
GENERALIZING ZECKENDORF’S THEOREM: THE KENTUCKY

SEQUENCE

MINERVA CATRAL, PARI FORD, PAMELA HARRIS, STEVEN J. MILLER, AND DAWN NELSON

Abstract. By Zeckendorf’s theorem, an equivalent definition of the Fibonacci sequence (ap-
propriately normalized) is that it is the unique sequence of increasing integers such that every
positive number can be written uniquely as a sum of non-adjacent elements; this is called a
legal decomposition. Previous work examined the distribution of the number of summands,
and the spacings between them, in legal decompositions arising from the Fibonacci numbers
and other linear recurrence relations with non-negative integral coefficients. These results
were restricted to the case where the first term in the defining recurrence was positive. We
study a generalization of the Fibonacci sequence with a simple notion of legality which leads
to a recurrence where the first term vanishes. We again have unique legal decompositions,
Gaussian behavior in the number of summands, and geometric decay in the distribution of
gaps.
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1. Introduction

One of the standard definitions of the Fibonacci numbers {Fn} is that it is the unique
sequence satisfying the recurrence Fn+1 = Fn + Fn−1 with initial conditions F1 = 1, F2 =
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2. An interesting and equivalent definition is that it is the unique increasing sequence of
positive integers such that every positive number can be written uniquely as a sum of non-
adjacent elements of the sequence.1 This equivalence is known as Zeckendorf’s theorem [27],
and frequently one says every number has a unique legal decomposition as a sum of non-
adjacent Fibonacci numbers.

Past research regarding generalized Zeckendorf decompositions have involved sequences
{Gn} where the recurrence relation coefficients are non-negative integers, with the additional
restriction being that the first and last terms are positive.2 See for instance [22], where the
authors call these Positive Linear Recurrence (PLR) Sequences. In this setting, much is
known about the properties of the summands including that the distribution of the number
of summands converges to a Gaussian, [9, 23]. There have also been recent results about gaps
between summands, including a proof that the distribution of the longest gap converges to the
same distribution one sees when looking at the longest run of heads in tosses of a biased coin,
see [2, 3, 5]. There is a large set of literature addressing generalized Zeckendorf decompositions,
these include[1, 8, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26] among others.

However, all of these results only hold for PLR Sequences. In this paper, we extend the
results on Gaussian behavior and average gap measure to recurrences that cannot be handled
by existing techniques. To that end, we study a sequence arising from a notion of a legal
decomposition whose recurrence has first term equal to zero.3 While our sequence fits into
the framework of an f -decomposition introduced in [9], their arguments only suffice to show
that our decomposition rule leads to unique decompositions. The techniques in [9] do not
address the distribution of the number of summands nor the behavior of the gaps between the
summands for our particular sequence. We address these questions completely in Theorems
1.5 and 1.6, respectively.

We now describe our object of study. We can view the decomposition rule corresponding to
the Fibonacci sequence by saying the sequence is divided into bins of length 1, and (i) we can
use at most one element from a bin at most one time, and (ii) we cannot choose elements from
adjacent bins. This suggests a natural extension where the bins now contain b elements and
any two summands of a decomposition (i) cannot be members of the same bin and (ii) must
be at least s bins away from each other. We call this the (s, b)-Generacci sequence (see
Definition 5.2) and the Fibonacci numbers are the (1, 1)-Generacci sequence. In this paper we
consider the case s = 1, b = 2. We give this special sequence a name: the Kentucky sequence,
after the home state of one of our authors. Although we expect our results to extend in full
generality, we have found that new techniques are needed for the two parameter family. See
Section 5 for more details on the general case.

Definition 1.1. Let an increasing sequence of positive integers {ai}∞i=1 be given and partition
the elements into bins

Bk := {a2k−1, a2k}
for k ≥ 1. We declare a decomposition of an integer

m = a`1 + a`2 + · · ·+ a`k

where `1 < `2 < · · · < `k and {a`j , a`j+1
} 6⊂ Bi ∪ Bi−1 for any i, j to be a Kentucky legal

decomposition.

1If we started the Fibonacci numbers with a zero, or with two ones, we would lose uniqueness of
decompositions.

2Thus Gn+1 = c1Gn + · · · + cLGn−(L−1) with c1cL > 0 and ci ≥ 0.
3Thus Gn+1 = c1Gn + c2Gn−1 + · · · + CLGn−(L−1) with c1 = 0 and ci ≥ 0.
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This says that we cannot decompose a number using more than one summand from the
same bin or two summands from adjacent bins.

Definition 1.2. An increasing sequence of positive integers {ai}∞i=1 is called a Kentucky se-
quence if every ai (i ≥ 1) is the smallest positive integer that does not have a Kentucky legal
decomposition using the elements {a1, . . . , ai−1}.

From the definition of a Kentucky legal decomposition, the reader can see that the first five
terms of the sequence must be {1, 2, 3, 4, 5}. We have a6 6= 6 as 6 = a1 + a5 = 1 + 5 is a
Kentucky legal decomposition. In the same way we find a6 6= 7, and this is the largest integer
that could be legally decomposed using the first five entries in the sequence. Thus we must
have a6 = 8. Continuing we have the first few terms of the Kentucky sequence:

1, 2

B1

, 3, 4

B2

, 5, 8

B3

, 11, 16

B4

, 21, 32

B5

, 43, 64

B6

, 85, 128

B7

, 171, 256

B8

, . . .

We have a nice closed form expression for the elements of this sequence.

Theorem 1.3. If {an} is the Kentucky sequence, then

an+1 = an−1 + 2an−3, a1 = 1, a2 = 2, a3 = 3, a4 = 4,

which implies

a2n = 2n and a2n−1 =
1

3

(
2n+1 + (−1)n

)
.

This is not a PLR Sequence as the leading coefficient (that of an) is zero, and this sequence
falls outside the scope of many of the previous techniques. We prove the following theorems
concerning the Kentucky Sequence.

Theorem 1.4 (Uniqueness of Decompositions). Every positive integer can be written uniquely
as a sum of distinct terms from the Kentucky sequence where no two summands are in the
same bin and no two summands belong to consecutive bins in the sequence.

The above follows immediately from the work in [9] on f -decompositions. In Theorem 1.3 of
[9] take f(n) = 3 if n is even and f(n) = 2 otherwise. For completeness we give an elementary
proof in Appendix A. generalize the results on Gaussian behavior for the summands to this
case.

