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ABSTRACT. Clarke and et. al recently introduced the ¢-Seidel matrix, and obtained some

properties. In this article, we define a different form of ¢-Seidel matrix by a¥ (z,q9) =
zq" T3k (o, q)—i—afbjj (x,q) with k > 1, n > 0 for an initial sequence a2, (z, q) = an (z,q) .
By using our definition, we obtain several properties of the g-analogues of generalized Fi-

bonacci and Lucas polynomials.

1. INTRODUCTION

The g-analogues of generalized Fibonacci and Lucas polynomials were investigated by many
authors [3, 5, 7]. Carlitz [10] defined the ¢g-Fibonacci polynomials by

$n+1(a) — agy (a) = ¢" " dn-1 (a) (n>1), (L.1)

where ¢ (a) =1, ¢2(a) = a.
The sequence of polynomials Sy, (z, q) is defined by the recurrence relation

Spi1(x,q) = Sn(z,q) + 2¢"2S,_1 (z,q) (n>1), (1.2)

where Sy (z,q) = a and Sy (x,q) =b. Fora=0and b =1, S, (z;9) = Uy—1 (1;0, —xq_l),
Sp (x5 q) is a special case Al-Salam and Ismail polynomials Uy, (z; a,b) introduced in [13]. Also
the sequence of polynomials S, (z, q) is a special case F), (z; s, q) which is studied by Cigler in
[7]. In particular, if we take © = 1, ¢ — 1~ in (1.2), we get the classical Fibonacci and Lucas
numbers for initial values a = 0,b =1 and a = 2,b = 1 respectively.

g-Calculus started with L. Euler in the eighteenth century. g¢-Analogue of the binomial
coefficients play important role in number theory, combinatorics, linear algebra and finite
geometry. Now we mention some definitions of g-calculus [1]. Given value of ¢ > 0, the

g-integer [n], is defined by
n
174 if ¢g#1

[nl,=9¢ 1-—

n if ¢g=1,

and the g-factorial [n] q! is defined by
[ B, =2

for n € N. The g—binomial coefficients are defined by

[ﬂq—h%! n>k>0



with [g]q = 1 and [Z] = 0 for n < k. Note that the g-binomial coefficient satisfies the

recurrence equations
+1
[”k ] =q" m + [kn 1] (1.3)
q q g

R i v

In [9] Clarke and et. al give a kind of the generalization of a Seidel matrix, and obtain some
properties by using the following relation:

ay, (z,q) = an (z,q) (n>0),

afl (z,q) = xq”aﬁ’l (z,q) + aﬁj& (x,q) (k>1, n>0).

and

(1.5)

Here (an (7,q)) is a sequence of elements in a commutative ring. We can write a® (z,q) in
terms of the initial sequence as

k

ke =3 ) Y] e, (16)

i=0 q
Moreover (a$ (x,q)) is called the initial sequence and (afj (x,q)) the final sequence of the ¢-
Seidel matrix. By using the Gauss inversion formula, we obtain relations between the initial
sequence and final sequence:

a4 (2,0) = Zox ] o, (1)

q

g n—i ("7 || 4

A=Y o | ). (19
i=0 tlq

Define the generating functions as follows:

a(®) =) ay(@gt",  alt) =) a(xqt" (1.9)

n>0 n>0
and
A=Y@ AO=Y @@ (1.10)
n>0 q n>0 q

Thus the generating functions of the initial and final sequences are related by following equa-
tions:

a = al (x L .
W nzz;)  (#:9) (xt;Q)nH’ (L11)
A(t) =eq(xt) A(t). (1.12)
Define (t;q), = (1 —1t) (1 —qt)... (1 — q"’lt) and (t;q) ., = limy— (¢;¢),,- Then
t" 1
)= 2 Gl T T ohon 19
Also -
1 _ n+k|l
G~ 2 i Lt | (1149
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In this paper, we define a generalization of the ¢-Seidel matrix and obtain some properties
for the generalized g-Seidel matrix. Furthermore we consider the g-analogues of generalized
Fibonacci and Lucas polynomials S, (¢, ¢) and give several properties of the sequence of poly-
nomials Sy, (¢,q) by using the generalized g-Seidel matrix method.

