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ABSTRACT. Previously only a base 5 BBP-type formula is known for v/5log ¢, where ¢ =
(v/5+1)/2, the golden ratio, (i.e. Formula 83 of the April 2013 edition of Bailey’s Compendium
of BBP-type formulas). In this paper we derive a new binary BBP-type formula for this
constant. The formula is obtained as a particular case of a BBP-type formula for a family of
logarithms.

1. INTRODUCTION

A Bailey-Borwein-Ploufe (BBP) type formula for a mathematical constant ¢ has the form

— bk = (Kl +j)*
where s, b, and [ are integers: the degree, base and length of the formula, respectively and the
a; are rational numbers.

Such a formula allows the extraction of the individual base b digits of a mathematical con-
stant without the need to compute the previous digits. The original BBP formula, discovered
in 1996 [4], allows the extraction of the binary or hexadecimal digits of the constant 7. Many
such formulas have since been discovered and can be found in Bailey’s Online Compendium
of BBP-type formulas [3] and in the references therein. Another online Compendium is also
being maintained by the CARMA Institute [2]. At the time of writing this paper only a base
5 BBP-type formula is known for the mathematical constant v/5log ¢, where ¢ = (/5 + 1) /2
is the golden ratio. This formula is listed as Formula 83 in the current edition of Bailey’s
Compendium.

In this present paper we derive a new binary BBP-type formula for v/5log ¢. The formula
is presented as a particular case of a more general BBP-type formula derived for a family of
logarithms.

2. NOTATION

The first degree polylogarithm function, which we employ in this paper, is defined by

o
z"
Li = — = —log(1 — <1 1.
=25 = —os(1 =), BS54
For g,z € R, we have the 1dent1t1es

gsinz q"sinrx
arctan (| ——— | = Im Li; [gexp(iz)] 2.1
<1 - qcos:n) g el Z 2.1)

and
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1
—3 log (1 — 2gcosx + q2) Re Lij [gexp(iz)] Z g’ cosrz (2.2)

The BBP-type formulas in this paper will be given in the Standard notation for BBP-type
formulas, introduced in [5]:

[es) l
1 a;
— — = b,l, A
Zbkz (kl+])s (S )
where s, b, and [ are integers, and A = (a1, as,...,q;) is a vector of integers.

3. A GENERAL BBP-TYPE FORMULA FOR A FAMILY OF LOGARITHMS

Theorem. For any nonzero integer t, the following BBP-type formula holds

1—t+2t2
tanh ™! t
V5 tan {<1—t+3t2—2t3+4t4> \/5}
5

~ 220439
0, _ol4 t28’ _ol4 t27, 913 t267 0,0, _ol2 t23, _oll t22, 0, _ol0 tzo, 0, _99 t18’
0,—28¢16, —28¢15 0,0,26 412, —26 411 25410 0 2448 2447 —23¢6 0,0,

223,21%,0,1,0)).

P(l, 220t40, 40, (219 t38, 0’ 218 t36, 218 t35, 0’ 0’ _216 t32, 216 t31, 215 t30’
(3.1)

Proof. Consider the following identity which holds for t € R, ¢ # 0:

1—t+ 2t
-1
tanh {(1—t+3t2_2t3+4t4>t\/5}
1 T 1 TiT
= Reli; |— —ReLij |—— - 3.2
[ (5)] e[ (F)] e
1 Qi 1 177
RelLi; |— —_ ReLi; |— )
o g ()] et ()]

It is straightforward to verify equation (3.2) by the use of the first equality in equation (2.2).
Using the second equality in equation (2.2) and trigonometric addition rules, equation (3.2)
can also be written as

1—t+ 2t2 > 4 rIT 2rm rIT
tanh~! NG i (—) in (£ (—)
an { <1 Tt 32— 213 + 4t4> \f} <2 NI Rl W A\

where we have defined a periodic function

f(r) = 4sin (%T) sin (?) cos (%), r € Z. (34)

Since f(r) € {0, +v5/v/2, i\/_} and since f(40k + j) = f(j) for integers k and j, we
can convert the above single sum to an equivalent double sum by setting r = 40k 4 j in
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equation (3.3), obtaining

1—t+ 22 s 1 X /fG) 11
tanh ™! t = /
o {(1 3223 4t4> \/g} 2 (220440 2 ( 17 /23 40k +j>

k=0 =1
’ (3.5)
S
T 920439 e (220t40)k = 40k + j ’
where the integers (for t € Z,t # 0) a;, j = 1,2,...,40 are given by
a; = @t?’g—j\/%mm—j . (3.6)
Assigning the explicit values of a; into equation (3.5) the theorem is proved. O

Remark. The theorem (equation (3.1)) is actually true for any nonzero complex number ¢,
as is readily established by the Principle of Permanence for analytic functions [1]. Technically
speaking, however, equation (3.1) is BBP-type only if ¢ is a nonzero integer.

4. A BINARY BBP-TYPE FORMULA FOR /5 log ¢

Setting ¢t = 1 in equation (3.1) gives the following corollary.
Corollary.

V5log ¢ = &%P(l, 22040, (2%9,0,2!8,218 0,0, —2%6 216 215 o 24 ol
913 0,0, —212, —911 0, 210 o _99 0, —28 _98 0 0,26 —26, (4.1)
—2°,0,2%,2%,-23,0,0,22,2,0,1,0)).
5. CONCLUSION

We have derived a new BBP-type formula for a family of logarithms. A binary BBP-type
formula for /5 log ¢ is obtained as a particular case of the result.
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