Theorem 1.5 (Gaussian Behavior of Summands). Let the random variable Yn denote the
number of summands in the (unique) Kentucky decomposition of an integer picked at random
from [0, a2n+1) with uniform probability.4 Normalize Yn to Y ′n = (Yn − µn)/σn, where µn and
σn are the mean and variance of Yn respectively, which satisfy

µn =
n

3
+

2

9
+O

( n
2n

)
σ2n =

2n

27
+

8

81
+O

(
n2

2n

)
.

Then Y ′n converges in distribution to the standard normal distribution as n→∞.

4Using the methods of [4], these results can be extended to hold almost surely for a sufficiently large sub-
interval of [0, a2n+1).
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Our final results concern the behavior of gaps between summands. For the legal decompo-
sition

m = a`1 + a`2 + · · ·+ a`k with `1 < `2 < · · · < `k

and m ∈ [0, a2n+1), we define the set of gaps as follows:

Gapsn(m) := {`2 − `1, `3 − `2, . . . , `k − `k−1}.

Notice we do not include the wait to the first summand, `1 − 0, as a gap. We could include
this if we wish; one additional gap will not affect the limiting behavior.

In the theorem below we consider all the gaps between summands in Kentucky legal de-
compositions of all m ∈ [0, a2n+1). We let Pn(g) be the fraction of all these gaps that are of
length g (i.e., the probability of a gap of length g among Kentucky legal decompositions of
m ∈ [0, a2n+1)). For example, notice m = a1 + a11 + a15 + a22 + a26 contributes two gaps of
length 4, one gap of length 7 and one gap of length 10.

Theorem 1.6 (Average Gap Measure). For Pn(g) as defined above, the limit P (g) := limn→∞ Pn(g)
exists, and

P (0) = P (1) = P (2) = 0, P (3) = 1/8,

and for g ≥ 4 we have

P (g) =

{
2−j if g = 2j
3
4 2−j if g = 2j + 1.

In §2 we derive the recurrence relation and explicit closed form expressions for the terms of
the Kentucky sequence, as well as a useful generating function for the number of summands
in decompositions. We then prove Theorem 1.5 on Gaussian behavior in §3, and Theorem 1.6
on the distribution of the gaps in §4. We end with some concluding remarks and directions
for future research in §5.

2. Recurrence Relations and Generating functions

In the analysis below we constantly use the fact that every positive integer has a unique
Kentucky legal decomposition; see [9] or Appendix A for proofs.

2.1. Recurrence Relations.

Proposition 2.1. For the Kentucky sequence, an = n for 1 ≤ n ≤ 5 and for any n ≥ 5 we
have an = an−2 + 2an−4. Further for n ≥ 1 we have

a2n = 2n and a2n−1 =
1

3

(
2n+1 + (−1)n

)
. (2.1)

Proof. We recall that the integers a2n+1 and a2n in the Kentucky sequence are elements of
the sequence as they are the smallest integers that cannot be legally decomposed using the
members of {a1, a2, . . . , a2n} or {a1, a2, . . . , a2n−1} respectively:

1, 2

B1

, 3, 4

B2

, 5, 8

B3

, 11, 16

B4

, 21, 32

B5

, 43, 64

B6

, · · · , a2n−3, a2n−2
Bn−1

, a2n−1, a2n
Bn

.

As a2n is the largest entry in the bin Bn, it is one more than the largest number we can
legally decompose, and thus

a2n = a2n−1 + a2(n−2) + a2(n−4) + · · ·+ aj + 1
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where aj = a2 if n is odd and aj = a4 if n is even. By construction of the Kentucky sequence
we have a2(n−2) + a2(n−4) + · · ·+ aj + 1 = a2(n−2)+1 = a2n−3. Thus

a2n = a2n−1 + a2n−3. (2.2)

Similarly a2n+1 is the smallest entry in bin Bn+1, so

a2n+1 = a2n + a2(n−2) + a2(n−4) + · · ·+ aj + 1

where aj = a2 if n is odd and aj = a4 if n is even. Thus

a2n+1 = a2n + a2n−3. (2.3)

Substituting (2.2) into (2.3) yields

a2n+1 = a2n−1 + 2a2n−3, (2.4)

and thus for m ≥ 5 odd we have am = am−2 + 2am−4.
Now using (2.4) in (2.2), we have

a2n = a2n−1 + a2n−3 = a2n−3 + 2a2n−5 + a2n−3 = 2(a2n−3 + a2n−5).

Shifting the index in (2.2) gives

a2n = 2a2n−2. (2.5)

Since a2 = 2 and a4 = 4, together with (2.5) we now have a2n = 2n for all n ≥ 1. A few
algebraic steps then confirm am = am−2 + 2am−4 for m ≥ 6 even.

Finally, we prove that a2n−1 = 1
3(2n+1 + (−1)n) for n ≥ 1 by induction. The base case

is immediate as a1 = 1 and 1
3(21+1 + (−1)1) = 1

3(4 − 1) = 1. Assume for some N ≥ 1,

a2N−1 = 1
3(2N+1 + (−1)N ). By (2.4), we have

a2(N+1)−1 = a2N+1

= a2N−1 + 2a2N−3

=
1

3
(2N+1 + (−1)N ) + (2)

(
1

3

)
(2N−1+1 + (−1)N−1)

=
1

3
(2N+1 + (−1)N + 2N+1 + (−1)N−1 + (−1)N−1)

=
1

3
(2N+2 + (−1)N+1),

and thus for all n ≥ 1 we have a2n−1 = 1
3(2n+1 + (−1)n). �

2.2. Counting Integers With Exactly k Summands. In [18], Koloğlu, Kopp, Miller and
Wang introduced a very useful combinatorial perspective to attack Zeckendorf decomposition
problems. While many previous authors attacked related problems through continued fractions
or Markov chains, they instead partitioned the m ∈ [Fn, Fn+1) into sets based on the number
of summands in their Zeckendorf decomposition. We employ a similar technique here, which
when combined with identities about Fibonacci polynomials allows us to easily obtain Gaussian
behavior.

Let pn,k denote the number of m ∈ [0, a2n+1) whose legal decomposition contains exactly k
summands where k ≥ 0. We have pn,0 = 1 for n ≥ 0, p0,k = 0 for k > 0, p1,1 = 2, and pn,k = 0
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if k > bn+1
2 c. Also, by definition,

bn+1
2
c∑

k=0

pn,k = a2n+1,

and we have the following recurrence.

