ON THE q-SEIDEL MATRIX

M. CETIN FIRENGIZ AND NAIM TUGLU

Abstract

Clarke and et. al recently introduced the q-Seidel matrix, and obtained some properties. In this article, we define a different form of q-Seidel matrix by $a_{n}^{k}(x, q)=$ $x q^{n+2 k-3} a_{n}^{k-1}(x, q)+a_{n+1}^{k-1}(x, q)$ with $k \geq 1, n \geq 0$ for an initial sequence $a_{n}^{0}(x, q)=a_{n}(x, q)$. By using our definition, we obtain several properties of the q-analogues of generalized Fibonacci and Lucas polynomials.

1. Introduction

The q-analogues of generalized Fibonacci and Lucas polynomials were investigated by many authors $[3,5,7]$. Carlitz [10] defined the q-Fibonacci polynomials by

$$
\begin{equation*}
\phi_{n+1}(a)-a \phi_{n}(a)=q^{n-1} \phi_{n-1}(a) \quad(n>1), \tag{1.1}
\end{equation*}
$$

where $\phi_{1}(a)=1, \phi_{2}(a)=a$.
The sequence of polynomials $S_{n}(x, q)$ is defined by the recurrence relation

$$
\begin{equation*}
S_{n+1}(x, q)=S_{n}(x, q)+x q^{n-2} S_{n-1}(x, q) \quad(n \geq 1) \tag{1.2}
\end{equation*}
$$

where $S_{0}(x, q)=a$ and $S_{1}(x, q)=b$. For $a=0$ and $b=1, S_{n}(x ; q)=U_{n-1}\left(1 ; 0,-x q^{-1}\right)$, $S_{n}(x ; q)$ is a special case Al-Salam and Ismail polynomials $U_{n}(x ; a, b)$ introduced in [13]. Also the sequence of polynomials $S_{n}(x, q)$ is a special case $F_{n}(x ; s, q)$ which is studied by Cigler in [7]. In particular, if we take $x=1, q \rightarrow 1^{-}$in (1.2), we get the classical Fibonacci and Lucas numbers for initial values $a=0, b=1$ and $a=2, b=1$ respectively.
q-Calculus started with L. Euler in the eighteenth century. q-Analogue of the binomial coefficients play important role in number theory, combinatorics, linear algebra and finite geometry. Now we mention some definitions of q-calculus [1]. Given value of $q>0$, the q-integer $[n]_{q}$ is defined by

$$
[n]_{q}=\left\{\begin{array}{ccc}
\frac{1-q^{n}}{1-q} & \text { if } & q \neq 1 \\
n & \text { if } & q=1,
\end{array}\right.
$$

and the q-factorial $[n]_{q}$! is defined by

$$
[n]_{q}!=\left\{\begin{array}{cl}
{[n]_{q} \cdot[n-1]_{q} \cdots[1]_{q}} & \text { if } n=1,2, \ldots \\
1 & \text { if } n=0
\end{array}\right.
$$

for $n \in \mathbb{N}$. The q-binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[n-k]_{q}![k]_{q}!}, \quad n \geq k \geq 0
$$

with $\left[\begin{array}{l}n \\ 0\end{array}\right]_{q}=1$ and $\left[\begin{array}{l}n \\ k\end{array}\right]=0$ for $n<k$. Note that the q-binomial coefficient satisfies the recurrence equations

$$
\left[\begin{array}{c}
n+1 \tag{1.3}\\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}
$$

and

$$
\left[\begin{array}{c}
n+1 \tag{1.4}\\
k
\end{array}\right]_{q}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+q^{n-k+1}\left[\begin{array}{l}
n+1 \\
k-1
\end{array}\right]_{q} .
$$

In [9] Clarke and et. al give a kind of the generalization of a Seidel matrix, and obtain some properties by using the following relation:

$$
\begin{array}{lrl}
a_{n}^{0}(x, q) & =a_{n}(x, q) & \\
a_{n}^{k}(x, q) & =x q^{n} a_{n}^{k-1}(x, q)+a_{n+1}^{k-1}(x, q) & \tag{1.5}\\
\hline
\end{array}
$$

Here $\left(a_{n}(x, q)\right)$ is a sequence of elements in a commutative ring. We can write $a_{n}^{k}(x, q)$ in terms of the initial sequence as

$$
a_{n}^{k}(x, q)=\sum_{i=0}^{k}\left(x q^{n}\right)^{k-i}\left[\begin{array}{c}
k \tag{1.6}\\
i
\end{array}\right]_{q} a_{n+i}^{0}(x, q) .
$$