2. THE GENERALIZED ¢-SEIDEL MATRIX

Let (ay, (z, )) be a given real or complex sequence. The generalized g—Seidel matrix asso-
ciated with ( (z,q)) is defined recursively by the formula

91(55 Q) _a’n(xvCJ) (TLZO), (2 1)
af (z,q) =2q" ™ Pay (2,9) +al (mq)  (n>0, k>1), '

where af’fL (x,q) represent the entry in the kth row and nth column.
We note that for ¢ — 17 and z = 1, the ¢-Seidel matrix turns into the usual Euler-Seidel
matrix [2, 4, 6].

Lemma 2.1. Let (a (z,q)) satisfy equation (2.1) with initial sequence (a3 (z,q)). Then

k
—i (nth—2)(k—i) | F
= 3 a2 )[Z] ah i (2,q). (22)
1=0 q

Proof. We use induction to prove the proposition. The equation clearly holds for £ = 1. Now,
suppose that the equation is true for k. By (1.3) and (2.1) we have

aytt (z,q) = 2q" T al (2, q) + ap 4y (2,q)
k k
ot 2k—1 k=i (nt+k—2)(k—1) o
Yt e ] e
=0 4
k
(n k
I H
tlq

k N

Z ket l—i g (ntk—1)(k+1-0) [} a2+i (z,9)
—~ q
k+1 k

k+1—i (n+k—1)(k+1—1i) 0

+ Z;f” q [z - J i (2:0)
gF k=D 40 (4 )

+ 3 kgt D) {q’ H + [z —~ J } Ay (2,0) + g g (2,9)
i=1 ! !

k1

i _(n g k+1
. Zkarl q( +k—1)(k+1—1) [ ] a?LH (z,q).
=0 Z I
Hence, the equation is true for n = k + 1, which completes the proof. .

If we take ¢ — 17, z = 1 for (2.2), we get the well-known formula for the classical Euler-
Seidel matrix [4].
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The first row and column of the generalized ¢-Seidel matrix are defined by the inverse
relation as in following corollary.

Corollary 2.2. Let a (z,q) and ao (z,q) be the first row and column in the generalized q-
Seidel matriz. Then al (z,q) and af (x,q) have the inverse relation

n

—i_(n=2)(n—i) |7
@ w0 = gm0 "] (o) (2.3

1=0 q

and

@ (2,0) = 3 (—ayi U [”] @b (z,q). (2.4)

X 1
=0

Proposition 2.3. Let a (z,q) and a? (z,q) be the first row and column in the generalized
q-Seidel matriz. Then o, (v,q) and al} (z,q) have the orthogonality relation

n .
=) (G—=3+1%)
Z (n—2)(n J)q% [n] H = Oni. (2.5)
j=t J q ! q
Proof. We prove this by induction on n. A similar proof can be seen in [8, 11]. O

2.1. Generating Functions.

Proposition 2.4. Let
oo
a(t)=> ap(z,q)t"
n=0

be the generating function of the initial sequence (ag (z, q)) Then the generating function of
the sequence (ag (z,q)) is

@ =3 ey " 7] o (2.6

n=0 k=0 q

Proof. Considering (2.3) we write

( xn—i (n—2)(n—1) |:7’L:| a? (xy Q)) "
n=0 \i= o

> [n+k —9in
Z [ :| kthrqu(k 2+ )CL?L (1,7 q)'

n,k=0

M

Hence we obtain

Za (2,9) tni [”+k} (wt)F gFE=2+n),
k

=0

Proposition 2.5. Let
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be the exponential generating function of the initial sequence (a?z (x, q)) Then the exponential
generating function of the sequence (ag (x,q)) is

TN S m (@)
=Y a} (x0) Z eI (2.7)
n=0 q k= q
Proof. The proof follows from equation (2.3). O

3. APPLICATIONS OF GENERALIZED ¢—SEIDEL MATRICES

In this section, we show that the generalized ¢-Seidel matrix is quite applicable for the
g-analogues of generalized Fibonacci and Lucas polynomials. First we give the relationship
between Sy, 4ok (z, ¢) and the initial sequence S, (z, ¢) by using the generalized ¢-Seidel matrix.