Proposition 2.2. For pn,k as above, we have

pn,k = 2pn−2,k−1 + pn−1,k

for n ≥ 2 and k ≤ bn+1
2 c.

Proof. We partition the Kentucky legal decompositions of all m ∈ [0, a2n+1) into two sets,
those that have a summand from bin Bn and those that do not.

If we have a legal decomposition m = a`1 + a`2 + · · · + a`k with a`k ∈ Bn, then a`k−1
≤

a2(n−2) and there are two choices for a`k . The number of legal decompositions of the form
a`1 +a`2 + · · ·+a`k−1

with a`k−1
≤ a2(n−2) is pn−2,k−1. Note the answer is independent of which

value a`k ∈ Bn we have. Thus the number of legal decompositions of m containing exactly k
summands with largest summand in bin Bn is 2pn−2,k−1.

If m ∈ [0, a2n+1) does not have a summand from bin Bn in its decomposition, then m ∈
[0, a2n−1), and by definition the number of such m with exactly k summands in a legal decom-
position is pn−1,k.

Combining these two cases yields

pn,k = 2pn−2,k−1 + pn−1,k,

completing the proof. �

This recurrence relation allows us to compute a closed-form expression for F (x, y), the
generating function of the pn,k’s.

Proposition 2.3. Let

F (x, y) :=
∑
n,k≥0

pn,kx
nyk

be the generating function of the pn,k’s arising from Kentucky legal decompositions. Then

F (x, y) =
1 + 2xy

1− x− 2x2y
. (2.6)

Proof. Noting that pn,k = 0 if either n < 0 or k < 0, using explicit values of pn,k and the
recurrence relation from Proposition 2.2, after some straightforward algebra we obtain

F (x, y) = 2x2yF (x, y) + xF (x, y) + 2xy + 1.

From this, (2.6) follows. �

While the combinatorial vantage of [18] has been fruitfully applied to a variety of recurrences
(see [22, 23]), their proof of Gaussianity does not generalize. The reason is that for the
Fibonacci numbers (which are also the (1, 1)-Generacci numbers) we have an explicit, closed
form expression for the corresponding pn,k’s, which greatly facilitates the analysis. Fortunately
for us a similar closed form expression exists for Kentucky decompositions.
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Proposition 2.4. Let pn,k be the number of integers in [0, a2n+1) that have exactly k sum-
mands in their Kentucky legal decomposition. For all k ≥ 1 and n ≥ 1 + 2(k − 1), we have

pn,k = 2k
(
n− (k − 1)

k

)
.

Proof. We are counting decompositions of the form a′`1+· · ·+a′`k where a′`i ∈ B`i = {a2`i−1, a2`i}
and `i ≤ n. Define x1 := `1 − 1 and xk+1 := n− `k. For 2 ≤ i ≤ k, define xi := `i − `i−1 − 1.
We have

x1 + 1 + x2 + 1 + x3 + 1 + · · ·+ xk + 1 + xk+1 = n.

We change variables to rewrite the above. Essentially what we are doing is replacing the
x’s with new variables to reduce our Diophantine equation to a standard form that has been
well-studied. As we have a legal decomposition, our bins must be separated by at least one
and thus xi ≥ 1 for 2 ≤ i ≤ k − 1 and x1, xk ≥ 0. We remove these known gaps in our new
variables by setting y1 := x1, yk+1 := xk+1 and yi := xi − 1 for 2 ≤ i ≤ k, which gives

y1 + y2 + · · ·+ yk + yk+1 = x1 + (x2 − 1) + · · ·+ (xk − 1) + xk+1

= n− k − (k − 1). (2.7)

Finding the number of non-negative integral solutions to this Diophantine equation has many
names (the Stars and Bars Problem, Waring’s Problem, the Cookie Problem). As the number

of solutions to z1 + · · ·+ zP = C is
(
C+P−1
P−1

)
(see for example [21, 24], or [20] for a proof and

an application of this identity in Bayesian analysis), the number of solutions to (2.7) is given
by the binomial coefficient(

n− k − (k − 1) + k

k

)
=

(
n− (k − 1)

k

)
.

As there are two choices for each a′`i , we have 2k legal decompositions whose summands are

from the bins {B`1 ,B`2 , . . . ,B`k} and thus

pn,k = 2k
(
n− (k − 1)

k

)
.

�

3. Gaussian Behavior

Before launching into our proof of Theorem 1.5, we provide some numerical support in
Figure 1. We randomly chose 200,000 integers from [0, 10600). We observed a mean number of
summands of 666.899, which fits beautifully with the predicted value of 666.889; the standard
deviation of our sample was 12.154, which is in excellent agreement with the prediction of
12.176.

We split Theorem 1.5 into three parts: a proof of our formula for the mean, a proof of our
formula for the variance, and a proof of Gaussian behavior. We isolate the first two as separate
propositions; we will prove these after first deriving some useful properties of the generating
function of the pn,k’s.

Proposition 3.1. The mean number of summands in the Kentucky legal decompositions for
integers in [0, a2n+1) is

µn =
n

3
+

2

9
+O

( n
2n

)
.
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Figure 1. The distribution of the number of summands in Kentucky legal
decompositions for 200,000 integers from [0, 10600).

Proposition 3.2. The variance σ2n of Yn (from Theorem 1.5) is

σ2n =
2n

27
+

8

81
+O

(
n2

2n

)
.

3.1. Mean and Variance. Recall Yn is the random variable denoting the number of sum-
mands in the unique Kentucky decomposition of an integer chosen uniformly from [0, a2n+1),
and pn,k denotes the number of integers in [0, a2n+1) whose legal decomposition contains ex-
actly k summands. The following lemma yields expressions for the mean and variance of Yn
using a generating function for the pn,k’s; in fact, it is this connection of derivatives of the
generating function to moments that make the generating function approach so appealing.
The proof is standard (see for example [9]).

Lemma 3.3. [9, Propositions 4.7, 4.8] Let F (x, y) :=
∑

n,k≥0 pn,kx
nyk be the generating

function of pn,k, and let gn(y) :=
∑n

k=0 pn,ky
k be the coefficient of xn in F (x, y). Then the

mean of Yn is

µn =
g′n(1)

gn(1)
,

and the variance of Yn is

σ2n =

d
dy (yg′n(y))|y=1

gn(1)
− µ2n.