Moreover $\left(a_{n}^{0}(x, q)\right)$ is called the initial sequence and $\left(a_{0}^{n}(x, q)\right)$ the final sequence of the q Seidel matrix. By using the Gauss inversion formula, we obtain relations between the initial sequence and final sequence:

$$
\begin{gather*}
a_{0}^{n}(x, q)=\sum_{i=0}^{n} x^{n-i}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} a_{i}^{0}(x, q), \tag{1.7}\\
a_{n}^{0}(x, q)=\sum_{i=0}^{n}(-x)^{n-i} q^{\binom{n-i}{2}}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} a_{0}^{i}(x, q) . \tag{1.8}
\end{gather*}
$$

Define the generating functions as follows:

$$
\begin{equation*}
a(t)=\sum_{n \geq 0} a_{n}^{0}(x, q) t^{n}, \quad \bar{a}(t)=\sum_{n \geq 0} a_{0}^{n}(x, q) t^{n} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
A(t)=\sum_{n \geq 0} a_{n}^{0}(x, q) \frac{t^{n}}{[n]_{q}!}, \quad \bar{A}(t)=\sum_{n \geq 0} a_{0}^{n}(x, q) \frac{t^{n}}{[n]_{q}!} . \tag{1.10}
\end{equation*}
$$

Thus the generating functions of the initial and final sequences are related by following equations:

$$
\begin{gather*}
\bar{a}(t)=\sum_{n \geq 0} a_{n}^{0}(x, q) \frac{t^{n}}{(x t ; q)_{n+1}}, \tag{1.11}\\
\bar{A}(t)=e_{q}(x t) A(t) \tag{1.12}
\end{gather*}
$$

Define $(t ; q)_{n}=(1-t)(1-q t) \ldots\left(1-q^{n-1} t\right)$ and $(t ; q)_{\infty}=\lim _{n \rightarrow \infty}(t ; q)_{n}$. Then

$$
\begin{equation*}
e_{q}(t)=\sum_{n \geq 0} \frac{t^{n}}{[n]_{q}!}=\frac{1}{((1-q) t ; q)_{\infty}} . \tag{1.13}
\end{equation*}
$$

Also

$$
\frac{1}{(t ; q)_{n+1}}=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \tag{1.14}\\
k
\end{array}\right]_{q} t^{k} .
$$

In this paper, we define a generalization of the q-Seidel matrix and obtain some properties for the generalized q-Seidel matrix. Furthermore we consider the q-analogues of generalized Fibonacci and Lucas polynomials $S_{n}(t, q)$ and give several properties of the sequence of polynomials $S_{n}(t, q)$ by using the generalized q-Seidel matrix method.

2. The Generalized q-Seidel Matrix

Let $\left(a_{n}(x, q)\right)$ be a given real or complex sequence. The generalized q-Seidel matrix associated with $\left(a_{n}^{0}(x, q)\right)$ is defined recursively by the formula

$$
\begin{array}{lr}
a_{n}^{0}(x, q)=a_{n}(x, q) \quad(n \geq 0), \\
a_{n}^{k}(x, q)=x q^{n+2 k-3} a_{n}^{k-1}(x, q)+a_{n+1}^{k-1}(x, q) \quad(n \geq 0, k \geq 1), \tag{2.1}
\end{array}
$$

where $a_{n}^{k}(x, q)$ represent the entry in the k th row and nth column.
We note that for $q \rightarrow 1^{-}$and $x=1$, the q-Seidel matrix turns into the usual Euler-Seidel matrix $[2,4,6]$.
Lemma 2.1. Let $\left(a_{n}^{k}(x, q)\right)$ satisfy equation (2.1) with initial sequence $\left(a_{n}^{0}(x, q)\right)$. Then

$$
a_{n}^{k}(x, q)=\sum_{i=0}^{k} x^{k-i} q^{(n+k-2)(k-i)}\left[\begin{array}{c}
k \tag{2.2}\\
i
\end{array}\right]_{q} a_{n+i}^{0}(x, q) .
$$

