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Abstract. We introduce a class of sequences, defined by means of partial Bell polynomials,
that contains a basis for the space of linear recurrence sequences with constant coefficients
as well as other well-known sequences like Catalan and Motzkin. For the family of ‘Bell
sequences’ considered in this paper, we give a general multifold convolution formula and
illustrate our result with a few explicit examples.

1. Introduction

Given numbers a and b, not both equal to zero, and given a sequence c1, c2, . . . , we consider
the sequence (yn) given by

y0 = 1, yn =
n∑
k=1

(
an+ bk

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1, (1.1)

where Bn,k denotes the (n, k)-th partial Bell polynomial defined as

Bn,k(x1, . . . , xn−k+1) =
∑

α∈π(n,k)

n!

α1!α2! · · ·αn−k+1!

(
x1
1!

)α1 · · ·
( xn−k+1

(n−k+1)!

)αn−k+1

with π(n, k) denoting the set of multi-indices α ∈ Nn−k+1
0 such that α1 + α2 + · · · = k and

α1 +2α2 +3α3 + · · · = n. For more about Bell polynomials, see e.g. [4, Chapter 3]. In general,
there is no need to impose any restriction on the entries x1, x2, . . . other than being contained
in a commutative ring. Here we are mainly interested in Z and Z[x].

The class of sequences (1.1) turns out to offer a unified structure to a wide collection of known
sequences. For instance, with a = 0 and b = 1, any linear recurrence sequence with constant
coefficients c1, c2, . . . , cd, can be written as a linear combination of sequences of the form (1.1).
In fact, if (an) is a recurrence sequence satisfying an = c1an−1+c2an−2+· · ·+cdan−d for n ≥ d,
then there are constants λ0, λ1, . . . , λd−1 (depending on the initial values of the sequence) such
that an = λ0yn + λ1yn−1 + · · ·+ λd−1yn−d+1 with

y0 = 1, yn =
n∑
k=1

k!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1.

For more details about this way of representing linear recurrence sequences, cf. [3].
On the other hand, if a = 1 and b = 0, we obtain sequences like Catalan and Motzkin by

making appropriate choices of c1 and c2, and by setting cj = 0 for j ≥ 3. These and other
concrete examples will be discussed in sections 3 and 4.

In this paper, we focus on convolutions and will use known properties of the partial Bell
polynomials to prove a multifold convolution formula for (1.1).
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2. Convolution Formula

Our main result is the following formula.

Theorem 2.1. Let y0 = 1 and for n ≥ 1,

yn =
n∑
k=1

(
an+ bk

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

For r ≥ 1, we have∑
m1+···+mr=n

ym1 · · · ymr = r

n∑
k=1

(
an+ bk + r − 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ). (2.1)

In order to prove this theorem, we recall a convolution formula for partial Bell polynomials
that was given by the authors in [2, Section 3, Corollary 11].

Lemma 2.2. Let α(`,m) be a linear polynomial in ` and m. For any τ 6= 0, we have

k∑
`=0

n∑
m=`

(α(`,m)
k−`

)(τ−α(`,m)
`

)(
n
m

)
α(`,m)(τ − α(`,m))

(
k
`

)Bm,`Bn−m,k−` =
τ − α(0, 0) + α(k, n)

τα(k, n)(τ − α(0, 0))

(
τ

k

)
Bn,k.

This formula is key for proving Theorem 2.1. For illustration purposes, we start by proving
the special case of a simple convolution (i.e. r = 2).

Lemma 2.3. The sequence (yn) defined by (1.1) satisfies

n∑
m=0

ym yn−m = 2

n∑
k=1

(
an+ bk + 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

Proof. We begin by assuming a, b ≥ 0. For n ≥ 0 we can rewrite yn as

yn =
n∑
k=0

1

an+ bk + 1

(
an+ bk + 1

k

)
k!

n!
Bn,k(1!c1, 2!c2, . . . ). (2.2)

By definition,
n∑

m=0

ym yn−m

=

n∑
m=0

[
m∑
`=0

1
am+b`+1

(
am+b`+1

`

)
`!
m!Bm,`

][
n−m∑
j=0

1
a(n−m)+bj+1

(
a(n−m)+bj+1

j

) j!
(n−m)!Bn−m,j

]

=

n∑
m=0

n∑
k=0

k∑
`=0

(
am+b`+1

`

)(a(n−m)+b(k−`)+1
k−`

)
(am+ b`+ 1)(a(n−m) + b(k − `) + 1)

`!

m!

(k − `)!
(n−m)!

Bm,`Bn−m,k−`

=
n∑
k=0

k!

n!

k∑
`=0

n∑
m=`

(a(n−m)+b(k−`)+1
k−`

)(
am+b`+1

`

)(
n
m

)
(am+ b`+ 1)(a(n−m) + b(k − `) + 1)

(
k
`

)Bm,`Bn−m,k−`
=

n∑
k=0

k!

n!

[
k∑
`=0

n∑
m=`

(α(`,m)
k−`

)(τ−α(`,m)
`

)(
n
m

)
(τ − α(`,m))α(`,m)

(
k
`

)Bm,`Bn−m,k−`
]

with α(`,m) = a(n−m) + b(k − `) + 1 and τ = an+ bk + 2.
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Thus, by Lemma 2.2,

n∑
m=0

ym yn−m =
n∑
k=0

k!

n!

