
ENUMERATING DISTINCT CHESSBOARD TILINGS
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Abstract. Counting the number of distinct colorings of various discrete objects, via
Burnside’s Lemma and Pólya Counting, is a traditional problem in combinatorics. Mo-
tivated by a method for proving upper bounds on the order of the minimal recurrence
relation satisfied by a set of tiling instances, we address a related problem in a more
general setting. Given an m× n chessboard and a fixed set of (possibly colored) tiles,
how many distinct tilings exist, up to symmetry?

More specifically, we are interested in the sequences formed by counting the number
of distinct tilings of boards of size (m× 1), (m× 2), (m× 3) . . ., for a fixed set of tiles
and some natural number m. We present explicit results and closed forms for several
well known classes of tiling problems as well as a general result showing that all such
sequences satisfy some linear, homogeneous, constant–coefficient recurrence relation.
Additionally, we give a characterization of all 1 × n distinct tiling problems in terms
of the generalized Fibonacci tilings.

1. Introduction

1.1. Background. Enumerating the number of ways to cover a rectangular chessboard
with a fixed set of tiles is a motivating problem for many interesting recurrence relations
and integer sequences. Many examples of these problems and their associated solution
methods can be found in [6, 7, 12, 14, 15]. A complete and informative treatment of
the one–dimensional case is contained in Benjamin and Quinn’s wonderful book [2].
Often, restrictions are made on the types and orientations of the permissible tiles in
order to model a particular combinatorial problem. For example, it is well known that
the number of ways to tile a 1 × n board with 1 × 1 squares and 1 × 2 dominoes is
the nth combinatorial Fibonacci number fn, while generalized domino tilings have deep
connections to questions in statistical mechanics [9, 13, 22].

The particular case when the tiles are restricted to be square was considered by
Brigham et al. [3] and Hare [10]. In 1999, Heubach used the combinatorial method of
counting indecomposable blocks to generalize these earlier results [11]. More recently,
Calkin et al. showed that when the square tiles are restricted in dimension, the number
of tilings can be calculated as the sum of the entries in the nth power of a recursively
defined matrix [4]. This solution is based on a method of Calkin and Wilf for counting
grid tilings [5]. This problem is a specific case of the forbidden sub–matrix problem.
Furthermore, Webb has shown that such problems always have a recurrence solution
[23].
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Aside from their intrinsic interest and applications, tilings are also an effective com-
binatorial technique for proving identities. While most of the identities concerning
combinatorial objects have straightforward proofs through mathematical induction or
algebraic manipulation with Binet forms, these approaches do not provide intuition for
the results or suggest avenues for further investigation. Thus, bijective proofs utilizing
tilings and other combinatorial models are preferred. Indeed, many of the most com-
mon Fibonacci and Lucas identities have simple and elegant proofs using the 1×n tiling
model mentioned above.

1.2. Notation. In this paper, the Fibonacci sequence will be indexed combinatorially
as f0 = 1 and f1 = 1, in order to have a direct connection with the tiling interpretation.
The primary object of interest in this paper are the sequences formed by counting
the number of legitimate tilings of rectangular boards by some fixed sets of tiles. In
particular, for any arbitrary fixed set of tiles T (note that we do not require that the tiles
be connected) and fixed board height m we will let the sequence {Tn} be the number of
ways to tile a m×n board with tiles in T . More generally, we will also be interested in the
collection of sequences {{Tn}(m)} as m ranges over the natural numbers. Throughout,
d will represent the length of the longest tile in T .

We will frequently need to consider the number of ways to tile boards where some
subset of the initial squares have been deleted. In these examples the set of tiles will be
clear from context and we will use capital letters to represent the boards and lower case
letters to represent the number of ways to tile the board (see Figure 1 in Section 2.1).

Following DeTemple and Webb, we will denote the successor operator on sequences
by E. That is, for any sequence an we have E(an) = an+1. The successor operator
offers an elegant way to express and prove many combinatorial identities [6]. Finally,
throughout this paper the phrase “recurrence relation” will be used to refer to a linear,
homogeneous, constant–coefficient recurrence relation.