Proof. We use induction to prove the proposition. The equation clearly holds for $k=1$. Now, suppose that the equation is true for k. By (1.3) and (2.1) we have

$$
\begin{aligned}
a_{n}^{k+1}(x, q)= & x q^{n+2 k-1} a_{n}^{k}(x, q)+a_{n+1}^{k}(x, q) \\
= & x q^{n+2 k-1} \sum_{i=0}^{k} x^{k-i} q^{(n+k-2)(k-i)}\left[\begin{array}{l}
k \\
i
\end{array}\right]_{q} a_{n+i}^{0}(x, q) \\
& +\sum_{i=0}^{k} x^{k-i} q^{(n+k-1)(k-i)}\left[\begin{array}{c}
k \\
i
\end{array}\right]_{q} a_{n+1+i}^{0}(x, q) \\
= & \sum_{i=0}^{k} x^{k+1-i} q^{(n+k-1)(k+1-i)}\left[\begin{array}{c}
k \\
i
\end{array}\right]_{q} a_{n+i}^{0}(x, q) \\
& +\sum_{i=1}^{k+1} x^{k+1-i} q^{(n+k-1)(k+1-i)}\left[\begin{array}{c}
k \\
i-1
\end{array}\right]_{q} a_{n+i}^{0}(x, q) \\
= & x^{k+1} q^{(n+k-1)(k+1)} a_{n}^{0}(x, q) \\
& \left.\left.+\sum_{i=1}^{k} x^{k+1-i} q^{(n+k-1)(k+1-i)}\left\{\begin{array}{c}
i \\
q^{i}
\end{array}\right] \begin{array}{l}
k \\
i
\end{array}\right]_{q}+\left[\begin{array}{c}
k \\
i-1
\end{array}\right]_{q}\right\} a_{n+i}^{0}(x, q)+a_{n+k+1}^{0}(x, q) \\
= & \sum_{i=0}^{k+1} x^{k+1-i} q^{(n+k-1)(k+1-i)}\left[\begin{array}{c}
k+1 \\
i
\end{array}\right]_{q} a_{n+i}^{0}(x, q) .
\end{aligned}
$$

Hence, the equation is true for $n=k+1$, which completes the proof.
If we take $q \rightarrow 1^{-}, x=1$ for (2.2), we get the well-known formula for the classical EulerSeidel matrix [4].

The first row and column of the generalized q-Seidel matrix are defined by the inverse relation as in following corollary.
Corollary 2.2. Let $a_{n}^{0}(x, q)$ and $a_{0}^{n}(x, q)$ be the first row and column in the generalized q Seidel matrix. Then $a_{n}^{0}(x, q)$ and $a_{0}^{n}(x, q)$ have the inverse relation

$$
a_{0}^{n}(x, q)=\sum_{i=0}^{n} x^{n-i} q^{(n-2)(n-i)}\left[\begin{array}{l}
n \tag{2.3}\\
i
\end{array}\right]_{q} a_{i}^{0}(x, q)
$$

and

$$
a_{n}^{0}(x, q)=\sum_{i=0}^{n}(-x)^{n-i} q^{\frac{(n-i)(n-3+i)}{2}}\left[\begin{array}{c}
n \tag{2.4}\\
i
\end{array} a_{q} a_{0}^{i}(x, q)\right.
$$

Proposition 2.3. Let $a_{n}^{0}(x, q)$ and $a_{0}^{n}(x, q)$ be the first row and column in the generalized q-Seidel matrix. Then $a_{n}^{0}(x, q)$ and $a_{0}^{n}(x, q)$ have the orthogonality relation

$$
\sum_{j=i}^{n}(-1)^{j-i} q^{(n-2)(n-j)} q^{\frac{(j-i)(j-3+i)}{2}}\left[\begin{array}{l}
n \tag{2.5}\\
j
\end{array}\right]_{q}\left[\begin{array}{l}
j \\
i
\end{array}\right]_{q}=\delta_{n i} .
$$

Proof. We prove this by induction on n. A similar proof can be seen in $[8,11]$.

2.1. Generating Functions.

Proposition 2.4. Let

$$
a(t)=\sum_{n=0}^{\infty} a_{n}^{0}(x, q) t^{n}
$$

be the generating function of the initial sequence $\left(a_{n}^{0}(x, q)\right)$. Then the generating function of the sequence $\left(a_{0}^{n}(x, q)\right)$ is

$$
\overline{a(t)}=\sum_{n=0}^{\infty} a_{n}^{0}(x, q) t^{n} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \tag{2.6}\\
k
\end{array}\right]_{q}(x t)^{k} q^{k(k-2+n)} .
$$

Proof. Considering (2.3) we write

$$
\begin{aligned}
\overline{a(t)} & =\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} x^{n-i} q^{(n-2)(n-i)}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} a_{i}^{0}(x, q)\right) t^{n} \\
& =\sum_{n, k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q} x^{k} t^{n+k} q^{k(k-2+n)} a_{n}^{0}(x, q) .
\end{aligned}
$$