In our analysis our closed form expression of pn,k as a binomial coefficient is crucial in
obtaining simple closed form expressions for the needed quantities. We are able to express
these needed quantities in terms of the Fibonacci polynomials, which are defined recursively
as follows:

F0(x) = 0, F1(x) = 1, F2(x) = x,

and for n ≥ 3

Fn(x) = xFn−1(x) + Fn−2(x).
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For n ≥ 3, the Fibonacci polynomial5 Fn(x) is given by

Fn(x) =

bn−1
2 c∑
j=0

(
n− j − 1

j

)
xn−2j−1, (3.1)

and also has the explicit formula

Fn(x) =
(x+

√
x2 + 4)n − (x−

√
x2 + 4)n

2n
√
x2 + 4

. (3.2)

The derivative of Fn(x) is given by

F ′n(x) =
2nFn−1(x) + (n− 1)xFn(x)

x2 + 4
. (3.3)

For a reference on Fibonacci polynomials and the formulas given above (which follow imme-
diately from the definitions and straightforward algebra), see [19].

Proposition 3.4. For n ≥ 3

gn(y) = (
√

2y)n+1Fn+2

(
1√
2y

)
. (3.4)

Proof. By Proposition 2.4, we have

F (x, y) =
∞∑
n=0

∞∑
k=0

pn,kx
nyk =

∞∑
n=0

n∑
k=0

2k
(
n− k + 1

k

)
xnyk.

Thus, using (3.1) we find

F (x, y) =
1

x2
√

2y

∞∑
n=0

n+2∑
k=0

(
(n+ 2)− k − 1

k

)(
1√
2y

)(n+2)−2k−1
(x
√

2y)n+2

=
1

x2
√

2y

∞∑
n=0

Fn+2

(
1√
2y

)
(x
√

2y)n+2 =
∞∑
n=0

Fn+2

(
1√
2y

)
(
√

2y)n+1xn,

completing the proof. �

In Appendix B we provide alternate proofs of Proposition 3.1, Proposition 3.2 and Theorem
1.5 using different methods. In doing so, we uncovered another formula for gn(y), the coefficient
for xn in F (x, y) as given in Lemma 3.3, and this leads to a derivation of a formula for the
Fibonacci polynomials.

5Note that Fn(1) gives the standard Fibonacci sequence.
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Proof of Proposition 3.1. By Lemma 3.3, the mean of Yn is g′n(1)/gn(1). Calculations of deriva-
tives using equations (3.3) and (3.4) give

g′n(1)

gn(1)
=

(n+ 1)(
√

2)n−1Fn+2(
1√
2
)

Fn+2(
1√
2
)(
√

2)n+1
−

(
√

2)n−2F ′n+2(
1√
2
)

Fn+2(
1√
2
)(
√

2)n+1

=
n+ 1

2
− 1

(
√

2)3

F ′n+2

(
1√
2

)
Fn+2

(
1√
2

) .
=

n+ 1

2
−

2(n+ 2)Fn+1

(
1√
2

)
+ n+1√

2
Fn+2

(
1√
2

)
9
√

2Fn+2

(
1√
2

)
=

4

9
(n+ 1)−

√
2

9
(n+ 2)

Fn+1

(
1√
2

)
Fn+2

(
1√
2

)
=

4

9
(n+ 1)−

√
2

9
(n+ 2)

(
1√
2

+O(2−n)

)
=

n

3
+

2

9
+O(n2−n),

where in the next-to-last step we use (3.2) to approximate Fn+1(1/
√

2)/Fn+2(1/
√

2). �

Proof of Proposition 3.2. By Lemma 3.3,

σ2n =
g′′n(1)

gn(1)
+
g′n(1)

gn(1)
− µ2n =

g′′n(1)

gn(1)
+ µn(1− µn).

Now,

g′′n(1)

gn(1)
=

(−2n+ 1)

4
√

2

F ′n+2(
1√
2
)

Fn+2(
1√
2
)

+
(n2 − 1)

4
+

1

8

F ′′n+2(
1√
2
)

Fn+2(
1√
2
)
.

Applying the derivative formula in (3.3) and using (3.2), we find

F ′n+2(
1√
2
)

Fn+2(
1√
2
)

=
4(n+ 2)

9

Fn+1(
1√
2
)

Fn+2(
1√
2
)

+

√
2(n+ 1)

9

=
4(n+ 2)

9

[
1√
2

+O(2−n)

]
+

√
2(n+ 1)

9

and

F ′′n+2(
1√
2
)

Fn+2(
1√
2
)

=
16(n2 + 3n+ 2)

81

Fn( 1√
2
)

Fn+2(
1√
2
)

+
4
√

2(2n2 + 3n− 2)

81

Fn+1(
1√
2
)

Fn+2(
1√
2
)

+
2(n2 + 9n+ 8)

81

=
16(n2 + 3n+ 2)

81

[
1

2
+O(2−n)

]
+

4
√

2(2n2 + 3n− 2)

81

[
1√
2

+O(2−n)

]
+

2(n2 + 9n+ 8)

81
.
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Thus

σ2n =
(−2n+ 1)

4
√

2

[√
2

9
(3n+ 5) +O(n2−n)

]
+

(n2 − 1)

4
+

1

8

[
2n2

9
+

2n

3
+

8

27
+O(n22−n)

]
+

[
n

3
+

2

9
+O

( n
2n

)] [
1− n

3
− 2

9
+O

( n
2n

)]
=

2n

27
+

8

81
+O

(
n2

2n

)
,

completing the proof. �

3.2. Gaussian Behavior.

Proof of Theorem 1.5. We prove that Y ′n converges in distribution to the standard normal
distribution as n → ∞ by showing that the moment generating function of Y ′n converges to

that of the standard normal (which is et
2/2). Following the same argument as in [9, Lemma

4.9], the moment generating function MY ′n(t) of Y ′n is

MY ′n(t) =
gn(et/σn)e−tµn/σn

gn(1)
.

Thus we have

MY ′n(t) =
Fn+2

(
1√

2et/σn

)
e(
n+1
2
−µn)t/σn

Fn+2

(
1√
2

) ,

and

log(MY ′n(t)) = logFn+2

(
1√

2et/σn

)
+

t

σn

(
n+ 1

2
− µn

)
− logFn+2

(
1√
2

)
.

From (3.2),

Fn+2(x) =
(x+

√
x2 + 4)n+2

2n+2
√
x2 + 4

1−

(
x−
√
x2 + 4

x+
√
x2 + 4

)n+2
 .