1.3. Contributions. In this paper we consider enumerating distinct tilings up to sym-
metry. These problems arise when trying to prove recurrence order bounds for standard
tiling problems. We give a general formula for all 1×n tiling problems generalized from
the standard Fibonacci tiling model. Finally, we show that for any fixed tile set T and
number of rows m the sequence of distinct tilings of m× n boards satisfies a recurrence
relation and give examples incorporating the Fibonacci numbers.

2. Tilings and Recurrence Relations

As discussed in [2], if we permit ourselves to consider weighted tilings with initial
phases, we can realize any sequence satisfying a recurrence relation as tiling problem on
a 1×n board. In 2004, Webb, Criddle, and DeTemple proved an interesting converse to
this statement by showing that for any fixed set of tiles, T and any fixed board height,
m, the sequence {Tn} satisfies a recurrence relation, by conditioning on the number of
ways to cover the leftmost column [24]. This proof and its generalizations rely on an
algebraic lemma proved in [6] that any collection of arbitrary sequences that satisfy a
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homogeneous linear system in E are recurrent sequences annihilated by the determinant
of that system.

Before proceeding, we provide a simple example using this methodology:

2.1. Example: Tilings of a 2× n board with Dominoes and L–shaped Tromi-
noes. The tiles, endings, and necessary sub–boards are shown below in Figure 1:

(a) Tiles (b) Endings (c) Subboards

Figure 1. Figures for Example 1

Considering the number of ways to fill the initial column of board A, we see that
we can either use one vertical domino, two horizontal dominoes, or an L–shaped tile in
either orientation. The remaining boards, B and C, are simpler, because each tile may
only be placed in one orientation. This leads to the following system of sequences:

an = an−1 + an−2 + bn−1 + cn−1 (2.1)

bn = cn−1 + an−2 (2.2)

cn = bn−1 + an−2. (2.3)

As an example of how these equations are obtained, consider (2.3). In order to tile a C
board of length n we may either place a horizontal domino in the top row, leaving a B
board of length n− 1, or we may place a tromino that covers the remaining squares in
the first two columns, leaving an A board of length n − 2. Rewriting these as a linear
system in E we obtain:E2 − E − 1 −E −E

−1 E2 −E
−1 −E E2

anbn
cn

 =

0
0
0

 . (2.4)

The determinant of this matrix E2(E4−E3−2E2−E−1) = E2(E+1)(E3−2E2−1), and
indeed we can check the initial conditions, T1 = 1, T2 = 2, T3 = 5, T4 = 11 and T5 = 24
to see that our desired sequence satisfies the recurrence relation Tn = 2Tn−1 + Tn−3
corresponding to the irreducible cubic factor. This appears in the OEIS as A052980,
although this tiling interpretation is not yet included [19]. In a sense that will be made
precise later, the matrix obtained in (2.4) is typical of such problems. The fact that the
determinant is a degree six polynomial highlights the important fact that this method
does not always directly return the polynomial corresponding to the minimal recurrence
relation satisfied by the sequence, which we will discuss in the next section.
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3. Recurrence Order Bounds

3.1. Motivation. The order of a sequence is defined as the degree of the characteristic
polynomial of the minimal recurrence relation that the sequence satisfies. As discussed
in Chapter 7 of [6] knowing the order or even an upper bound for the order of a sequence
can allow us to prove identities and results without actually computing the coefficients
themselves. In the case of tiling problems, where all of the sequences we are interested in
satisfy some recurrence relation, having a bound on the recurrence order is particularly
valuable.

The mechanical method for proving identities contained in [6] shows that the upper
bound on sequence order describes how many initial conditions are necessary to compute
in order to prove a desired identity. Additionally, it is possible compute the coefficients
from initial conditions by solving a simple linear system of size equal to twice the
order bound. Thus, providing a better upper bound limits the amount of computation
necessary to make use of a particular tiling model. This is particularly important,
because it has been shown that enumerating the number of tilings can be #P–complete
in some cases [20].

