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Abstract. Suppose that I is a subset of a set U and that C is a collection of operations
f defined in U. Create a set S by these rules: every element of I is in S, and if x is in S,
then f(x) is in S for all f in C for which f(x) is defined. Then S “grows” in successive
generations. If I consists of a single number r then S can be regarded as a tree with root r.
We examine several examples, including these: (1) 1 ∈ S, and if x ∈ S then x + 1 ∈ S and
1/x ∈ S; (2) 1 ∈ S, and if x ∈ S then x + 1 ∈ S and 2x ∈ S; (3) 1 ∈ S, and if x ∈ S then
x+ 1 ∈ S, and if x 6= 0 then −1/x ∈ S; (4) 1 ∈ S, and if x ∈ S then x+ 1 ∈ S and

√
−1x ∈ S,

and if x 6= 0 then 1/x ∈ S. The first of these examples is the infinite Fibonacci tree, in which
every positive rational number occurs as a node.

1. Introduction

As early as 1619, Johannes Kepler created a tree of fractions using these rules: begin with
1/1, and thereafter, each node i/j has two descendants, (i+ j)/i and i/(i+ j). Kepler’s tree
[1, 3] can be recast by saying that 1 is present, and if x is present, then so are x + 1 and
1/(x+ 1). The tree starts with a single node which spawns 2 nodes (2 and 1/2), which spawn
4 nodes (3, 1/3, 3/2, 2/2), and so on, so that the nth generation has 2n nodes. Moreover,
every positive rational number occurs exactly once.

Now consider the set S defined by these rules: 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and
1/x ∈ S. Deleting duplicates as they occur leaves the infinite Fibonacci tree, represented in
Figure 1 (in Section 7) and discussed in Example 3.4. Another tree with Fibonacci connections
is given by the rules 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and 2x ∈ S, where duplicates are
deleted as they occur. This tree, which includes every positive integer, is represented by
Figure 2 and Corollary 2.2. A third tree, containing all the rational numbers, is given by the
rules 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and −1/x ∈ S; a fourth tree, containing all the
Gaussian rational numbers is given by the rules 1 ∈ S, and if x ∈ S, then x+1 ∈ S and ix ∈ S
and if x ∈ S and x 6= 0, then 1/x ∈ S.

The purpose of this paper is to discuss those four trees and others. Certain notations
will be helpful; e.g., a, b, c, d, e, f, g, h, k,m, n, r, s, t, u, v will denote integers, although f and
g will also be used for functions. In particular, suppose that f1(x) = (ax + b)/(cx + d) and
f2(x) = (ex + f)/(gx + h). For any initial x0, we have a set S defined by the rules x0 ∈ S,
and if x ∈ S, then f1(x) ∈ S and f2(x) ∈ S, and we shall refer to S not only as a set, but also
as a tree determined by the rules, with deletion of duplicates as they occur. The set (and
tree) is partitioned into generations g(n) defined inductively by g(1) = {x0} and

g(n) = {f1(x) : x ∈ g(n− 1)} ∪ {f2(x) : x ∈ g(n− 1)}\
n−1
∪
i=1

g(i). (1.1)

for n ≥ 2. Note that the generations are, by definition, pairwise disjoint. We are interested in
cases in which S includes every positive integer, or every positive rational number, etc. Also
of interest are the sizes |g(n)| of the generations, recurrence relations for |g(n)| and related
sequences, and limits.
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2. Multinacci Trees

Throughout this section, m ≥ 2 is an integer. Let S be the set defined by these rules:
1 ∈ S, and if x ∈ S, then x + 1 ∈ S and mx ∈ S. The generations are given by g(1) = {1}
and, following (1.1),

g(n) = {x+ 1 : x ∈ g(n− 1)} ∪ {mx : x ∈ g(n− 1)}\
n−1
∪
i=1

g(i).

Let x(n, i) be the number of numbers in g(n) that are congruent to i mod m. Then clearly
for all n ≥ 2,

|g(n)| = x(n, 0) + · · ·+ x(n,m− 1), (2.1)

x(n, 0) = |g(n− 1)| , (2.2)

x(n, i) = x(n− 1, i− 1) for 1 ≤ i ≤ m− 1. (2.3)

Theorem 2.1. The number of numbers in generation g(n) is given by

|g(n)| =


2n−1 if 1 ≤ n ≤ m− 1

2m−1 − 1 if n = m
2m − 2 if n = m+ 1

|g(n− 1)|+ · · ·+ |g(n−m)| if n ≥ m+ 2.

