
ON THE q−SEIDEL MATRIX

M. CETIN FIRENGIZ AND NAIM TUGLU

Abstract. Clarke and et. al recently introduced the q-Seidel matrix, and obtained some
properties. In this article, we define a different form of q-Seidel matrix by ak

n (x, q) =

xqn+2k−3ak−1
n (x, q)+ak−1

n+1 (x, q) with k ≥ 1, n ≥ 0 for an initial sequence a0
n (x, q) = an (x, q) .

By using our definition, we obtain several properties of the q-analogues of generalized Fi-
bonacci and Lucas polynomials.

1. Introduction

The q-analogues of generalized Fibonacci and Lucas polynomials were investigated by many
authors [3, 5, 7]. Carlitz [10] defined the q-Fibonacci polynomials by

φn+1 (a)− aφn (a) = qn−1φn−1 (a) (n > 1) , (1.1)

where φ1 (a) = 1, φ2 (a) = a.
The sequence of polynomials Sn(x, q) is defined by the recurrence relation

Sn+1 (x, q) = Sn (x, q) + xqn−2Sn−1 (x, q) (n ≥ 1) , (1.2)

where S0 (x, q) = a and S1 (x, q) = b. For a = 0 and b = 1, Sn (x; q) = Un−1
(
1; 0,−xq−1

)
,

Sn (x; q) is a special case Al-Salam and Ismail polynomials Un (x; a, b) introduced in [13]. Also
the sequence of polynomials Sn(x, q) is a special case Fn (x; s, q) which is studied by Cigler in
[7]. In particular, if we take x = 1, q → 1− in (1.2), we get the classical Fibonacci and Lucas
numbers for initial values a = 0, b = 1 and a = 2, b = 1 respectively.
q-Calculus started with L. Euler in the eighteenth century. q-Analogue of the binomial

coefficients play important role in number theory, combinatorics, linear algebra and finite
geometry. Now we mention some definitions of q-calculus [1]. Given value of q > 0, the
q-integer [n]q is defined by

[n]q =


1− qn

1− q
if q 6= 1

n if q = 1,

and the q-factorial [n]q! is defined by

[n]q! =

{
[n]q . [n− 1]q · · · [1]q if n = 1, 2, ...

1 if n = 0

for n ∈ N. The q−binomial coefficients are defined by[
n

k

]
q

=
[n]q!

[n− k]q! [k]q!
, n ≥ k ≥ 0
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with
[
n
0

]
q

= 1 and
[
n
k

]
= 0 for n < k. Note that the q-binomial coefficient satisfies the

recurrence equations [
n+ 1

k

]
q

= qk
[
n

k

]
q

+

[
n

k − 1

]
q

(1.3)

and [
n+ 1

k

]
q

=

[
n

k

]
q

+ qn−k+1

[
n+ 1

k − 1

]
q

. (1.4)

In [9] Clarke and et. al give a kind of the generalization of a Seidel matrix, and obtain some
properties by using the following relation:

a0n (x, q) = an (x, q) (n ≥ 0) ,

akn (x, q) = xqnak−1n (x, q) + ak−1n+1 (x, q) (k ≥ 1, n ≥ 0) .
(1.5)

Here (an (x, q)) is a sequence of elements in a commutative ring. We can write akn (x, q) in
terms of the initial sequence as

akn (x, q) =
k∑

i=0

(xqn)k−i
[
k

i

]
q

a0n+i (x, q) . (1.6)

Moreover
(
a0n (x, q)

)
is called the initial sequence and (an0 (x, q)) the final sequence of the q-

Seidel matrix. By using the Gauss inversion formula, we obtain relations between the initial
sequence and final sequence:

an0 (x, q) =
n∑

i=0

xn−i
[
n

i

]
q

a0i (x, q) , (1.7)

a0n (x, q) =
n∑

i=0

(−x)n−i q(
n−i
2 )
[
n

i

]
q

ai0 (x, q) . (1.8)

Define the generating functions as follows:

a (t) =
∑
n≥0

a0n (x, q) tn, a (t) =
∑
n≥0

an0 (x, q) tn (1.9)

and

A (t) =
∑
n≥0

a0n (x, q)
tn

[n]q!
, A (t) =

∑
n≥0

an0 (x, q)
tn

[n]q!
. (1.10)

Thus the generating functions of the initial and final sequences are related by following equa-
tions:

a (t) =
∑
n≥0

a0n (x, q)
tn

(xt; q)n+1

, (1.11)

A (t) = eq (xt)A (t) . (1.12)

Define (t; q)n = (1− t) (1− qt) . . .
(
1− qn−1t

)
and (t; q)∞ = limn→∞ (t; q)n. Then

eq (t) =
∑
n≥0

tn

[n]q!
=

1

((1− q) t; q)∞
. (1.13)

Also
1

(t; q)n+1

=

∞∑
k=0

[
n+ k

k

]
q

tk. (1.14)
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In this paper, we define a generalization of the q-Seidel matrix and obtain some properties
for the generalized q-Seidel matrix. Furthermore we consider the q-analogues of generalized
Fibonacci and Lucas polynomials Sn (t, q) and give several properties of the sequence of poly-
nomials Sn (t, q) by using the generalized q-Seidel matrix method.