3.2. Sequences of Sequences. For a given tile set T , we can form a family of sequences

T
(m)
n , each of which satisfies some recurrence relation, by letting the number of rows, m,

range over the positive integers. It is natural to investigate the relationships between
these sequences. For example, matrix methods of Calkin and Wilf [5] as well as those
of Anderson [1], show that for some fixed sets of tiles, the recurrence relations can
be calculated for any n by constructing a particular recursively constructed matrix.
Similarly, families of tilings with dominoes or with the tiles restricted to be square can
generate divisibility sequences [25].

In this paper, we are particularly interested in the growth rate of the order of the
sequences. That is, let O(Tn) be the order of the minimal recurrence relation that Tn
satisfies. Then, we can construct a sequence {O(T

(m)
n )} of these orders, and in particular,

consider the growth rate of the sequence. As discussed previously, this measure provides
important information about the sequence without excessive computation.

3.3. Trivial Bounds. The proof that every tiling sequence satisfies a recurrence rela-
tion proceeds by constructing the characteristic polynomial of such a recurrence relation,
as the determinant of a matrix whose entries are polyomials in E. As noted above, this
recurrence relation is rarely minimal, but does provide an upper bound on the order.
In order to compute this bound in general, we can consider the number of rows in the
matrix and the maximum degree in E of the entries in each row.

Consider the case for a fixed number of rows m and maximum tile length d. Because
we are considering arbitrary, possibly disconnected tiles, there are (2m − 1)2m(d−1) le-
gitimate tiles to choose from, and a maximum of 2m(d−1) states remaining of the board
after the initial column is tiled. Thus, our matrix could have up to 2m(d−1) +1 rows, one
for each board state and one for the initial board. Each of these rows can have exponent
at most d, which can always be achieved along the main diagonal when all of the tiles
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are used. The product of the main diagonal entries is one summand of the determinant

and thus, we obtain our first trivial upper bound on O(T
(m)
n ) ≤ d2m(d−1)+1 ∼ O(d2md).

There is some additional structure of the constructed matrix that can be used to re-
duce this bound. For example, even in the worst case where T contains all (2m−1)2m(d−1)

tiles, the Ed factors will only occur along the main diagonal and the only polynomials
with non–zero constant term will appear in the initial column as in the matrix in (2.4).
Hence, expanding down the initial column shows that there will be extraneous factors
of E corresponding to sequence eigenvalues of 0 that may be discarded. Moreover, some
of the states are translates of each other, and could thus be combined in order to fur-
ther reduce the order. However, these improvements do not significantly impact the
asymptotic behavior of the upper bound.

In general, this bound grows much too fast to be useful either combinatorially or
computationally. For example, even for tilings with dominoes and squares the bound
grows like 2 · 2m(2−1) = 2m+1. However, the actual recurrence orders are much smaller,
as can be seen in Table 1 below. Thus, the trivial bound obtained from the proof is too
inefficient for practical use.

m OEIS Upper Bound Observed Order
1 A000045 4 2
2 A030186 8 3
3 A033506 16 6
4 A033507 32 9
5 A033508 64 20
6 A033509 127 36

Table 1. Enumerating tilings with squares and dominoes. The data in
column 4 is from the OEIS [19]. Most of the computations were performed
by Lundow [16]. The observed orders may not be minimal in all cases.

4. Motivating Example

In this section, we present a simple and well–studied counting problem as a case study
suggesting some approaches to obtaining more reasonable recurrence order bounds for
fixed sets of tiles. For the remainder of this section T will consist of 1 × 1 and 2 × 2
squares with m arbitrary. We will let An be the whole m × n board and hence the
sequence an is equivalent to the desired sequence Tn. It is well known that the number
of ways to tile a 2× n strip with 1× 1 and 2× 2 squares is equal to fn [7]. Thus, there
are fm possible beginnings for a tiling of An.