Proof: We begin with m = 2, for which |g(n)| is clearly as asserted for n = 1, 2, 3. For
n ≥ 4, each x in g(n − 1) yields 2x in g(n), each y in g(n − 2) yields 2y + 1 in g(n), and
the set of all such 2x and 2y + 1 contains no number in any g(i) for i ≤ n − 3. Therefore,
|g(n)| = |g(n− 1)|+ |g(n− 2)| , so that the proof for m = 2 is complete.

Suppose now thatm ≥ 3 and that 1 ≤ n ≤ m−1 and 2 ≤ k ≤ m−1. Then x(k−1,m−1) = 0,
so that by (2.2) and (2.3), x(k, 0) = |g(k − 1)| and

x(k, 1) + · · ·+ x(k,m− 1) = x(k − 1, 0) + · · ·+ x(k − 1,m− 1).

Consequently, by (2.1), |g(k)| = |g(k − 1)|+ |g(k − 1)|, which, starting with |g(1)| = 1, gives

|g(k)| = 2k−1. (2.4)

Next, suppose that n = m. Each of the 2n−2 numbers x in g(n− 1) yields x+ 1 and mx in
g(n). However, at least one of these is a duplicate of a number in a previous generation (i.e.,
g(i) for some i ≤ m− 2). In order to account for all possible duplicates, we consider cases:

Case 1: x+ 1 = y + 1 or mx = my for some y in a previous generation g(i). In this case,
x = y, contrary to g(m− 1) ∩ g(i) = ∅.

Case 2: mx = y + 1 for some y in a previous generation g(i), but clearly, no such g(i)
contains a number y congruent to m− 1 mod m.

Case 3: x + 1 = my for some y in a previous generation. Here, x is congruent to m − 1
mod m, which holds for exactly one number x in g(m− 1), namely m− 1. Therefore

|g(m)| = 2 · 2m−2 − 1 = 2m−1 − 1. (2.5)

Next, suppose that n = m+ 1. Each x in g(m) yields x+ 1 and mx in g(m+ 1), unless some
such x + 1 is also my for some y in some g(i) for i ≤ m, but we shall show that this is not
possible. The residues mod m of the numbers in g(2) are 2 and 0, so that the greatest and
next-to-greatest residues in successive generations from g(2) to g(m) is as shown here:

2→ 3→ 4→ · · · → m− 1

0→ 1→ 2→ · · · → m− 3→ m− 2.
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Thus, g(m) contains no number x congruent to m− 1 mod m. Consequently, no x+ 1, for x
in g(m), is a duplicate in the counting of numbers in g(m+ 1), so that

|g(m+ 1)| = 2m − 2. (2.6)

Finally, suppose that n ≥ m+ 2 ≥ 5. As an induction hypothesis, assume that

|g(n− 1)| = |g(n− 2)|+ · · ·+ |g(n−m− 1)| , (2.7)

where the initial case (n = m+ 2) follows directly from (2.4)-(2.6). Every y in g(n−m− 1)
yields ym in g(n−m), which yields ym+m−1 in g(n−1); conversely, every number congruent
to m− 1 in g(n− 1) descends from a number in g(n−m− 1). Therefore,

|g(n−m− 1)| = x(n− 1,m− 1).

Accordingly,

|g(n− 1)| = x(n− 1,m− 1) + |g(n− 1)| − |g(n−m− 1)| ,

so that by (2.7),

|g(n− 1)| = x(n− 1,m− 1) + |g(n− 2)|+ · · ·+ |g(n−m)| ,

and

2 |g(n− 1)| − x(n− 1,m− 1) = |g(n− 1)|+ |g(n− 2)|+ · · ·+ |g(n−m)| . (2.8)

Equations (2.1)-(2.3) imply

|g(n)| = x(n, 0) + · · ·+ x(n,m− 1)

= |g(n− 1)|+ x(n− 1,m− 1) + x(k − 1, 0) + · · ·+ x(k − 1,m− 1)

= |g(n− 1)|+ |g(n− 1)| − x(n− 1,m− 1),

so that by (2.8),

|g(n)| = |g(n− 1)|+ · · ·+ |g(n−m)| . �

Corollary 2.2. If m = 2, then |g(n)| = F (n), the nth Fibonacci number.

