CONVOLUTIONS OF TRIBONACCI, FUSS-CATALAN,
AND MOTZKIN SEQUENCES
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ABSTRACT. We introduce a class of sequences, defined by means of partial Bell polynomials,
that contains a basis for the space of linear recurrence sequences with constant coefficients
as well as other well-known sequences like Catalan and Motzkin. For the family of ‘Bell
sequences’ considered in this paper, we give a general multifold convolution formula and
illustrate our result with a few explicit examples.

1. INTRODUCTION

Given numbers a and b, not both equal to zero, and given a sequence cy, ca, . .., we consider
the sequence (y,,) given by
n
an + bk\ (k—1)!
yo=1, yp= kz_; < ko1 >(n!)Bmk(1!cl, 2leg,...) forn > 1, (1.1)

where B, j, denotes the (n, k)-th partial Bell polynomial defined as

n!

Bn,k(xla"'axn—k‘—i-l) — Z

(%)al . ( Tn—k+1 )O‘n—k:+1
|\

lavol - - - (n—k+1)!
aer(n,k) 10! Op—k+1-
with 7(n, k) denoting the set of multi-indices a € NJ7F*! such that a1 + ag + --- = k and
a1+ 29+ 3az + - - - = n. For more about Bell polynomials, see e.g. [4, Chapter 3]. In general,
there is no need to impose any restriction on the entries x1, xo, ... other than being contained

in a commutative ring. Here we are mainly interested in Z and Z[z].

The class of sequences (1.1) turns out to offer a unified structure to a wide collection of known
sequences. For instance, with ¢ = 0 and b = 1, any linear recurrence sequence with constant
coefficients ¢y, co, . . ., ¢4, can be written as a linear combination of sequences of the form (1.1).
In fact, if (a,) is a recurrence sequence satisfying a,, = c1an—1+c2an—2+4- - -+cqan_q for n > d,
then there are constants \g, A1, ..., A\gq—1 (depending on the initial values of the sequence) such
that an, = Aoyn + Myn—1 + -+ Ad—1Yn—a+1 with

n

k!
Yyo=1, yp= Z mBnJg(l!Cl,2!CQ, ...)forn>1.
k=1 "

For more details about this way of representing linear recurrence sequences, cf. [3].

On the other hand, if a = 1 and b = 0, we obtain sequences like Catalan and Motzkin by
making appropriate choices of ¢; and c2, and by setting ¢; = 0 for 7 > 3. These and other
concrete examples will be discussed in sections 3 and 4.

In this paper, we focus on convolutions and will use known properties of the partial Bell
polynomials to prove a multifold convolution formula for (1.1).
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2. CONVOLUTION FORMULA
Our main result is the following formula.

Theorem 2.1. Let yg =1 and forn > 1,

" lan + bk\ (k —1)!
Yn = Z < ko1 >(n')Bn7k(1!C1,2!C2,...).
k=1 ’

Forr > 1, we have

an+bk:+7“—1 (k—1)!
> Um ﬂ“Z( ) —— Bux(ller, 2ez, ). (2.1)

mi+--+mr=n

In order to prove this theorem, we recall a convolution formula for partial Bell polynomials
that was given by the authors in [2, Section 3, Corollary 11].

Lemma 2.2. Let a(ﬁ m) be a linear polynomial in ¢ and m. For any T # 0, we have

ém) T—a(lm)\ (n — alk,n) (T
Z Z )( L )(m)k) Bm,Zanm,kfé _ T (0, 0) + (k, ) ( )Bn,k

{=0 m= Z T_a(&m))(g TO[(]C,TI)(T—O((0,0)) k

This formula is key for proving Theorem 2.1. For illustration purposes, we start by proving
the special case of a simple convolution (i.e. r = 2).

Lemma 2.3. The sequence (y,) defined by (1.1) satisfies
an + bk —|— 1\ (k—1)!
Zymyn m—QZ < > o Bn7k(1!C1,2!C2,...).