2. The Generalized q-Seidel Matrix

Let (an (x, q)) be a given real or complex sequence. The generalized q−Seidel matrix asso-
ciated with

(
a0n (x, q)

)
is defined recursively by the formula

a0n (x, q) =an (x, q) (n ≥ 0) ,

akn (x, q) =xqn+2k−3ak−1n (x, q) + ak−1n+1 (x, q) (n ≥ 0, k ≥ 1) ,
(2.1)

where akn (x, q) represent the entry in the kth row and nth column.
We note that for q → 1− and x = 1, the q-Seidel matrix turns into the usual Euler-Seidel

matrix [2, 4, 6].

Lemma 2.1. Let
(
akn (x, q)

)
satisfy equation (2.1) with initial sequence

(
a0n (x, q)

)
. Then

akn (x, q) =
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]
q

a0n+i (x, q) . (2.2)

Proof. We use induction to prove the proposition. The equation clearly holds for k = 1. Now,
suppose that the equation is true for k. By (1.3) and (2.1) we have

ak+1
n (x, q) = xqn+2k−1akn (x, q) + akn+1 (x, q)

= xqn+2k−1
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]
q

a0n+i (x, q)

+
k∑

i=0

xk−iq(n+k−1)(k−i)
[
k

i

]
q

a0n+1+i (x, q)

=

k∑
i=0

xk+1−iq(n+k−1)(k+1−i)
[
k

i

]
q

a0n+i (x, q)

+
k+1∑
i=1

xk+1−iq(n+k−1)(k+1−i)
[
k

i− 1

]
q

a0n+i (x, q)

= xk+1q(n+k−1)(k+1)a0n (x, q)

+

k∑
i=1

xk+1−iq(n+k−1)(k+1−i)

{
qi
[
k

i

]
q

+

[
k

i− 1

]
q

}
a0n+i (x, q) + a0n+k+1 (x, q)

=
k+1∑
i=0

xk+1−iq(n+k−1)(k+1−i)
[
k + 1

i

]
q

a0n+i (x, q) .

Hence, the equation is true for n = k + 1, which completes the proof. �

If we take q → 1−, x = 1 for (2.2), we get the well-known formula for the classical Euler-
Seidel matrix [4].
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The first row and column of the generalized q-Seidel matrix are defined by the inverse
relation as in following corollary.

Corollary 2.2. Let a0n (x, q) and an0 (x, q) be the first row and column in the generalized q-
Seidel matrix. Then a0n (x, q) and an0 (x, q) have the inverse relation

an0 (x, q) =
n∑

i=0

xn−iq(n−2)(n−i)
[
n

i

]
q

a0i (x, q) (2.3)

and

a0n (x, q) =
n∑

i=0

(−x)n−i q
(n−i)(n−3+i)

2

[
n

i

]
q

ai0 (x, q) . (2.4)

Proposition 2.3. Let a0n (x, q) and an0 (x, q) be the first row and column in the generalized
q-Seidel matrix. Then a0n (x, q) and an0 (x, q) have the orthogonality relation

n∑
j=i

(−1)j−i q(n−2)(n−j)q
(j−i)(j−3+i)

2

[
n

j

]
q

[
j

i

]
q

= δni. (2.5)

Proof. We prove this by induction on n. A similar proof can be seen in [8, 11]. �

2.1. Generating Functions.

Proposition 2.4. Let

a (t) =
∞∑
n=0

a0n (x, q) tn

be the generating function of the initial sequence
(
a0n (x, q)

)
. Then the generating function of

the sequence (an0 (x, q)) is

a (t) =
∞∑
n=0

a0n (x, q) tn
∞∑
k=0

[
n+ k

k

]
q

(xt)k qk(k−2+n). (2.6)

Proof. Considering (2.3) we write

a (t) =

∞∑
n=0

(
n∑

i=0

xn−iq(n−2)(n−i)
[
n

i

]
q

a0i (x, q)

)
tn

=

∞∑
n,k=0

[
n+ k

k

]
q

xktn+kqk(k−2+n)a0n (x, q) .

Hence we obtain

a (t) =

∞∑
n=0

a0n (x, q) tn
∞∑
k=0

[
n+ k

k

]
q

(xt)k qk(k−2+n).