[
τ − α(0, 0) + α(k, n)

τα(k, n)(τ − α(0, 0))

(
τ

k

)
Bn,k(1!c1, 2!c2, . . . )

]

=
n∑
k=0

k!

n!

[
2

(an+ bk + 2)

(
an+ bk + 2

k

)
Bn,k(1!c1, 2!c2, . . . )

]

= 2
n∑
k=0

(
an+ bk + 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

For any fixed n, both sides of the claimed equation are polynomials in a and b. Since they
coincide on an open subset of R2, they must coincide for all real numbers a and b. �

Proof of Theorem 2.1. We proceed by induction in r. The case r = 2 was discussed in the
previous lemma. Assume the formula (2.1) holds for products of length less than r > 2.

As before, we temporarily assume that both a and b are positive. For n ≥ 0 we rewrite

∑
m1+···+mr−1=n

ym1 · · · ymr−1 =

n∑
k=0

r − 1

an+ bk + r − 1

(
an+ bk + r − 1

k

)
k!

n!
Bn,k(1!c1, 2!c2, . . . ).

Thus

∑
m1+···+mr=n

ym1 · · · ymr =
n∑

m=0

ym
∑

m1+···+mr−1=n−m
ym1 · · · ymr−1

=
n∑

m=0

ym

n−m∑
j=0

r−1
a(n−m)+bj+r−1

(
a(n−m)+bj+r−1

j

) j!
(n−m)!Bn−m,j .

Writing ym as in (2.2), we then get

1

r − 1

∑
m1+···+mr=n

ym1 · · · ymr

=

n∑
m=0

[
m∑
`=0

(
am+b`+1

`

)
`!

(am+ b`+ 1)m!
Bm,`

][
n−m∑
j=0

(
a(n−m)+bj+r−1

j

)
j!

(a(n−m) + bj + r − 1)(n−m)!
Bn−m,j

]

=

n∑
m=0

n∑
k=0

k∑
`=0

(a(n−m)+b(k−`)+r−1)
k−`

)(
am+b`+1

`

)
(am+ b`+ 1)(a(n−m) + b(k − `) + r − 1)

`!

m!

(k − `)!
(n−m)!

Bm,`Bn−m,k−`

=

n∑
k=0

k!

n!

[
k∑
`=0

n∑
m=`

(α(`,m)
k−`

)(τ−α(`,m)
`

)(
n
m

)
(τ − α(`,m))α(`,m)

(
k
`

)Bm,`Bn−m,k−`
]

with α(`,m) = a(n−m) + b(k − `) + r − 1 and τ = an+ bk + r.
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Finally, by Lemma 2.2,∑
m1+···+mr=n

ym1 · · · ymr = (r − 1)
n∑
k=0

k!

n!

[
τ − α(0, 0) + α(k, n)

τα(k, n)(τ − α(0, 0))

(
τ

k

)
Bn,k(1!c1, 2!c2, . . . )

]

= (r − 1)
n∑
k=0

k!

n!

[
r
(
an+bk+r

k

)
(an+ bk + r)(r − 1)

Bn,k(1!c1, 2!c2, . . . )

]

= r
n∑
k=0

(
an+ bk + r − 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

As in the previous lemma, this equation actually holds for all a, b ∈ R as claimed. �

3. Examples: Fibonacci, Tribonacci, Jacobsthal

As mentioned in the introduction, sequences of the form (1.1) with a = 0 and b = 1 can
be used to describe linear recurrence sequences with constant coefficients. In this case, (1.1)
takes the form

yn =
n∑
k=0

k!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 0, (3.1)

and the convolution formula (2.1) turns into∑
m1+···+mr=n

ym1 · · · ymr = r
n∑
k=1

(
k + r − 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . )

=
n∑
k=1

(
k + r − 1

k

)
k!

n!
Bn,k(1!c1, 2!c2, . . . ).

One can obtain (with a similar proof) the more general formula∑
m1+···+mr=n

ym1−δ · · · ymr−δ =
n−δr∑
k=0

(
k + r − 1

k

)
k!

(n− δr)!
Bn−δr,k(1!c1, 2!c2, . . . )

for any integer δ ≥ 0, assuming y−1 = y−2 = · · · = y−δ = 0.

Example 3.1 (Fibonacci). Consider the sequence defined by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for n ≥ 2.

Choosing c1 = c2 = 1 and cj = 0 for j ≥ 3 in (3.1), for n ≥ 1 we have

fn = yn−1 =

n−1∑
k=0

k!

(n− 1)!
Bn−1,k(1, 2, 0, . . . ) =

n−1∑
k=0

(
k

n− 1− k

)
,

and ∑
m1+···+mr=n

fm1 · · · fmr =
n−r∑
k=0

(
k + r − 1

k

)(
k

n− r − k

)
.