Proof. We begin by assuming a,b > 0. For n > 0 we can rewrite y,, as

- 1 an + bk + 1\ k!
yn:z< >n Bnk(l'C1,2'CQ,...). (22)

kzoan+bk+1 k

By definition,

n
> Um Un-m
m=0

n m n—m

am+b€+1 £ 1 a(n—m)+bj+1 ! )

Z am+b€+1 )m' Bm,é Z a(n—m)+bj+1 ( 7 ) (n—m)!Bn*ma]
=0 L /=0 j=0

_ Zn: Zn:zk: (am—i—bf—l—l) (a n— m)+b (k— @)Jrl) /I (/{7 B 2)' .

o ewrd (am + 0l +1)(a(n — ) + bk —€) +1)m! (n —m)! m,ESn—m,k—t
_ z": K zk: 3 (TR () () BBt

=l =~ (am + bl + 1)(a(n —m) +b(k —0) +1)(5) ’

U k n (Z m)) (T—ngé,m)) (n) ]

= - o Bm,éBn—ch—E

z;o n! [% Ze (7 = a(t;m))a(l,m)(j)

with a(¢,m) = a(n —m) +b(k —¢) + 1 and 7 = an + bk + 2.
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Thus, by Lemma 2.2,

= [l (|

—~ k! 2 an + bk + 2
=200 lans bk =2 B, v(1lcy. 2ley. . ..
kZ_O n! [(an + bk + 2) ( k > ni(1ler, 2le, ):|

" (an + bk + 1\ (k —1)!
=2 LB k(1ler, 2y, ).
kgg( k—1 ) ar Dn(llen, 2len, ..

For any fixed n, both sides of the claimed equation are polynomials in a and b. Since they
coincide on an open subset of R?, they must coincide for all real numbers a and b. U

Proof of Theorem 2.1. We proceed by induction in r. The case r = 2 was discussed in the
previous lemma. Assume the formula (2.1) holds for products of length less than r > 2.
As before, we temporarily assume that both a and b are positive. For n > 0 we rewrite

n

r—1 an + bk +r — 1\ k!
E — E | |

Yma * Yy = an+bk+r—1< k )n'Bnk(lcl’QCZ"”)'
mi+-+mr_1=n k=0

Thus
n
2 =2 um D Ym e
mi+-- +mr—n mi+--+mp_1=n—m
n n—m
_ r—1 a(n—m)+bj+r—1 4! )
- Z Ym a(n—m)+bj+r—1 ( J ) (nfm)!B”_va'
m=0 7=0

Writing vy, as in (2.2), we then get

Til S

n m (am—&—gbﬁ—&-l)g! n—m (a(n—m);—bj—i—r—l)j!
= B, By
= [g(am—i-bﬁ—i-l)m! ][]:0( (n—m)+bj+r—1)(n—m)! J
B n n zk: (a(n m)Jr’l:(kZ O)+r— 1)) (am—i—b@—l—l) i’ (k‘ B f)' -
- A (am + b+ 1) (a(n —m) +b(k — €) + 7 — 1) m! (n —m)! mytEn—m,k—
n gl E n a(fim) T—a(l,m)
g GG
im0 L= mee (T — a(l,m))a(l,m) (z)

with a(¢,m) =a(n —m) +b(k—¢)+r—1and 7 = an + bk + r.
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Finally, by Lemma 2.2,

" K [7—a(0,0)+ a(k,n) [T
> v ==Y [m(k’(n)h)_ a((0,0); <k>Bn7k(1!cl,2!02, : ..)]

my+-+mr=n k=0

n Tan+bk+r
:(r—l)zk![( ) Bn,k(ucl,z!cz,...)]

n!

— an + bk +r)(r—1)
" fan + bk +r -1\ (k—1)!
= B, (e, 2lea, ... ).
Tkz—o< k1 > o nk(1ler, 2lea, . )

As in the previous lemma, this equation actually holds for all a,b € R as claimed.

3. EXAMPLES: FIBONAcCCI, TRIBONACCI, JACOBSTHAL

As mentioned in the introduction, sequences of the form (1.1) with a = 0 and b = 1 can
be used to describe linear recurrence sequences with constant coefficients. In this case, (1.1)

takes the form

n
k!
UYn = Z HBn’k(l!Cl72!02, ...) forn >0,
k=0
and the convolution formula (2.1) turns into

" (k+r—1\ (k—1)!
Z ymln.ymr:TZ< k_l >( n' ) Bn7k(1!6172!62,.-.)

mi+--+mr=n k=1

" k4 — 1\ !
:Z< N )mBn,k(uq,z!CQ,...),

k=1 ’

One can obtain (with a similar proof) the more general formula

n—or

k+r—1 k!
Z Ymi—8 " Ymy—8 = Z ( L >(n_(an—6r,k’(1!cl72!62>“

mi+-+my=n k=0

for any integer 6 > 0, assuming y_; =y_o=---=y_5 = 0.
Example 3.1 (Fibonacci). Consider the sequence defined by
fo=0, fi=1, and fp= fn1+ fan2 forn>2.

