \binom{k(n+1)-2}{k-1} \frac{1}{2^{k(n+1)}}.$$
$$f_3(k,n)/2^{k(n+1)} := \frac{1}{k} \binom{k(n+1)}{k+1} \frac{1}{2^{k(n+1)}}.$$

based on the expansion of α and $1/(2-\alpha)$.

Notice that by Stirling's approximation we have

$$\begin{split} \lim_{k \to \infty} \log_2(f_1(k,n))/k &\approx \lim_{k \to \infty} \log_2(f_2(k,n))/k \\ &\approx \lim_{k \to \infty} \log_2(f_3(k,n))/k \\ &\approx (n+1)\log_2(n+1) - n\log_2(n), \end{split}$$

which, as $n \to \infty$, tends to $\log_2(n+1) + \frac{1}{\ln(2)}$.

Thus, for example, when n=2 (corresponding to the Fibonacci case), we have

$$\log_2 f_i(k,n) \sim (3\log_2(3) - 2\log_2(2))k \sim (2.75489\cdots)k.$$

Since each term of the summation is of the form $f_i(k,n)/2^{k(n+1)}$, in the case n=2, the kth term is approximately $2^{-.24511k}$. Thus, for example, 1000 terms of the series are expected to give at least 73 correct digits; in fact, it gives 77 or 78 depending on the series. Here by digits of accuracy, we mean $\lfloor -\log_{10}|\operatorname{actual}-\operatorname{estimate}|\rfloor$, which is the number of correct decimal digits after the decimal point. See Table 2 for a summation of various predictions versus actual accuracy.

We notice that convergence is much much faster for larger n.

6. ACKNOWLEDGMENT.

The third author wishes to thank Jürgen Gerhard for his assistance with Maple and his suggestions about the problem.

Table 2. Predicted and Actual Accuracy of Truncated Series

n	k	Predicted	Actual	Actual	Actual
		accuracy	accuracy (α)	accuracy $(1/\alpha)$	accuracy $(1/(2-\alpha))$
2	100	7	10	10	9
2	1000	73	78	78	77
2	10000	737	744	743	743
10	10	18	23	23	21
10	100	185	192	191	190
10	1000	1856	1864	1863	1862
100	2	55	87	86	83
100	10	279	311	311	307
100	100	2796	2830	2829	2826

REFERENCES

- [1] G. P. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Sequences, 17 (2014), Article 14.4.7. https://cs.uwaterloo.ca/journals/JIS/VOL17/Dresden/dresden6.html.
- [2] F. Dubeau, On r-generalized Fibonacci numbers, The Fibonacci Quarterly, 27.3 (1989), 221–229.
- [3] M. Feinberg, Fibonacci-Tribonacci, The Fibonacci Quarterly, 1.1 (1963), 71–74.
- [4] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge, 2009.
- [5] M. Forsyth, A. Jayakumar, and J. Shallit, *Remarks on privileged words*, Preprint, November 28, 2013, http://arxiv.org/abs/1311.7403.
- [6] P. Y. Lin, De Moivre-type identities for the Tetrabonacci numbers, Applications of Fibonacci Numbers, Vol. 4, Kluwer, 1991, 215–218.
- [7] E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly, 67 (1960), 745–752.
- [8] M. D. Miller, On generalized Fibonacci numbers, Amer. Math. Monthly, 78 (1971), 1108–1109.
- [9] J. Sharp, Have you seen this number?, Math. Gazette, 82 (1998), 203–214.
- [10] W. R. Spickerman, Binet's formula for the Tribonacci sequence, The Fibonacci Quarterly, 20.2 (1982), 118–120.
- [11] D. A. Wolfram, Solving generalized Fibonacci recurrences, The Fibonacci Quarterly, 36.2 (1998), 129–145.
- [12] X. Zhu and G. Grossman, Limits of zeros of polynomial sequences, J. Comput. Anal. Appl., 11 (2009), 140–158.

MSC2010: 11B39, 12D10, 12Y05, 26C10, 30B10

Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada $E\text{-}mail\ address:\ kghare@uwaterloo.ca}$

DEPARTMENT OF MATHEMATICAL SCIENCES, STELLENBOSCH UNIVERSITY, 7602 STELLENBOSCH, SOUTH AFRICA

E-mail address: hproding@sun.ac.za

Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

 $E\text{-}mail\ address: \verb| shallit@cs.uwaterloo.ca|\\$

NOVEMBER 2014 313