Example 3.2 (Tribonacci). Let (tn) be the sequence defined by

t0 = t1 = 0, t2 = 1, and tn = tn−1 + tn−2 + tn−3 for n ≥ 3.
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Choosing c1 = c2 = c3 = 1 and cj = 0 for j ≥ 4 in (3.1), for n ≥ 2 we have

tn = yn−2 =
n−2∑
k=0

k!

(n− 2)!
Bn−2,k(1!, 2!, 3!, 0, . . . ),

and since Bn,k(1!, 2!, 3!, 0, . . . ) = n!
k!

∑k
`=0

(
k
k−`
)(

k−`
n+`−2k

)
= n!

k!

∑k
`=0

(
k
`

)(
`

n−k−`
)
, we get

tn =
n−2∑
k=0

k∑
`=0

(
k

`

)(
`

n− 2− k − `

)
,

and ∑
m1+···+mr=n

tm1 · · · tmr =

n−2r∑
k=0

k∑
`=0

(
k + r − 1

k

)(
k

`

)(
`

n− 2r − k − `

)
.

Example 3.3 (Jacobsthal). The Jacobsthal polynomials are obtained by the recurrence

J0 = 0, J1 = 1, and

Jn = Jn−1 + 2xJn−2 for n ≥ 2.

Choosing c1 = 1, c2 = 2x, and cj = 0 for j ≥ 3 in (3.1), for n ≥ 1 we get

Jn = yn−1 =

n−1∑
k=0

k!

(n− 1)!
Bn−1,k(1, 2(2x), 0, . . . ) =

n−1∑
k=0

(
k

n− 1− k

)
(2x)n−1−k,

and ∑
m1+···+mr=n

Jm1 · · · Jmr =
n−r∑
k=0

k!

(n− r)!

(
k + r − 1

k

)
Bn−r,k(1, 4x, 0, . . . )

=
n−r∑
k=0

(
k + r − 1

k

)(
k

n− r − k

)
(2x)n−r−k.

4. Examples: Fuss–Catalan, Motzkin

All of the previous examples are related to the family (3.1). However, there are many other
cases of interest. For example, let us consider the case when a = 1, b = 0, and cj = 0 for

j ≥ 3. Since Bn,k(c1, 2c2, 0, . . . ) = n!
k!

(
k

n−k
)
c2k−n1 cn−k2 , the family (1.1) can be written as

y0 = 1, yn =

n∑
k=1

1

k

(
n

k − 1

)(
k

n− k

)
c2k−n1 cn−k2 for n ≥ 1, (4.1)

and the convolution formula (2.1) becomes

∑
m1+···+mr=n

ym1 · · · ymr =

n∑
k=1

r

k

(
n+ r − 1

k − 1

)(
k

n− k

)
c2k−n1 cn−k2 . (4.2)
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Example 4.1 (Catalan). If we let c1 = 2 and c2 = 1 in (4.1), for n ≥ 1 we get

yn =
n∑
k=1

1

k

(
n

k − 1

)(
k

n− k

)
22k−n

=
1

n+ 1

n∑
k=1

(
n+ 1

k

)(
k

n− k

)
22k−n

=
1

n+ 1

(
2(n+ 1)

n

)
=

1

n+ 2

(
2(n+ 1)

n+ 1

)
= Cn+1.

Here we used the identity
n∑

k=dn
2
e

(
x

k

)(
k

n− k

)
22k = 2n

(
2x

n

)
(4.3)

from Gould’s collection [5, Identity (3.22)]. As for convolutions, (4.2) leads to∑
m1+···+mr=n

Cm1+1 · · ·Cmr+1 =

n∑
k=1

r

k

(
n+ r − 1

k − 1

)(
k

n− k

)
22k−n

=
r

n+ r

n∑
k=1

(
n+ r

k

)(
k

n− k

)
22k−n.

Using again (4.3), we arrive at the identity∑
m1+···+mr=n

Cm1+1 · · ·Cmr+1 =
r

n+ r

(
2(n+ r)

n

)
.

Example 4.2 (Motzkin). Let us now consider (4.1) with c1 = 1 and c2 = 1. For n ≥ 1,

yn =
n∑
k=1

1

k

(
n

k − 1

)(
k

n− k

)
=

1

n+ 1

n∑
k=1

(
n+ 1

k

)(
k

n− k

)
.

These are the Motzkin numbers Mn. Moreover,∑
m1+···+mr=n

Mm1 · · ·Mmr =
r

n+ r

n∑
k=0

(
n+ r

k

)(
k

n− k

)
.

We finish this section by considering the sequence (with b 6= 0):

y0 = 1, yn =

n∑
k=1

(
bk

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1.

Example 4.3 (Fuss–Catalan). If c1 = 1 and cj = 0 for j ≥ 2, then the above sequence becomes

y0 = 1, yn =

(
bn

n− 1

)
(n− 1)!

n!
=

1

(b− 1)n+ 1

(
bn

n

)
.

Denoting C
(b)
n = yn, and since r

(
bn+r−1
n−1

) (n−1)!
n! = r

bn+r

(
bn+r
n

)
, we get the identity∑

m1+···+mr=n

C(b)
m1
· · ·C(b)

mr
=

r

bn+ r

(
bn+ r

n

)
.
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