Choosing c1 = ca =1 and ¢; =0 for j >3 in (3.1), for n > 1 we have

n—1

k! k
n — Yn—-1 — 7Bn— 1727 yeee ) = )
Jo=tne1= D gy Bum1a(1,2,0,...) Z<n—1—k;>
k=0 k=0
and
~— (k+r—1 k
> fml...fmr_z< ' ><n_r_k>.
mi+-+mr=n k=0

Example 3.2 (Tribonacci). Let (t,) be the sequence defined by
to=t1=0, to=1, and t, =t 1 +th_o+th_3 fOT’ n > 3.
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Choosing c1 = ca =c3 =1 and ¢; =0 for j >4 in (3.1), for n > 2 we have

k!
ln = Yn—2 = Z manzyk(ll, 21,31,0,... ),
=0

and since By r(11,21,31,0,...) = 1 Y0 (%)) (nff_ka) = 1 S0 (1) (uime) we get

and
n—2r k
k+r—1\ [k !/
S tmetn =S () (o)
mi—+---+mpr=n k=0 (=0

Example 3.3 (Jacobsthal). The Jacobsthal polynomials are obtained by the recurrence

Jo=0, Ji =1, and
In = Jn_1+2xdy_o forn > 2.

Choosing c1 =1, ¢co =2z, and ¢;j =0 for j > 3 in (3.1), for n > 1 we get

n—1 n—1
k! k
D =Une1 =Y ———— By 1x(1,2(2 L) = 2z) 1k
I TSI CEXSRED B (R (Ui

and

-— k! k+r—1
T+ I, = Bprik(1,42,0, ...
Z ! " (n—r)!< k ) k(L 4z )

ECT

4. EXAMPLES: FUss—CATALAN, MOTZKIN

All of the previous examples are related to the family (3.1). However, there are many other
cases of interest. For example, let us consider the case when a = 1, b = 0, and ¢; = 0 for

J > 3. Since By, y(c1,2¢2,0,...) = Z—;(nﬁk)c%k_"cg_k, the family (1.1) can be written as

"1 n k —n on—
yo =1, ynzzk<k;—1><n—k>cﬁk cy Fforn>1, (4.1)
k=1

and the convolution formula (2.1) becomes

“rfn+r—1 k o
Z ym1"’ymr:Zk< E—1 )(n_k>03k Co k. (4.2)

mi+-+mr=n k=1
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Example 4.1 (Catalan). If we let ¢y =2 and ca =1 in (4.1), forn > 1 we get

n

n = Zi’(kﬁ& <nﬁk>2%_n

k=1

1 GK(n+1 E N ookn
_n—l-lZl( k )(n—k>2

k
1 /2(n4+1)y 1 [2(n+1) _c
n+1 n T n+2\ n+1 ) MU

Here we used the identity
" (x k 9%k 2z
2°% = 2n 4.
()G =) =
k=[5

from Gould’s collection [5, Identity (3.22)]. As for convolutions, (4.2) leads to

“rfntr—1 k n
S o o EHC

n —
mi+-+mr=n k=1

n

o Z n+r k 92k—n
Cn4r k n—=k '

k=1

Using again (4.3), we arrive at the identity

2(n +

n—+r n
mi+--+mr=n T

Example 4.2 (Motzkin). Let us now consider (4.1) with ¢y =1 and cog = 1. Forn > 1,

1/ n k 1 K (n+1l k
yn_zkz<k—1> (n—k> - n+1z< k >(n—k3>
k=1 k=1
These are the Motzkin numbers M,. Moreover,

T " /n+r k
Z Mml'..MmT_n—i-rZ( k ><n—k3>

my+-+mr=n k=0

We finish this section by considering the sequence (with b # 0):

" bk Y (k—1)!
yo=1, ypn= Z <k - 1) ( . ) By p(1ler, 2leg, ... ) for n > 1.
k=1 :

Example 4.3 (Fuss—Catalan). Ifc; =1 and ¢; = 0 for j > 2, then the above sequence becomes

_q b \Y(n—-1)! 1 bn
N=5 =\, nl (b—1n+1\n)

Denoting o) = Yn, and since r(b”;fl_l) (n;!l)! = bnrﬁ(b";r), we get the identity

D ONRE, R p—_—— b+
m e bn 4 ’

n
mi+-+mr=n
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