This implies that the associated successor matrix has size bounded by fm × fm. The
maximum exponent of E in each row is one, except for the row corresponding to an which
has a quadratic term from the all 2 × 2 tiling, balanced by the all 1 × 1 ending which
is counted by an−1. Combined, this analysis provides us with fm as an upper bound
on the order of the recurrence. This is an asymptotic improvement, since fm ∼ ϕm.
Moreover, we note that we can further restrict the size of the matrix by only considering
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the distinct endings up to symmetry. This was also true in Example 1, as the sequences
bn and cn are clearly identical as C can be obtained from B by a reflection.

Thus, we need to compute the number of distinct Fibonacci tilings, relying on Burn-
side’s Lemma1 (see Theorem 8.7 in [6]). The next result is a specific case of the general
formula presented in the next section, with a1 = a2 = 1 and aj = 0 for j > 2. Similarly,
Lemma 4.3 corresponds to a1 = 0, a2 = a3 = 1 and aj = 0 for j > 3.

Lemma 4.1. The number of distinct Fibonacci tilings of order n up to symmetry is
equal to 1

2
(f2k + fk+1) when n = 2k and 1

2
(f2k+1 + fk) when n = 2k + 1.

Proof. Let n = 2k and consider the tilings of an 1×n board with squares and dominoes.
Any reflection of a tiling across the line of symmetry between the kth and (k + 1)st

squares produces another legitimate tiling. However, some tilings are self–similar under
reflection, hence we cannot simply take 1

2
fn as our answer. The number of self–similar

tilings can be computed by considering that the line of symmetry may either be covered
by a domino, or uncovered. There are fk−1 self–similar tilings whose center tile is a
domino and fk self–similar tilings where the line of symmetry is uncovered.

Thus, there are fk−1 + fk = fk+1 self–similar tilings. Figure 2 shows examples of
tilings with this property. By adding this quantity to the total number of tilings of
length n, we have exactly twice the number of distinct classes of tilings up to symmetry.
Hence, the number of classes of tilings is 1

2
(f2k + fk+1) and this case is complete.

When n = 2k + 1 we can apply a similar argument. In this case however, the line of
symmetry passes directly through the (k + 1)st square and thus must be covered by a
square to create a self–similar tiling. Hence, there are exactly fk self–similar tilings, and
by applying Burnside’s lemma as above we see that there must be exactly 1

2
(f2k+1 + fk)

distinct tilings which completes the proof. �

Figure 2. Self–Similar Fibonacci Tilings

The number of distinct classes of tilings provides a better bound on the order of our
recurrence by limiting the number of rows in our successor operator matrix. However, we
can offer another improvement by noticing that any ending that contains no consecutive
1×1 squares has exactly as many remaining tilings as an−2 since the remaining un–tiled
squares in the second column must also be covered by 1× 1 squares. This implies that
we can subtract the number of such endings, since they do not need to be represented

1Or rather, the lemma that is not Burnside’s [26].
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in our successor matrix. The number of endings that satisfy this condition is given by
Pn+2, where Pn is the nth Padovan number, which counts the number of ways to tile a
1×n board with 1× 2 dominoes and 1× 3 trominoes, satisfying the recurrence relation
Pn = Pn−2 +Pn−3. More interpretations of the Padovan sequence are given in the OEIS
as sequence A000931 [19]. We prove this statement as the following lemma.

Lemma 4.2. The number of endings with no consecutive 1× 1 tiles is equal to Pn+2.

Proof. We may construct a bijection between endings and tilings by associating every
2 × 2 square followed by a 1 × 1 square with a tromino in the Padovan tiling, while
each 2 × 2 square not followed by a 1 × 1 square is associated with a domino. Then,
since we need to count separately the cases when the tiling begins with a square or a
domino, we have that the number of endings with no consecutive 1× 1 squares is equal
to Pn + Pn−1 = Pn+2, by the Padovan recurrence. This completes our proof. �

Thus, we may subtract the number of distinct Padovan tilings from our previous
bound to obtain a better order approximation. In order to calculate the number of
distinct Padovan tilings we follow the methodology introduced in Lemma 1.

Lemma 4.3. The number of distinct Padovan tilings of order n up to symmetry is equal
to 1

2
(P2k + Pk+2) when n = 2k and 1

2
(P2k+1 + Pk−1) when n = 2k + 1.