This corollary is simply a special case of Theorem 2.1, and the proof of the theorem shows
more: that g(n) consists of F (n− 1) even numbers and F (n− 2) odd numbers. See Figure
2 in Section 7.

To summarize, Theorem 2.1 shows that for m ≥ 3, the generation sizes satisfy the m-
multinacci recurrence relation an = an−1 + an−2 + · · · + an−m, with initial values
1, 2, . . . , 2m−2, 2m−1 − 1.

We thank the referee for noting that g(n) consists of the numbers whose base m represen-
tation has

(number of digits) + (sum of digits) = n+ 1. (2.9)

For example, for m = 4, the numbers in g(4) are 12, 9, 32, 6, 20, 17, 64; in base 4 these are
30, 21, 200, 12, 110, 101, 1000, for which the compositions of 5 indicated by (2.9) are

2 + 3, 2 + 3, 3 + 2, 2 + 3, 3 + 2, 3 + 2, 4 + 1.
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3. More Fibonacci-Related Trees

Corollary 2.2 describes a tree of integers satisfying |g(n)| = F (n); in this section, we con-
sider other trees of fractions whose generations have sizes that are Fibonacci numbers. We
begin with a lemma.

Lemma 3.1. Suppose that m ≥ 1. The greatest k for which k2 + 4km is a square is
(m− 1)2.

Proof: If k = (m − 1)2, then k2 + 4km = (m − 1)4 + 4(m − 1)2m = (m2 − 1)2. Now
suppose that k > (m− 1)2. Then

(k + 2m− 2)2 < k2 + 4km < (k + 2m)2,

so that if k2 + 4km is a square, then k2 + 4km = (k + 2m − 1)2. However, this implies
2k = (2m− 1)2, contrary to the fact that 2m− 1 is odd. �

Theorem 3.2. Suppose that k is a positive integer. Let S be the set defined by these
rules: 1 ∈ S, and if x ∈ S, then x + k ∈ S and k/x ∈ S. Partition S into generations g(n)
inductively: g(1) = {1}, and for n ≥ 2,

g(n) = {x+ k : x ∈ g(n− 1)} ∪ {k/x : x ∈ g(n− 1)}\
n−1
∪
i=1

g(i).

If k = 1, then |g(n)| = F (n) for n ≥ 1, and if k > 1, then |g(n)| = F (n+ 1) for n ≥ 1.

Proof: First, suppose that k = 1. Clearly |g(n)| = F (n) for n ≤ 2. Assume for arbitrary
n ≥ 2 that g(n) consists of F (n − 1) numbers x > 1 together with F (n − 2) numbers x ≤ 1.
Each of the former spawns x+ 1 and 1/x in g(n+ 1), and each of the others spawns the single
number x+ 1 in g(n+ 1). These numbers are distinct because the equation x+ 1 = 1/x has
no integer solution. Therefore, g(n+ 1) consists of 2F (n−1) +F (n−2) = F (n+ 1) numbers.

Next, suppose that k > 1. Clearly g(n) = F (n) for n ≤ 2. Assume for arbitrary n ≥ 2
that g(n) consists of F (n) numbers x > k together with F (n− 1) numbers x ≤ k. Each of the
former spawns x + k and k/x in g(n + 1), and each of the others spawns the single number
x + k in g(n + 1). To confirm that these numbers are distinct, suppose that x + k = k/x
for some x. Then x2 + kx− k = 0, so that k2 + 4k must be a square, contrary to Lemma 1.
Therefore, g(n+ 1) consists of 2F (n) + F (n− 1) = F (n+ 2) numbers. �

Consider the rule “if x ∈ S, then x+ k ∈ S” in the statement of Theorem 3.2. If this rule
is changed to “if x ∈ S, then x+ 1 ∈ S” and the other rule remains “if x ∈ S, then k/x ∈ S”,
then the resulting tree, for k > 1, has generation sizes |g(n)| which form a sequence not closely
related to the Fibonacci sequence; indeed, the sequence appears to be not linearly recurrent.
Nevertheless, the tree S contains every positive rational number, in accord with the following
theorem.