Hence we obtain

$$
\overline{a(t)}=\sum_{n=0}^{\infty} a_{n}^{0}(x, q) t^{n} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]_{q}(x t)^{k} q^{k(k-2+n)}
$$

Proposition 2.5. Let

$$
A(t)=\sum_{n=0}^{\infty} a_{n}^{0}(x, q) \frac{t^{n}}{[n]_{q}!}
$$

be the exponential generating function of the initial sequence $\left(a_{n}^{0}(x, q)\right)$. Then the exponential generating function of the sequence $\left(a_{0}^{n}(x, q)\right)$ is

$$
\begin{equation*}
\overline{A(t)}=\sum_{n=0}^{\infty} a_{n}^{0}(x, q) \frac{t^{n}}{[n]_{q}!} \sum_{k=0}^{\infty} q^{k(k-2+n)} \frac{(x t)^{k}}{[k]_{q}!} \tag{2.7}
\end{equation*}
$$

Proof. The proof follows from equation (2.3).

3. Applications of Generalized q-Seidel Matrices

In this section, we show that the generalized q-Seidel matrix is quite applicable for the q-analogues of generalized Fibonacci and Lucas polynomials. First we give the relationship between $S_{n+2 k}(x, q)$ and the initial sequence $S_{n}(x, q)$ by using the generalized q-Seidel matrix.

Corollary 3.1. The q-analogues of generalized Fibonacci and Lucas polynomials satisfy the following relation:

$$
S_{n+2 k}(x, q)=\sum_{i=0}^{k} x^{k-i} q^{(n+k-2)(k-i)}\left[\begin{array}{c}
k \tag{3.1}\\
i
\end{array}\right]_{q} S_{n+i}(x, q)
$$

Proof. Let $a_{n}^{0}=S_{n}(x, q), n \geq 0$ be initial sequence. By using induction on $k,(1.2)$ and (2.1), we have

$$
a_{n}^{k}=S_{n+2 k}(x, q)
$$

Using (2.2) and applying $a_{n}^{0}=S_{n}(x, q)$, we obtain

$$
a_{n}^{k}=\sum_{i=0}^{k} x^{k-i} q^{(n+k-2)(k-i)}\left[\begin{array}{c}
k \\
i
\end{array}\right]_{q} S_{n+i}(x, q)
$$

This completes the proof.
Corollary 3.2. We have

$$
\begin{gather*}
S_{2 n}(x, q)=\sum_{i=0}^{n} x^{n-i} q^{(n-2)(n-i)}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} S_{i}(x, q) \tag{3.2}\\
S_{n}(x, q)=\sum_{i=0}^{n}(-x)^{n-i} q^{\frac{(n-i)(n-3+i)}{2}}\left[\begin{array}{c}
n \\
i
\end{array}\right]_{q} S_{2 i}(x, q) \tag{3.3}
\end{gather*}
$$

and

$$
S_{2 n+1}(x, q)=\sum_{i=0}^{n} x^{n-i} q^{(n-1)(n-i)}\left[\begin{array}{c}
n \tag{3.4}\\
i
\end{array}\right]_{q} S_{i+1}(x, q)
$$

The following remark show that the well-known formulas [12] of Fibonacci numbers can be easily seen by using the properties of q-analogues of generalized Fibonacci and Lucas polynomials.

Remark 3.3. Setting $a=0, b=1$ and $x=1, q \rightarrow 1^{-}$in (3.1), we get the following equation of the Fibonacci numbers

$$
F_{n+2 k}=\sum_{i=0}^{k}\binom{k}{i} F_{n+i}
$$

By taking $a=0, b=1$ and $x=1, q \rightarrow 1^{-}$as a special case of the equations (3.2), (3.3) and (3.4) we have the following identities for Fibonacci numbers:

$$
\begin{gathered}
F_{2 n}=\sum_{i=0}^{n}\binom{n}{i} F_{i}, \\
F_{n}=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} F_{2 i}, \\
F_{2 n+1}=\sum_{i=0}^{n}\binom{n}{i} F_{i+1}
\end{gathered}
$$

respectively. Also it is easily obtain similar formulas for the Lucas numbers.
Proposition 3.4. The generating function of the polynomials $S_{n}(t, q)$ is