Proof. We may argue as in Lemma 4.1. Notice that we again have exactly one odd length
and one even length tile, so the cases proceed exactly as in Lemma 4.1. Replacing the
square by a tromino gives a third order recurrence, which now satisfies the defining
relation of the Padovan numbers. It is then a straightforward calculation to verify the
result.

�

The preceding discussion suffices to prove the following theorem:

Theorem 4.4. The number of tilings of an m × n chessboard with 1 × 1 and 2 × 2
squares when m is fixed and n varies is not greater than:

1

2
(f2k + fk+1 − P2k+2 − Pk+3) + 1

when m = 2k, and
1

2
(f2k+1 + fk − P2k+3 − Pk) + 1

when m = 2k + 1.

Table 2 below shows the differences between the bound and the actual order of the
computed recurrence for the first several cases. Neither of these sequences appear to
be contained in the OEIS. The values in the table row labelled O(an) are the orders
of recurrences given in the OEIS for the solutions of these problems [19]. Computing
the order of recurrences for other sets of tiles can be done in a similar fashion. For any
particular case, analyzing the symmetry classes of the tiling endings can lead to greatly
improved upper bounds.
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n 2 3 4 5 6 7 8 9 10
O(an) 2 2 3 4 6 8 14 19 32
Bound 2 2 3 4 7 10 17 26 44

Table 2. Comparison between the derived bound and the actual order

This theorem demonstrates the usefulness of our contributions. Using the successor
operator method we may bound the order of the recurrence for a tiling problem by
decomposing its endings into separate smaller problems of determining the number
of distinct tilings of a simpler tile set. Since every chessboard tiling problem has an
associated recurrence relation this is a very general method. Figure 3 below shows the
possible endings of a 5× n board grouped in rows by equivalence class.

Figure 3. The 5× n endings

5. One Dimensional Tilings

In this section we provide a complete characterization of the number of distinct tilings
of a 1×n rectangle with colored tiles of fixed lengths. We also use the Pòlya Enumeration
Theorem (see Theorem 8.15 in [6]) to prove a similar result for 1× n bracelet tilings.

5.1. Generalized Fibonacci Tilings. Tilings of 1 × n rectangles have been inextri-
cably linked to the Fibonacci numbers by Benjamin and Quinn’s classic book [2]. They
give an interpretation of every (positive) linear homogeneous constant coefficient re-
currence relation in terms of a generalization of the standard Fibonacci tiling model.
Here, we prove a complementary theorem counting the number of distinct tilings for
any possible collection of colors and tiles.
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We begin by defining some convenient notation. Since we are covering boards of
dimension 1 × n we will consider tiling sets consisting of colored k–dominoes. We will
represent the tile set as a vector, T = (a1, a2, a3, . . .), where ak represents the number
of distinctly colored k–length dominoes available. Further, we will let Tn represent the
number of ways to tile a 1× n rectangle with the tiles in T .

Finally, let αj represent the number of self–symmetric 1× n T–tilings where the line
of symmetry is covered by a j–domino. This gives the following piecewise definition for
aj:

aj =


Tn−j

2
j ≡ n ≡ 0 (mod 2)

0 j ≡ 0, n ≡ 1 (mod 2)
0 j ≡ 1, n ≡ 0 (mod 2)
Tn−j

2
j ≡ n ≡ 1 (mod 2)

. (5.1)

Methods for calculating numerical values for Tk and by extension αk are given in [2].
Now we may give the statement of our theorem.

Theorem 5.1. Let T be any set of colored k–length dominoes. Then the number of
distinct tilings up to symmetry of a 1× n rectangle is equal to

1

2

(
Tn +

∞∑
i=1

aiαi +
Tn

2

2
+

(−1)nTn
2

2

)
. (5.2)

Proof. We proceed again using Burnside’s lemma. Since our board is one–dimensional
the only symmetry we are concerned with is the reflection across the vertical line of
symmetry. Notice that the set of tilings is closed under reflection which implies that it
is sufficient to add the number of self–symmetric tilings to Tn to obtain the number of
distinct tilings.