Thus

logFn+2(x) = (n+ 2) log(x+
√
x2 + 4)− (n+ 2) log 2

− 1

2
log(x2 + 4) + log(1− r(x)n+2)

= (n+ 2) log x+ (n+ 2) log

(
1 +

√
1 +

4

x2

)
− (n+ 2) log 2

− 1

2
log(x2 + 4) + O(r(x)n),

where for all x

r(x) =

(
x−
√
x2 + 4

x+
√
x2 + 4

)
∈ (0, 1].

Thus

logFn+2

(
1√
2

)
= 1

2(n+ 3) log 2− log 3 +O(2−n)
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and

logFn+2

(
1√

2et/σn

)
= − (n+ 2)

2
log 2− (n+ 2)

2σn
t− (n+ 2) log 2

+ (n+ 2)αn(t)− 1

2
βn(t) +O(rn),

where

αn(t) = log(1 +
√

1 + 8et/σn), βn(t) = log

(
1

2
e−t/σn + 4

)
,

and

r = r

(
1√

2et/σn

)
< 1.

The Taylor series expansions for αn(t) and βn(t) about t = 0 are given by

αn(t) = log 4 +
1

3σn
t+

1

27σ2n
t2 +O(n−3/2)

and

βn(t) = log

(
9

2

)
− 1

9σn
t+

4

81σ2n
t2 +O(n−3/2).

Going back to log(MY ′n(t)) we now have

log(MY ′n(t)) = −3

2
(n+ 2) log 2− (n+ 2)

2σn
t+ (n+ 2)

[
2 log 2 +

1

3σn
t+

1

27σ2n
t2 +O(n−3/2)

]
−1

2

[
2 log 3− log 2 +O(n−1/2)

]
+

(n+ 1− 2µn)

2σn
t− 1

2
(n+ 3) log 2 + log 3

+O(2−n) +O(rn)

= −(2µn + 1)

2σn
t+

(n+ 2)

3σn
t+

(n+ 2)

27σ2n
t2 +O(n−1/2) +O(2−n) +O(rn).

Since µn ∼ n
3 and σ2n ∼ 2n

27 , it follows that log(MY ′n(t)) → 1
2 t

2 as n → ∞. As this is the
moment generating function of the standard normal, our proof is completed. �

4. Average Gap Distribution

In this section we prove our results about the behavior of gaps between summands in
Kentucky decompositions. The advantage of studying the average gap distribution is that,
following the methods of [2, 5], we reduce the problem to a combinatorial one involving how
many m ∈ [0, a2n+1) have a gap of length g starting at a given index i. We then write the gap
probability as a double sum over integers m and starting indices i, interchange the order of
summation, and invoke our combinatorial results.

While the calculations are straightforward once we adopt this perspective, they are long.
Additionally, it helps to break the analysis into different cases depending on the parity of i
and g, which we do first below and then use those results to determine the probabilities.

Proof of Theorem 1.6. Let In := [0, a2n+1) and let m ∈ In with the legal decomposition

m = a`1 + a`2 + · · ·+ a`k ,
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with `1 < `2 < · · · < `k. For 1 ≤ i, g ≤ n we define Xi,g(m) as an indicator function which
denotes whether the decomposition of m has a gap of length g beginning at i. Formally,

Xi,g(m) =

{
1 if ∃ j, 1 ≤ j ≤ k with i = `j and i+ g = `j+1

0 otherwise.

Notice when Xi,g(m) = 1, this implies that there exists a gap between ai and ai+g. Namely
m does not contain ai+1, . . . , ai+g−1 as summands in its legal decomposition.

As the definition of the Kentucky sequence implies P (g) = 0 for 0 ≤ g ≤ 2, we assume
below that g ≥ 3. Hence if aj is a summand in the legal decomposition of m and aj < ai, then
the admissible j are at most i− 4 if and only if i is even, whereas the admissible j are at most
i− 3 if and only if i is odd. We are interested in computing the fraction of gaps (arising from
the decompositions of all m ∈ In) of length g. This probability is given by

Pn(g) = cn

a2n+1−1∑
m=0

2n−g∑
i=1

Xi,g(m),

where

cn =
1

(µn − 1)a2n+1
. (4.1)

To compute the above-mentioned probability we argue based on the parity of i. We find
the contribution of gaps of length g from even i and odd i separately and then add these two.
The case when g = 3 is a little simpler, as only even i contribute. If i were odd and g = 3 we
would violate the notion of a Kentucky legal decomposition.

Part 1 of the Proof, Gap Preliminaries:

Case 1, i is even: Suppose that i is even. This means that ai is the largest entry in its
bin. Thus the largest possible summand less than ai would be ai−4. First we need to know
the number of legal decompositions that only contain summands from {a1, . . . , ai−4}, but this
equals the number of integers that lie in [0, a2( i−4

2 )+1) = [0, ai−3). By (2.1), this is given by

a2( i−4
2 )+1 = ai−3 =

1

3
(2

i
2 + (−1)

i−2
2 ).

Next we must consider the possible summands between ai+g and a2n+1. There are two cases
to consider depending on the parity of i+ g.

Subcase (i), g is even: Notice that in this case i + g is even and if aj is a summand in
the legal decomposition of m with ai+g < aj , then j ≥ i+ g + 3. In this case the number of
legal decompositions only containing summands from the set {ai+g+3, ai+g+4, . . . , a2n} is the
same as the number of integers that lie in [0, a(2n−(i+g+2))+1), which equals

a(2n−(i+g+2))+1 = a
2
(

2n−(i+g+2)
2

+1
)
−1 =

1

3

(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.

So for fixed i and g both even, the number of m ∈ In that have a gap of length g beginning
at i is

1

9

(
2
i
2 + (−1)

i−2
2

)(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.
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Hence in this case we have that
a2n+1−1∑
m=0

2n−g∑
i=1

i,g even

Xi,g(m) =
1

9

2n−g∑
i=1

i,g even

(
2
i
2 + (−1)

i−2
2

)(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.

Subcase (ii), g is odd: In the case when i is even and g is odd, any legal decomposition
of an integer m ∈ In with a gap from i to i+ g that contains summands aj > ai+g must have
j ≥ i+ g + 4. The number of legal decompositions achievable only with summands in the set
{ai+g+4, ai+g+5, . . . , a2n} is the same as the number of integers in the interval [0, a2n−(i+g+2)),
which is given by

a2n−(i+g+2) = a
2
(

2n−(i+g+1)
2

)
−1 =

1

3

(
2

2n−(i+g+1)
2

+1 + (−1)
2n−(i+g+1)

2

)
.