Corollary 3.1. The g-analogues of generalized Fibonacci and Lucas polynomials satisfy the
following relation:

k

—1_(n+k— —1 k
Suva(m.0) = Yot g2 ] 5 (0, (3.1)
1=0 q

Proof. Let a® = S, (z,q), n > 0 be initial sequence. By using induction on k, (1.2) and (2.1),
we have

af}, — Ont+2k ('7;7 Q) .
Using (2.2) and applying a2 = S,, (x,q), we obtain

k ‘ e
_ Z xk—zq(n+k—2)(k—z) |: :| Sn+i (l’, q) )
1=0 q

7

This completes the proof. O
Corollary 3.2. We have

. —i (n—2)(n—i) | T
Son (w,q) =Y 2" g2 )H Si (2,q) , (3:2)
i=0 q
" . (n—1)(n—3+41%)
S (2,0) = 3 ()i g2 [ ] S (2,9) (3.3)
i=0 q
and
n—i_(n—1)(n—i) |
Sont1 (w,q) =Y _a"gr D=0 [l] Siv1(z,q). (3.4)
i=0 q

The following remark show that the well-known formulas [12] of Fibonacci numbers can be
easily seen by using the properties of g-analogues of generalized Fibonacci and Lucas polyno-
mials.

Remark 3.3. Settinga =0,b=1andxz =1, q— 17 in (3.1), we get the following equation
of the Fibonacci numbers

"k
Foior = Z <Z>Fn+z
i=0
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By takinga =0,b =1 and x = 1, ¢ — 1~ as a special case of the equations (3.2), (3.3) and
(8.4) we have the following identities for Fibonacci numbers:

F2n:i<7z>FZ>

1=0

e ()

1=

n
n
Fopni1 = g <Z.>Fi+1
=0

respectively. Also it is easily obtain similar formulas for the Lucas numbers.

Proposition 3.4. The generating function of the polynomials Sy(t,q) is

ZS (x,q)t at(b-a)t (3.5)

T 1—t—xq 42y,

where u is the Fibonacci opemtor which is pf (t) = f (tq) for any given function f (t).

Proof. Let g (z) = > Sy (x,q)t". We need to show the following equation:
n=0

g(@) (1 —t—2¢ '"¥w) =a+(b—a)t.

We have
o oo o
g@)(1—t—aq " Cu) =a+bt+ Y Su(z,)t" =D Splx,q)t"™ =Y Sy(x,q) zg" "+
n=2 =
o0
=a+bt—at+ Y {Su(z,q) = Sn1(z,q) —2¢" *Sn 3 (2,q)} ",
n=2
This completes the proof. O

Corollary 3.5. The generating function of Sa, (x,q) is

i SZn (ZE, q) = a+ (b - a)t i |:7”L + k:| (l‘t)k qk(k—Z-‘rn)‘ (36)
n=0 q

1—t—xqg 2, =l n

Proof. If we want to obtain the generating function of Sa, (z,q) by using equation (2.6), we
realize that by setting a2 (z,q) = S (z,q) in (2.1). We obtain a? (x,q) = Sa, (z,q). By
considering (2.6), we find

Zao z,q)t Za 2,q) tni[n—i—k] wt)k gh—2m).

=0
Therefore
(o.9) 0o 0o k

Z Son (z,q) 1" = Z S (x,q)t" [n N } (wt)F gFk=24+m)

n=0 n=0 k=0 q
From (3.5) we have

a+(b—a)t [n+k b (k2
S2n t (k=2+n)
Z on (T,q) 1 =1 t_xq_thHth:() n q(fb’)q
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O

This corollary points out that the generating functions of the first row and column of the
generalized g-Seidel matrix are useful to obtain the generating function of Sa, (z, q).
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