As in the proof of Lemma 1, we begin with the even case so let n = 2k. Since
n is even the symmetry line falls between two units of our board. Thus, there are
Tk tilings where the line is uncovered. This accounts for the final two terms in our
sum. Additionally, it is easy to see that when n is odd these terms annihilate leaving
us a single closed–form expression instead of a piecewise representation. This fits the
combinatorial interpretation since when n is odd the line of symmetry bisects some unit
square and must be covered by some tile.

Finally, for each j–length domino in T we must consider the case where the line of
symmetry is covered by a tile of length j. These cases separately naturally into four
parts, conditioning on the parity of j and n, as represented in Figure 4.

I) Both j and n are even:
In this case the line of symmetry must pass through the center of the j–domino.
This leaves j

2
units covered in each half of the board. In order to construct a self–

symmetric tiling, we must have both halves equivalent. Since there are no other
restrictions on the tiling, there are Tn−j

2
such coverings and this case is complete.

II) When j is even and n is odd:
In this case, the center of the j–domino does not correspond to the line of symmetry.
Hence, there can be no self–symmetric tilings with these conditions.
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III) When j is odd and n is even:
As in case II we are unable to construct such a self–symmetric tiling since the
domino covers a different number of squares on each half of the board.

IV) Both j and k are odd:
Here we may place the j–domino such that exactly j−1

2
squares are covered on each

side. As in case I this implies that there are Tn−j
2

such coverings and no more.

Since for each j there are aj colors, summing over ajαj for all j ∈ N counts all self–
symmetric tilings where the line of symmetry is covered. Since all self–symmetric tilings
have the line of symmetry either covered or uncovered, this completes the proof. �

This result is particularly valuable in light of our work presented in the previous
section. Notice, that to produce the bounds on our recurrence relation we only needed
to apply this theorem twice, even though the number of rows, m, could be selected
arbitrarily. This is because using the successor operator method, we need only consider
the initial columns, and frequently a bijection can be constructed between tilings of the
initial columns and colored 1 × n tilings. Thus, this theorem is sufficient to provide
recurrence order bounds on most traditional tiling problems.

Figure 4. 1× n Self Symmetric Centers

5.2. Distinct Lucas Tilings. In addition to considering generalized Fibonacci rela-
tions, Benjamin and Quinn also provide a combinatorial interpretation of the Lucas
numbers as tilings of a 1 × n bracelet. We now show that the number of distinct Lu-
cas tilings can be given by a number–theoretic formula, using the Pòlya Enumeration
Theorem. The sequence generated by (5.3) occurs in the OEIS as A032190 [19].

Theorem 5.2. The number of distinct Lucas tilings of a 1×n bracelet up to symmetry
is:

dn−1
2
e∑

i=0

 1

n− i
∑

d|(i,n−i)

ϕ(d)

(n−i
d
i
d

) . (5.3)
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Proof. In order to apply the Pòlya Enumeration Theorem, we must first calculate ck for
each bracelet Bn. Since the group acting on each bracelet is the nth cyclic group we
have that ck(Bn) = ϕ((n, k)) elements of order k where ϕ represents the Euler totient
function [21]. With this representation in hand, it follows that by the Pòlya Enumeration
Theorem there are exactly

f(n, k) =
1

n

∑
d|(n,k)

ϕ(d)

(n
d
k
d

)
(5.4)

binary colorings of a n–bracelet with exactly k black units [14].
In order to enumerate the Lucas tilings we must condition on the number of dominoes

in each tiling. Let each black unit in a distinct bracelet coloring represent a domino,
and let each white unit in a distinct bracelet coloring represent a square. There can be
at most dn

2
e dominoes in such a covering, since each domino covers two units. Replacing

each domino with two squares, increases the number of available units by one up to n.
Each of these different combinations of tiles represents a unique distribution of the

colors in a binary bracelet coloring of order n − d, with d representing the number of
dominoes. Summing over all possible values for d gives:

dn
2
e∑

i=0

f(n− i, i). (5.5)

Finally, substituting (5.4) for f(n, k) gives the desired result completing this proof. �

This result demonstrates the difficulties and complexities involved in employing the
techniques of Burnside and Pòlya in more complex domains. While the number of
distinct bracelet colorings has a convenient closed form expression [15], the techniques
needed to catalog even the simplest cases of distinct Lucas tilings are much more sig-
nificant. Consider extending Theorem 5.2 by adding curved trominoes to the tile–set.
The resulting expression is a triple sum over multinomial coefficients. Similarly, adding
colored dominoes or squares again increases the complexity of the expression exponen-
tially.