Theorem 3.3. Suppose that k is a positive integer. Let S be the set defined by these
rules: 1 ∈ S, and if x ∈ S, then x+ 1 ∈ S and k/x ∈ S. Then S is the set of positive rational
numbers.

Proof: Clearly, every positive rational b/1 ∈ S. For arbitrary d ≥ 1, assume that if
u/v is a reduced positive rational with v ≤ d, then u/v ∈ S. Suppose that b/(d + 1) is a
reduced positive rational. As a first case, suppose that b ≤ d. By the induction hypothesis,
(d + 1)/b ∈ S and, by the same hypothesis, the number x = k(d + 1)/b ∈ S. Consequently,
k/x ∈ S; i.e., b/(d + 1) ∈ S. To cover all remaining cases, suppose that b > d + 1, so that
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b = (d+ 1)q + r, where 0 ≤ r < d+ 1. Then b/(d+ 1) = q + r/(d+ 1). As in the first case,
r/(d+ 1) ∈ S. Now q applications of x→ x+ 1 show that b/(d+ 1) ∈ S. �

Example 3.4 Taking k = 1 in Theorem 3.2 and Theorem 3.3 gives the infinite Fibonacci
tree represented by Figure 1. In the following array, row n shows the numbers in generation
g(n) arranged in decreasing order:

1
2
3 1/2
4 3/2 1/3
5 5/2 4/3 2/3 1/4
6 7/2 7/3 5/3 5/4 3/4 2/5 1/5
7 9/2 10/3 8/3 9/4 7/4 7/5 6/5 4/5 3/5 3/7 2/7 1/6

Note that the F (n) numbers in row n ≥ 3, taken in order, consist of F (n−1) numbers x+1
from x in row n− 1, followed by F (n− 2) numbers 1/(x+ 1) from x in row n− 2.

Not every tree having |g(n)| = F (n) for n ≥ 1 is given by Corollary 2.2 and Example 3.4,
as indicated by the following example.

Example 3.5. Let S be the tree defined by these rules: 1 ∈ S, and if x ∈ S, then 1/x ∈ S
and 1/(x+ 1) ∈ S. Inductively, for n ≥ 2, g(n) consists of F (n− 2) numbers ≥ 1, each of the
form x+ 1 for x in g(n− 2), together with F (n− 1) numbers < 1, each of the form 1/(x+ 1)
for x in g(n− 1). Hence, |g(n)| = F (n). It is easy to prove by induction that every fraction
u/v in S is reduced to lowest terms and that if v = 1, then u is the only integer in g(2u− 1).
Next, assume for arbitrary v ≥ 1 that every fraction a/b with b ≤ v is in S, and suppose that
u/(v + 1) is a fraction. If u < v + 1, then by the induction hypothesis, (v + 1)/u ∈ S, so
that the rule x → 1/x applies, and u/(v + 1) ∈ S. On the other hand, if u > v + 1, write
u = (v + 1)q + r with 0 ≤ r < v + 1, so that (v + 1)/r ∈ S. Then r/(v + 1) ∈ S. Let g(n) be
the generation containing r/(v + 1). Then u/(v + 1) = r/(v + 1) + q ∈ g(n+ 2q). Therefore,
S contains every positive rational number.

Example 3.6. We have already seen examples of trees in which all the positive rational
numbers occur. Consider next the tree S1 given by the rules 1 ∈ S1, and if x ∈ S1, then
x + 4 ∈ S1 and 12/x ∈ S1. It is easy to see that the numbers 2 and 3 are missing from S1.
Starting another tree, S3, with 3 and the same iterative membership requirements leads to a
tree that includes 1 (in g(5)) and hence contains S1 as a subtree, as in Figure 3. Regarding
S3, we observe that all positive integers not congruent to 2 mod 4 occur, that |g(n)| = F (n+1)
for n ≥ 1, and that all fractions, as generated, are in reduced form. Since 2 is missing, it is
natural to examine the tree S2 having 2 as root, where, again, if x ∈ S2, then x+ 4 ∈ S2 and
12/x ∈ S2, as in Figure 4. The method of proof for Example 3.5 can be used to prove that
S2 ∪ S3 includes every positive rational number.