Hence when i is even and g is odd we have that

a2n+1−1∑
m=0

2n−g∑
i=1

i even,g odd

Xi,g(m) =
1

9

2n−g∑
i=1

i even,g odd

(2
i
2 + (−1)

i−2
2 )
(

2
2n−(i+g+1)

2
+1 + (−1)

2n−(i+g+1)
2

)
.

Subcase (iii), g = 3: As remarked above, there are no gaps of length 3 when i is odd, and
thus the contribution from i even is the entire answer and we can immediately find that

Pn(3) = cn

a2n+1−1∑
m=0

2n−3∑
i=1
i even

Xi,3(m)

=
1

9
cn

2n−3∑
i=1
i even

(
2
i
2 + (−1)

i−2
2

)(
2

2n−(i+4)
2

+1 + (−1)
2n−(i+4)

2

)

=
1

9
cn

2n−3∑
i=1
i even

(
2n−1 + 2

i
2 (−1)

2n−(i+4)
2 + 2

2n−(i+4)
2

+1(−1)
i−2
2 + (−1)n−3

)
.

As the largest term in the above sum is 2n−1, we have

Pn(3) =
cn
9

[
(n− 1)2n−1 +O(2n)

]
.

Since µn ∼ n
3 and a2n+1 ∼ 1

3(4)(2n), using (4.1) we find that up to lower order terms which
vanish as n→∞ we have

cn ∼
9

n2n+2
. (4.2)

Therefore

Pn(3) ∼ 1

n2n+2

[
(n− 1)2n−1 +O(2n)

]
=

(
1

8

)(
n− 1

n

)
+O

(
1

n

)
.

Now as n goes to infinity we see that P (3) = 1/8.
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Case 2, i is odd: Suppose now that i is odd. The largest possible summand less than ai in
a legal decomposition is ai−3. As before we now need to know the number of integers that lie
in [0, a2( i−3

2 )+1), but this equals

a2( i−3
2 )+1 = a2( i−1

2 )−1 =
1

3

(
2
i−1
2

+1 + (−1)
i−1
2

)
.

We now need to consider the parity of i+ g.

Subcase (i), g is odd: When i and g are odd, we know i + g is even and therefore
the first possible summand greater than ai+g is ai+g+3. Like before, the number of legal
decompositions using summands from the set {ai+g+3, ai+g+4, . . . , a2n} is the same as the
number of m with legal decompositions using summands from the set {a1, a2, . . . , a2n−(i+g+2)},
which is 1

3

(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
. This leads to

a2n+1−1∑
m=0

2n−g∑
i=1

i odd,g odd

Xi,g(m) =
1

9

2n−g∑
i=1

i odd,g odd

(
2
i−1
2

+1 + (−1)
i−1
2

)(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.

Subcase (ii), g is even: Following the same line of argument we see that if i is odd and
g is even, then

a2n+1−1∑
m=0

2n−g∑
i=1

i odd,g even

Xi,g(m) =
1

9

2n−g∑
i=1

i odd,g even

(
2
i−1
2

+1 + (−1)
i−1
2

)(
2

2n−(i+g+1)
2

+1 + (−1)
2n−(i+g+1)

2

)
.

Using these results, we can combine the various cases to determine the gap probabilities for
different g.

Part 2 of the Proof, Gap Probabilities:
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Case 1, g is even: As g is even, we have g = 2j for some positive integer j. Therefore

Pn(2j) = cn

a2n+1−1∑
m=0

2n−2j∑
i=1

Xi,2j(m)

= cn

a2n+1−1∑
m=0

2n−2j∑
i=1
i even

Xi,2j(m) + cn

a2n+1−1∑
m=0

2n−2j∑
i=1
i odd

Xi,2j(m)

= cn

1

9

2n−2j∑
i=1
i even

(2
i
2 + (−1)

i−2
2 )(2

2n−(i+2j)
2

+1 + (−1)
2n−(i+2j)

2 )


+ cn

1

9

2n−2j∑
i=1
i odd

(2
i−1
2

+1 + (−1)
i−1
2 )(2

2n−(i+2j+1)
2

+1 + (−1)
2n−(i+2j+1)

2 )


=

1

9
cn

2n−2j∑
i=1
i even

(2n−j+1 + 2
i
2 (−1)

2n−(i+2j)
2 + 2

2n−(i+2j)
2

+1(−1)
i−2
2 + (−1)n−j−1)

+
1

9
cn

2n−2j∑
i=1
i odd

(2n−j+1 + 2
i−1
2

+1(−1)
2n−(i+2j+1)

2 + 2
2n−(i+2j+1)

2
+1(−1)

i−1
2 + (−1)n−j−1).

Notice that the largest terms in the above sums/expressions are given by 2n−j+1 and 2n−j+1,
the sum of which gives 4(n−j)2n−j . The rest of the terms are of lower order and are dominated
as n→∞. Using (4.2) for cn we find

Pn(2j) ∼ cn
9

4(n− j)2n−j ∼
(

1

n2n+2

)
4(n− j)2n−j =

n− j
n2j

,

and thus as n goes to infinity we see that P (2j) = 1/2j .
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Case 2, g is odd: As g is odd we may write g = 2j + 1. Thus

Pn(2j + 1) = cn

a2n+1−1∑
m=0

2n−2j−1∑
i=1

Xi,2j+1(m)

= cn

a2n+1−1∑
m=0

2n−2j−1∑
i=1
i even

Xi,2j+1(m) + cn

a2n+1−1∑
m=0

2n−2j−1∑
i=1
i odd

Xi,2j+1(m)

= cn

1

9

2n−2j−1∑
i=1
i even

(2
i
2 + (−1)

i−2
2 )
(

2
2n−(i+2j+2)

2
+1 + (−1)

2n−(i+2j+2)
2

)
+ cn

1

9

2n−2j−1∑
i=1
i odd

(2
i−1
2

+1 + (−1)
i−1
2 )(2

2n−(i+2j+1)
2

+1 + (−1)
2n−(i+2j+1)

2 )


=

1

9
cn

2n−2j−1∑
i=1
i even

(
2n−j + 2

i
2 (−1)

2n−(i+2j+2)
2 + 2

2n−(i+2j+2)
2

+1(−1)
i−2
2 + (−1)n−j−2

)

+
1

9
cn

2n−2j−1∑
i=1
i odd

(
2n−j+1 + 2

i−1
2

+1(−1)
2n−(i+2j+1)

2 + 2
2n−(i+2j+1)

2
+1(−1)

i−1
2 + (−1)n−j−1

)
.