6. Larger Rectangular Tilings

6.1. Recurrence Relations for Distinct Tilings. In this section we consider more
generally the problem of enumerating the number of distinct tilings of an m× n chess-
board. We prove a complementary result to the result of Webb et al. showing that
every such sequence satisfies a recurrence relation and conclude with some examples of
this method applied to some well known tiling problems.

Theorem 6.1. Let T be a fixed set of tiles with maximum length d, and m > 0 be a
fixed number of rows. The sequence {Dn} of distinct tilings of an m× n board satisfies
a recurrence relation.

Proof. Since our chessboards are rectangular, the group of symmetries is isomorphic
to the Klein group. We will use the notation G = {e, h, v, r}, where e is the identity
element, h and v represent the horizontal and vertical reflections respectively, and r is
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the 180◦ rotation. Then, letting en, hn, vn, and rn be the number of tilings of a m× n
board with tiles in T fixed by each respective group element, by Burnside’s Lemma, we
have that

Dn =
1

4
(en + hn + vn + rn). (6.1)

Since the set of all sequences satisfying some recurrence relation is a vector space,
any finite linear combination of such sequences also satisfies a recurrence relation. Thus,
it suffices to show that en, hn, vn, and rn are all recurrent sequences. Note that this
together with Theorem 5.1 imply the case for m = 1 since the even and odd cases each
separately are a finite linear combination of recurrent sequences (the Ti). In the general
case, the theorem of Webb guarantees that en satisfies a recurrence relation since e fixes
all Tn tilings.

We consider the remaining three cases in turn, following the idea in [24]. The case of
hn is simplest after the identity. Let S be the set of all possible boards formed from A
by deleting some (possibly empty) collection of squares in the first d − 1 columns and
let S∗h represent the corresponding sequences counting the number of ways to distinctly
tile a m × n board with initial columns in S. Note that we actually need only include
those endings that are fixed under h in S since the corresponding sequences are 0 for
all other endings.

For each board B ∈ S we may form a linear equation in E for bn in terms of sequences
in S∗h by considering the number of distinct ways, up to symmetry, to tile the initial col-
umn of the board, since any such covering of the initial squares will leave another board
in S of shorter length. Hence, each sequence in S∗h (including hn) can be represented as
a linear combination in E of other sequences. Then, the determinant of this system is
the characteristic polynomial of a recurrence that annihilates hn.

We may proceed similarly for v and r, defining S∗v and S∗r to enumerate corresponding
sequences counting the number of ways to distinctly tile a m × n board with initial
columns in S fixed by v and r respectively. Again, by considering the number of ways
to distinctly cover the initial column of each board in S we may form linear systems
whose determinants give recurrences annihilating the sequences vn and rn. Hence, we
have shown that Dn is a linear combination of sequences satisfying recurrence relations
and so Dn must also be a recurrent sequence as desired.

�

6.2. Examples. We conclude this paper by presenting some simple, discrete exam-
ples of enumerating distinct two–dimensional tilings. These examples are meant to be
representative of the solution methods necessary to approach more general problems.

6.2.1. Tilings with Dominoes. In this example we consider the distinct tilings of a 2×n
rectangle with dominoes. Recall that the total number of ways to tile a 2 × n rectan-
gle with dominoes is fn. For m up to 9 these distinct domino tiling values have been
computed numerically by Mathar [17]. In [18], Mathar computes generating functions
for several generalizations of this problem, including using larger dominoes and three
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dimensional tilings, using the transfer matrix method on a digraph constructed to rep-
resent possible endings. The sequence presented in the following example occurs in the
OEIS as A060312 [19].