�

Proposition 2.5. Let

A (t) =

∞∑
n=0

a0n (x, q)
tn

[n]q!
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be the exponential generating function of the initial sequence
(
a0n (x, q)

)
. Then the exponential

generating function of the sequence (an0 (x, q)) is

A (t) =

∞∑
n=0

a0n (x, q)
tn

[n]q!

∞∑
k=0

qk(k−2+n) (xt)k

[k]q!
. (2.7)

Proof. The proof follows from equation (2.3). �

3. Applications of Generalized q−Seidel Matrices

In this section, we show that the generalized q-Seidel matrix is quite applicable for the
q-analogues of generalized Fibonacci and Lucas polynomials. First we give the relationship
between Sn+2k (x, q) and the initial sequence Sn (x, q) by using the generalized q-Seidel matrix.

Corollary 3.1. The q-analogues of generalized Fibonacci and Lucas polynomials satisfy the
following relation:

Sn+2k (x, q) =
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]
q

Sn+i (x, q) . (3.1)

Proof. Let a0n = Sn (x, q), n ≥ 0 be initial sequence. By using induction on k, (1.2) and (2.1),
we have

akn = Sn+2k (x, q) .

Using (2.2) and applying a0n = Sn (x, q) , we obtain

akn =
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]
q

Sn+i (x, q) .

This completes the proof. �

Corollary 3.2. We have

S2n (x, q) =
n∑

i=0

xn−iq(n−2)(n−i)
[
n

i

]
q

Si (x, q) , (3.2)

Sn (x, q) =
n∑

i=0

(−x)n−i q
(n−i)(n−3+i)

2

[
n

i

]
q

S2i (x, q) (3.3)

and

S2n+1 (x, q) =
n∑

i=0

xn−iq(n−1)(n−i)
[
n

i

]
q

Si+1 (x, q) . (3.4)

The following remark show that the well-known formulas [12] of Fibonacci numbers can be
easily seen by using the properties of q-analogues of generalized Fibonacci and Lucas polyno-
mials.

Remark 3.3. Setting a = 0, b = 1 and x = 1, q → 1− in (3.1), we get the following equation
of the Fibonacci numbers

Fn+2k =

k∑
i=0

(
k

i

)
Fn+i.

121



By taking a = 0, b = 1 and x = 1, q → 1− as a special case of the equations (3.2), (3.3) and
(3.4) we have the following identities for Fibonacci numbers:

F2n =
n∑

i=0

(
n

i

)
Fi,

Fn =
n∑

i=0

(−1)n−i
(
n

i

)
F2i,

F2n+1 =
n∑

i=0

(
n

i

)
Fi+1

respectively. Also it is easily obtain similar formulas for the Lucas numbers.

Proposition 3.4. The generating function of the polynomials Sn(t, q) is
∞∑
n=0

Sn (x, q) tn =
a+ (b− a) t

1− t− xq−1t2µt
, (3.5)

where µt is the Fibonacci operator which is µtf (t) = f (tq) for any given function f (t).

Proof. Let g (x) =
∞∑
n=0

Sn (x, q) tn. We need to show the following equation:

g (x)
(
1− t− xq−1t2µt

)
= a+ (b− a) t.

We have

g (x)
(
1− t− xq−1t2µt

)
= a+ bt+

∞∑
n=2

Sn (x, q) tn −
∞∑
n=0

Sn (x, q) tn+1 −
∞∑
n=0

Sn (x, q)xqn−1tn+2

= a+ bt− at+

∞∑
n=2

{
Sn (x, q)− Sn−1 (x, q)− xqn−3Sn−3 (x, q)

}
tn.

This completes the proof. �

Corollary 3.5. The generating function of S2n (x, q) is
∞∑
n=0

S2n (x, q) tn =
a+ (b− a) t

1− t− xq−1t2µt

∞∑
k=0

[
n+ k

n

]
q

(xt)k qk(k−2+n). (3.6)

Proof. If we want to obtain the generating function of S2n (x, q) by using equation (2.6), we
realize that by setting a0n (x, q) = Sn (x, q) in (2.1). We obtain an0 (x, q) = S2n (x, q). By
considering (2.6), we find

a (t) =
∞∑
n=0

an0 (x, q) tn =
∞∑
n=0

a0n (x, q) tn
∞∑
k=0

[
n+ k

n

]
q

(xt)k qk(k−2+n).

Therefore
∞∑
n=0

S2n (x, q) tn =
∞∑
n=0

Sn (x, q) tn
∞∑
k=0

[
n+ k

n

]
q

(xt)k qk(k−2+n).

From (3.5) we have
∞∑
n=0

S2n (x, q) tn =
a+ (b− a) t

1− t− xq−1t2µt

∞∑
k=0

[
n+ k

n

]
q

(xt)k qk(k−2+n).
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�

This corollary points out that the generating functions of the first row and column of the
generalized q-Seidel matrix are useful to obtain the generating function of S2n (x, q).
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