Example 3.7. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S, then
2x ∈ S and 1 − x ∈ S. To see that every integer h is in S, note first that this holds for
|h| ≤ 2, and assume for arbitrary h ≥ 2 that if |m| < h, then m ∈ S. Now suppose that m
satisfies |m| = h > 2. If m is even, write m = 2k, so that k = m/2, whence |k| < |m| = h, so
that k ∈ S, whence m ∈ S. On the other hand, if m = 2k + 1, then k = (m − 1)/2, whence
|k| < |m| = h, so that −k ∈ S; therefore −2k ∈ S, so that 1−(−2k), which is m, is in S. Thus,
S contains every integer. Moreover, |g(n)| = F (n) for n ≥ 3. Conjecture: every generation
g(n) contains ±F for some Fibonacci number F.
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Example 3.8. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S then
1 + 1/x ∈ S and 1/x ∈ S. An easy induction argument shows that in arbitrary g(n), for
n > 2, each node x greater than 1 begets a new node in (0, 1) and a new node in (1,∞), and
each node x less than 1 begets a single new node in (1,∞). Thus, g(n) consists of F (n − 1)
nodes in (1,∞) and F (n − 2) nodes in (0, 1), leading to |g(n)| = F (n) for n ≥ 1. To see
that every positive rational number is in S, the following lemma is useful: if x ∈ S and
x > 1 then x − 1 ∈ S; to prove this, write x = 1 + 1/u, u ∈ S; then x − 1 = 1/u, which is
in S. Clearly every b/1 is in S; suppose that b/d is an arbitrary fraction in reduced terms,
with d > 1. By the lemma, we may assume that b < d, so that by induction hypothesis,
d/b ∈ S. Consequently, b/d ∈ S. A final observation is that F (n+ 1)/F (n) ∈ g(n), and that
the numerator and denominator of this fraction are maximal for fractions in g(n).

Example 3.9. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S, then
x/(x+ 1) ∈ S and 1/x ∈ S. For every n, the set g(n) has F (n− 1) numbers < 1 and F (n− 2)
numbers ≥ 1, so that |g(n)| = F (n) for all n. An induction proof on the size of denominators
establishes that S contains every positive rational number. Another way to obtain this tree
is to apply the reciprocation mapping x→ 1/x to each node in the tree at Example 3.4.

4. All the Rational Numbers

Previous examples include trees which contain every positive integer, or every integer, or
every positive rational number. We turn now to trees which contain every rational number.

Example 4.1. Decree that 0 ∈ S and that if x ∈ S, then x + 1 ∈ S and if x + 1 6= 0
then −1/(x + 1) ∈ S. Then g(1) = {0} and for all other generations, g(n + 1) consists of
F (n) negative numbers and F (n) positive numbers, so that |g(n+ 1)| = 2F (n). A proof
that S contains every rational number depends on the method for Example 3.8: first, clearly
every positive integer is in S; then inductively, every 1/n and −n − 1 are in S, because
1/n = f1(f2(1/n)) and −n−1 = f2(f2(1/n)), where f1(x) = x+1 and f2(x) = −1/(x+1). The
rest of the proof follows by induction on the size of denominators, together with reciprocation
and the fact that if x ∈ S, then x − 1 = f2(f2(f1(f2(f2(x))))) ∈ S. Every negative integer is
a terminal node in S. The F (n) positive numbers in g(n + 1) consist of F (n − 1) numbers
x+ 1 from x in g(n), together with F (n− 2) numbers x/(x+ 1) from x in g(n− 1); the F (n)
negative numbers in g(n+ 1) are the negative reciprocals of the positive numbers in g(n+ 1).

Example 4.2. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S then
x + 1 ∈ S, and if x ∈ S and x 6= 0, then −1/x ∈ S. A proof that S contains every rational
number is similar to the proof for Example 4.1; here, the corresponding lemma, that if x ∈ S
then x − 1 ∈ S, stems from the fact that if f1(x) = x + 1 and f2(x) = −1/x, then x − 1 =
f2(f1(f2(f1(f2(x))))). For n ≥ 1, let S(n, i) be the set of nodes in g(n) that have i offspring in
n−1
∪

h=1
g(h); e.g., S(n, 0) counts terminal nodes, and S(n, 2) counts nodes that beget 2 new nodes.

The sequence (S(n, i)) satisfies the recurrence a(n) = a(n − 1) + a(n − 3) for n ≥ 7, so that
the sequence (|g(n)|) = (1, 2, 3, 3, 5, 7, 10, 15, 22, . . .) satisfies |g(n)| = |g(n− 1)|+ |g(n− 3)| for
n ≥ 7.