Proposition 6.2. The number of distinct tilings of a 2×n rectangle with 1×2 dominoes
is

1

2
(f2k + fk+1) (6.2)

when n = 2k and
1

2
(f2k+1 + fk) (6.3)

when n = 2k + 1.

Proof. In order to apply Burnside’s Lemma, we must count the number of elements
fixed by each group action.

Since the identity element e fixes all tilings, it contributes fn to the sum regardless of
the parity of n. To see that h accounts for fn regardless of parity, consider the bijection
between 1 × n squares and dominoes and the Fibonacci recurrence [7]. Since applying
h to a 2× n board leaves a 1× n board this is sufficient.

The last two group actions are parity dependent, so first let n = 2k and consider the
actions of r and v. In both cases either the line of symmetry is covered by two horizontal
dominoes or it is not covered at all. These observations add the final terms to the even
case: 2fk and 2fk−1 respectively. This completes the example when n is even. Figure 5
shows the symmetric centers under r and v for both parities.

When n = 2k+1 is odd, under both v and r in order for a tiling to be self–similar the
symmetric line must be covered by a single vertical domino leaving only 2fk remaining
tilings fixed by these actions. Since we have considered all of the elements of V and
|V | = 4 by Burnside’s Lemma we have that the number of distinct tilings is equal to:

1

4
(f2k + f2k + 2fk + 2fk−1) (6.4)

when n = 2k and
1

4
(f2k+1 + f2k+1 + 2fk) (6.5)

when n = 2k + 1. Simplifying with the Fibonacci recurrence then gives the result. �

Figure 5. Legitimate Symmetric Centers for 2× n Domino Tilings
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6.2.2. Tilings with Squares. In this final example we extend the motivating example of
Section 4, tiling with 1× 1 squares and 2× 2 squares.

Proposition 6.3. The number of distinct tilings of a 3 × n rectangle with squares of
size 1× 1 and 2× 2 is

1

3

(
22n−1 + 2n + 2n−1 +

1 + (−1)n

2

)
(6.6)

when n is odd, and
1

3

(
22n + 2n + 2n−1 + 1

)
(6.7)

when n is even.

Proof. Since our group of symmetric actions again has four elements, by Burnside’s
Lemma we need only compute the tilings that are fixed by each symmetric transforma-
tion. Using the notation of Heubach [11], let T3,a represent the number of traditional
tilings of a 3× a rectangle.

The identity transformation fixes every tiling, which contributes a term of T3,n. Sim-
ilarly, the horizontal reflection fixes only the tiling with all 1× 1 squares since any 2× 2
square cannot be centered across the horizontal line of symmetry.

A rotation of 180◦ fixes exactly T3,bn
2
c tilings since when n is odd the center column

must be covered with 1 × 1 tiles and when n is even the center two columns must be
covered with 1×1 tiles. If a 2×2 square infringes on one of these areas, it would overlap
itself under r and hence cannot be self–symmetric.

The vertical line of symmetry separates the two parities. When n = 2k + 1 the
symmetric line crosses the central units and must be covered by 1×1 squares contributing
T3,k to the final sum. When n = 2k is even the line of symmetry may be covered in
one of two ways by a single 2 × 2 square or be surrounded but not covered by squares
on both sides. These terms are 2T3,k−1 and T3,k respectively which completes the even
case.

Applying Burnside’s Lemma to these terms gives a representation of the number of
tilings in terms of Heubach’s recurrence relation:

1

4
(T3,2k+1 + 1 + 2T3,k) (6.8)

when n = 2k + 1 and
1

4
(T3,2n + 1 + 2T3,n + 2T3n+1) (6.9)

when n = 2k.
Constructing a generalized power sum for T3,a gives the following closed form expres-

sion [19],

T3,a =
2a+1 − (−1)a+1

3
. (6.10)

Substituting (6.10) into (6.7) and (6.8) respectively gives the desired result and com-
pletes this example. �
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