Notice that the largest terms in the above sums/expressions are given by 2n−j and 2n−j+1, the
sum of which gives 3(n− j)2n−j . The rest of the terms are of lower order and are dominated
as n→∞. Using (4.2) for cn we find

Pn(2j + 1) ∼ cn
9

3(n− j)2n−j ∼
(

1

n2n+2

)
3(n− j)2n−j =

(
3

4

)(
n− j
n2j

)
,

and thus as n goes to infinity we see that P (2j + 1) = 3
4

(
1/2j

)
. �

5. Conclusion and Future Work

Our results generalize Zeckendorf’s theorem to an interesting new class of recurrence rela-
tions, specifically to a case where the first coefficient is zero. While we still have uniqueness of
decompositions in the Kentucky sequence, that is not always the case for this class of recur-
rences. In a future work [6] we study another example with first coefficient zero, the recurrence
an+1 = an−1 + an−2. This leads to what we call the Fibonacci Quilt, and there uniqueness of
decomposition fails. The non-uniqueness gives rise to new interesting discussions, for example
the handling of the question of Gaussian behavior for the distribution of the number of sum-
mands given that we now have multiple decompositions for most integers; we address these
issues in [6].

Additionally, the Kentucky sequence is but one of infinitely many (s, b)-Generacci sequences;
in a future work [7] we hope to give a detailed study of these sequences and to extend the
results of this paper to arbitrary (s, b). The difficulty is that many of the arguments in the
paper here crucially use explicit formulas available for quantities associated to the Kentucky
sequence, which are not known for general sequences. This difficulty mirrors the difference
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between [18] (which used binomial coefficient expressions from the Zeckendorf decompositions)
and [22] (the general case required many technical arguments).

Definition 5.1. Let an increasing sequence of positive integers {ai}∞i=1 and a family of subse-
quences Bn = {ab(n−1)+1, . . . , abn} be given. (We call these subsequences bins.) We declare a
decomposition of an integer m = a`1 + a`2 + · · ·+ a`k where a`i < a`i+1

to be a (s, b)-Generacci
decomposition provided {a`i , a`i+1

} 6⊂ Bj−s ∪Bj−s+1 ∪ · · · ∪ Bj for all i, j. (We say Bj = ∅ for
j ≤ 0.)

This says that for all a`i ∈ Bj , no other a`i′ is also in the jth bin nor in any of the adjacent
s bins preceding Bj nor the s bins succeeding Bj .

Definition 5.2. An increasing sequence of positive integers {ai}∞i=1 is called an (s, b)-Generacci
sequence if every ai for i ≥ 1 is the smallest positive integer that does not have a (s, b)-
Generacci legal decomposition using the elements {a1, . . . , ai−1}.

Note that we still have uniqueness of decompositions as in Theorem 1.4; this follows from
Theorem 1.3 of [9]. Numerical simulations suggest that the number of summands in the unique
(s, b)-Generacci decomposition of a positive integer exhibits Gaussian behavior. The Fibonacci
polynomial approach in Section 3 extends nicely for general b, thus proving Gaussianity for
all (1, b)-Generacci sequences. The technique however fails to generalize for s > 1. We are
investigating methods to attack the general case.

Appendix A. Unique Decompositions

Proof of Theorem 1.4. Our proof is constructive. We build our sequence by only adjoining
terms that ensure that we can uniquely decompose a number while never using more than one
summand from the same bin or two summands from adjacent bins. The sequence begins:

1, 2

B1

, 3, 4

B2

, 5, 8

B3

, . . . .

Note we would not adjoin 9 because then 9 would legally decompose two ways, as 9 = 9 and
as 9 = 8 + 1. The next number in the sequence must be the smallest integer that cannot be
decomposed legally using the current terms.

We proceed with proof by induction. The base case follows from a direct calculation. Notice
that if i ≤ 5 then i = ai. Also 6 = a5 + a1.

The sequence continues:

. . . , a2n−5, a2n−4
Bn−2

, a2n−3, a2n−2
Bn−1

, a2n−1, a2n
Bn

, a2n+1, a2n+2

Bn+1

, . . .

By induction we assume that there exists a unique decomposition for all integers m ≤ a2n+w,
where w is the maximum integer that legally can be decomposed using terms in the set
{a1, a2, a3, . . . , a2n−4}. By construction we know that w = a2n−3 − 1, as this was the reason
we adjoined a2n−3 to the sequence.

Now let y be the maximum integer that can be legally decomposed using terms in the set
{a1, a2, a3, . . . , a2n}. By construction we have

y = a2n + w = a2n + a2n−3 − 1.

Similarly, let x be the maximum integer that legally can be decomposed using terms in the
set {a1, a2, a3, . . . , a2n−2}. Note x = a2n−1−1 as this is why we include a2n−1 in the sequence.
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Claim: a2n+1 = y + 1 and this decomposition is unique.

By induction we know that y was the largest value that we could legally make using only
terms in {a1, a2, . . . , a2n}. Hence we choose y+1 as a2n+1 and y+1 has a unique decomposition.

Claim: All N ∈ [y + 1, y + 1 + x] = [a2n+1, a2n+1 + x] have a unique decomposition.

We can legally and uniquely decompose all of 1, 2, 3, . . . , x using elements in the set {a1, a2,
. . . , a2n−2}. Adding a2n+1 to the decomposition is still legal since a2n+1 is not a member of
any bins adjacent to {B1,B2, . . . ,Bn−1}. The uniqueness follows from the fact that if we do
not include a2n+1 as a summand, then the decomposition does not yield a number big enough
to exceed y + 1.

Claim: a2n+2 = y + 1 + x+ 1 = a2n+1 + x+ 1 and this decomposition is unique.

By construction the largest integer that legally can be decomposed using terms {a1, a2, . . . , a2n+1}
is y + 1 + x.

Claim: All N ∈ [a2n+2, a2n+2 + x] have a unique decomposition.