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{n}(x, q) t^{n}=\frac{a+(b-a) t}{1-t-x q^{-1} t^{2} \mu_{t}} \tag{3.5}
\end{equation*}
$$

where μ_{t} is the Fibonacci operator which is $\mu_{t} f(t)=f(t q)$ for any given function $f(t)$.
Proof. Let $g(x)=\sum_{n=0}^{\infty} S_{n}(x, q) t^{n}$. We need to show the following equation:

$$
g(x)\left(1-t-x q^{-1} t^{2} \mu_{t}\right)=a+(b-a) t .
$$

We have

$$
\begin{aligned}
g(x)\left(1-t-x q^{-1} t^{2} \mu_{t}\right) & =a+b t+\sum_{n=2}^{\infty} S_{n}(x, q) t^{n}-\sum_{n=0}^{\infty} S_{n}(x, q) t^{n+1}-\sum_{n=0}^{\infty} S_{n}(x, q) x q^{n-1} t^{n+2} \\
& =a+b t-a t+\sum_{n=2}^{\infty}\left\{S_{n}(x, q)-S_{n-1}(x, q)-x q^{n-3} S_{n-3}(x, q)\right\} t^{n}
\end{aligned}
$$

This completes the proof.
Corollary 3.5. The generating function of $S_{2 n}(x, q)$ is

$$
\sum_{n=0}^{\infty} S_{2 n}(x, q) t^{n}=\frac{a+(b-a) t}{1-t-x q^{-1} t^{2} \mu_{t}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \tag{3.6}\\
n
\end{array}\right]_{q}(x t)^{k} q^{k(k-2+n)}
$$

Proof. If we want to obtain the generating function of $S_{2 n}(x, q)$ by using equation (2.6), we realize that by setting $a_{n}^{0}(x, q)=S_{n}(x, q)$ in (2.1). We obtain $a_{0}^{n}(x, q)=S_{2 n}(x, q)$. By considering (2.6), we find

$$
\overline{a(t)}=\sum_{n=0}^{\infty} a_{0}^{n}(x, q) t^{n}=\sum_{n=0}^{\infty} a_{n}^{0}(x, q) t^{n} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right]_{q}(x t)^{k} q^{k(k-2+n)} .
$$

Therefore

$$
\sum_{n=0}^{\infty} S_{2 n}(x, q) t^{n}=\sum_{n=0}^{\infty} S_{n}(x, q) t^{n} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right]_{q}(x t)^{k} q^{k(k-2+n)}
$$

From (3.5) we have

$$
\sum_{n=0}^{\infty} S_{2 n}(x, q) t^{n}=\frac{a+(b-a) t}{1-t-x q^{-1} t^{2} \mu_{t}} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right]_{q}(x t)^{k} q^{k(k-2+n)}
$$

This corollary points out that the generating functions of the first row and column of the generalized q-Seidel matrix are useful to obtain the generating function of $S_{2 n}(x, q)$.

References

[1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-calculus in operator theory, New York, Springer, 2013.
[2] A. Dil and I. Mező, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206 (2008), 942-951.
[3] C. Z. Jia, H. M. Liu and T. M. Wang, q-Analogs of generalized Fibonacci and Lucas polynomials, Fibonacci Quart., 45 (2007), 26-34.
[4] D. Dumont, Matrices d’Euler-Seidel, Séminaire Lotharingien de Combinatorie, 1981.
[5] G. E. Andrews, Fibonacci numbers and the Rogers-Ramanujan identities, Fibonacci Quart., 42 (2004), 3-19.
[6] I. Mező and A. Dil, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., 7 (2009), 310-321.
[7] J. Cigler, q-Fibonacci polynomials, Fibonacci Quart., 41 (2003), 31-40.
[8] J. Riordan, Inverse relations and combinatorial identities, Amer. Math. Monthly, 71 (1964), 485-498.
[9] R. J. Clarke, G. N. Han, J. Zeng, A combinatorial interpretation of the Seidel generation of q-derangement numbers, Ann. Comb., 4 (1997), 313-327.
[10] L. Carlitz, Fibonacci notes 4: q-Fibonacci Polynomials, Fibonacci Quart., 13 (1975), 97-102.
[11] R. B. Corcino, On p,q-binomial coefficients, Integers, 8 (2008), 1-16.
[12] S. Vajda, Fibonacci and Lucas numbers, and the Golden Section: Theory and Applications, Halsted Press, 1989.
[13] W. A. Al-Salam and M. E. H. Ismail, Orthogonal Polynomials Associated with the Rogers-Ramanujan Continued Fraction, Pacific J. Math., 104 (1983), 269-283.

MSC2010: 11B39, 11B83, 05A30.
Department of Mathematics Education, Başkent University, Baglica 06810 Ankara, Turkey
E-mail address: mcetin@baskent.edu.tr
Department of Mathematics, Gazi University, 06500 Ankara, Turkey
E-mail address: naimtuglu@gazi.edu.tr