First note that the decomposition exists as we can legally and uniquely construct a2n+2 +v,
where 0 ≤ v ≤ x. For uniqueness, we note that if we do not use a2n+2, then the summation
would be too small.

Claim: a2n+2 + x is the largest integer that legally can be decomposed using terms {a1, a2,
. . . , a2n+2}.

This follows from construction. �

Appendix B. Generating Function Proofs

In §3 we proved that the distribution of the number of summands in a Kentucky decomposi-
tion exhibits Gaussian behavior by using properties of Fibonacci polynomials. This approach
was possible because we had an explicit, tractable form for the pn,k’s (Proposition 2.4) that
coincided with the explicit sum formulas associated with the Fibonacci polynomials. Below we
present a second proof of Gaussian behavior using a more general approach, which might be
more useful in addressing the behavior of the number of summands when dealing with general
(s, b)-Generacci sequences.

As in the first proof, we are interested in gn(y), the coefficient of the xn term in F (x, y).

Lemma B.1. We have

gn(y) =
1

2n+1
√

1 + 8y

[
4y
(

1 +
√

1 + 8y
)n
− 4y

(
1−

√
1 + 8y

)n
+
(

1 +
√

1 + 8y
)n+1

−
(

1−
√

1 + 8y
)n+1

]
. (B.1)

Proof. For brevity set x1 = x1(y) and x2 = x2(y) for the roots of x in x2 + 1
2yx −

1
2y . In

particular, we find

x1 = − 1

4y

(
1 +

√
1 + 8y

)
x2 = − 1

4y

(
1−

√
1 + 8y

)
. (B.2)

Since x1 and x2 are unequal for all y > 0, we can decompose F (x, y) using partial fractions:

F (x, y) =
1 + 2xy

−2y(x− x1)(x− x2)
=

1 + 2xy

−2y

1

x1 − x2

[
1

x− x1
− 1

x− x2

]
.
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Using the geometric series formula, after some algebra we obtain

F (x, y) =
1 + 2xy

−2y

1

x1 − x2

∑
i≥0

[
1

x1

(
x

x1

)i
− 1

x2

(
x

x2

)i]
.

From here we find that that the coefficient of xn is

gn(y) =
1

−2y(x1 − x2)

[
1

xn+1
1

− 1

xn+1
2

+
2y

xn1
− 2y

xn2

]
.

Substituting the functions from (B.2) and simplifying we obtain the desired result. �

As we mentioned in §3.1, we have the following corollary.

Corollary B.2. Let Fn(x) be a Fibonacci polynomial. Then

Fn(x) =
(x+

√
x2 + 4)n − (x−

√
x2 + 4)n

2n
√
x2 + 4

.

Proof. Set the right hand sides of equations (3.4) and (B.1) equal and let x = 1/
√

2y. �

Proof of Proposition 3.1. Straightforward, but somewhat tedious, calculations give

gn(1) =
1

3

(
(−1)n+1 + 2n+2

)
g′n(1) =

n

9

(
2n+2 + 2(−1)n+1

)
+

2

27

(
2n+2

)
+ o(1).

Dividing these two quantities and using Lemma 3.3 gives the desired result. �

Proof of Proposition 3.2. Another straightforward (and again somewhat tedious) calculation
yields

σ2n =
22n+5(4 + 3n)− 2(8 + 3n)− 2n+2(−1)n(28 + 36n+ 9n2)

81(2n+2 − (−1)n)2

=
n
[
(6)22n+4 − 18(−1)n2n+3 − 6

]
+
[
(8)22n+4 − 14(−1)n2n+3 − 16

]
− 4.5(−1)nn22n+3

81
[
22n+4 − (−1)n2n+3 + 1

] .

�

Proof of Theorem 1.5. As in our earlier proof, we show that the moment generating function
of Y ′n converges to that of the standard normal. Following the same argument as in [9, Lemma
4.9], the moment generating function MY ′n(t) of Y ′n is

MY ′n(t) =
gn(et/σn)e−tµn/σn

gn(1)
.

Taking logarithms yields

logMY ′n(t) = log[gn(et/σn)]− log[gn(1)]− tµn
σn

. (B.3)

We tackle the right hand side in pieces.

Let rn = t/σn. Since σ2n = 2n
27 + 8

81 +O
(
n2

2n

)
, as n goes to infinity rn goes to 0. This allows

us to use Taylor series expansions.
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First we rewrite gn(ern)

gn(ern) =
1√

1 + 8ern

[
(1 +

√
1 + 8ern)n(4ern + 1 +

√
1 + 8ern)

2n+1

−4ern(1−
√

1 + 8ern)n

2n+1
− (1−

√
1 + 8ern)n+1

2n+1

]
.

Using Taylor series expansions of the exponential and square root functions we obtain

ern = 1 + o(1) and
1−
√

1 + 8ern

2
= −1 + o(1).

Thus

4ern(1−
√

1 + 8ern)n

2n+1
+

(1−
√

1 + 8ern)n+1

2n+1
= 2(−1)n + o(1)− (−1)n + o(1)

= (−1)n + o(1).

Hence

gn(ern) =
1√

1 + 8ern

[
(1 +

√
1 + 8ern)n(4ern + 1 +

√
1 + 8ern)

2n+1
− (−1)n + o(1)

]
.

So

log(gn(ern)) = − 1
2 log(1 + 8ern) + n log(1 +

√
1 + 8ern)

+ log(4ern + 1 +
√

1 + 8ern)− (n+ 1) log 2 + o(1).

Continuing to use Taylor series expansions

log(gn(ern)) =− 1
2

[
log 9 +

8

9
rn +

4

81
r2n

]
+ n

[
log 4 +

1

3
rn +

1

27
r2n

]
+

[
log 8 +

2

3
rn +

2

27
r2n

]
+O(r3n)− (n+ 1) log 2 + o(1). (B.4)

Finally, recall gn(1) = 1
3 [(−1)n+1 + 2n+2] so

log[gn(1)] = − log 3 + (n+ 2) log 2 + o(1). (B.5)

To finish we plug values into (B.3). In particular, plug in log(gn(ern)) from (B.4), log[gn(1)]
from (B.5), µn from Proposition 3.1, σn from Proposition 3.2, and rn = t/σn. This gives

logMY ′n(t) =
t2

2
+ o(1).

Thus, MY ′n(t) converges to the moment generating function of the standard normal distribu-
tion. Which according to probability theory, implies that the distribution of Y ′n converges to
the standard normal distribution. �
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