Example 4.3. Here, we show another way to generate the set S of Example 4.2, but in a
more general manner. Suppose that m ≥ 3, and define hm(n) = {n} for n = 1, 2, . . . ,m and

hm(n) = {x+ 1 : x ∈ hm(n− 1)} ∪ {x/(x+ 1) : x ∈ hm(n−m)}, Sm =
∞
∪

n=1
hm(n)
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for n ≥ 4. The now familiar proof by “denominator induction” shows that Sm is the set of
positive rational numbers, and clearly, |hm(n)| = |hm(n− 1)| + |hm(n− 3)| for n ≥ m + 1,
with |hm(n)| = 1 for n ≤ m. To obtain the numbers in the set S of Example 4.2, let
g(1) = h3(1) = {1}, g(2) = {−1, 2}, g(3) = {−1/2, 0, 3}, and for n ≥ 4, let g(n) be the set of
numbers in h3(n) together with −1/x for each x in h3(n− 1). The array having g(n) as row
n, consisting of all the rational numbers, has these first six rows:

1
−1 2
−1/2 0 3
−1/3 1/2 4
−2 −1/4 2/3 3/2 5
−3/2 −2/3 −1/5 3/4 5/3 5/2 6

Example 4.4. As a generalization of Example 4.2, suppose that m ≥ 2 and that “−1/x ∈
S” is replaced by “−m/x ∈ S”. Then S contains every rational number.

5. Limits

Suppose that S is given by these rules: 1 ∈ S, and if x ∈ S, then

ax+ b

cx+ d
∈ S and

ex+ f

gx+ h
∈ S.

All the previously mentioned trees are special cases of S; e.g., the infinite Fibonacci tree
(as in Example 3.4) is given by (a, b, c, d) = (1, 1, 0, 1) and (e, f, g, h) = (0, 1, 1, 0). When S
includes all the positive rationals, every convergent sequence of rationals can be identified with
a sequence of nodes in S. If the nodes lie in a single path, their limit is of interest. In order to

study such paths, call an edge of the form x→ ax+ b

cx+ d
an up-edge, denoted by U, and an edge

of the form x → ex+ f

gx+ h
a down-edge, denoted by D. An up-edge followed by a down-edge

corresponds to

x→ ax+ b

cx+ d
→ (ae+ cf)x+ be+ df

(ag + ch)x+ bg + dh
=

(
α β
γ δ

)(
x
1

)
, (5.1)

where (
α β
γ δ

)
=

(
e f
g h

)(
a b
c d

)
and a down edge followed by an up-edge corresponds to

x→ ex+ f

gx+ h
→ (ae+ bg)x+ af + bh

(ce+ dg)x+ cf + dh
=

(
α′ β′

γ′ δ′

)(
x
1

)
, (5.2)

where (
α′ β′

γ′ δ′

)
=

(
a b
c d

)(
e f
g h

)
.

In (5.1) and (5.2), the matrix product notation has the usual meaning but also serves as a
useful way to represent the indicated fraction. An infinite path of the form UDUDUD . . .
is a zigzag path. Call nodes of the form (5.1) upper nodes and those of the form (5.2) lower
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nodes. We shall see that under suitable conditions, the upper nodes converge and the lower
nodes converge. In order to state the conditions, let

∆ = (ae− dh+ cf − bg)2 + 4(be+ df)(ag + ch),

and deem S regular if ∆ 6= 0, ag + ch 6= 0 and ce + dg 6= 0, where a, b, c, d, e, f, g are all
nonnegative. A first theorem about convergence along paths in S follows.

Theorem 5.1: Suppose that path p is a zigzag graph in a regular tree S and that the
limits of the upper nodes and lower nodes on p exist. The limits are, respectively,

ae− dh+ cf − bg +
√

∆

2(ag + ch)
and

ae− dh− cf + bg +
√

∆

2(ce+ dg)
. (5.3)

Proof: We begin with upper nodes, for which the limit, if it exists, is given by iterating
the mapping (5.1). Let p be a zigzag path UDUDUD . . . . Then the node given by x(UD)n

has the form (
αn βn
γn δn

)(
x
1

)
=

(
α β
γ δ

)n(
x
1

)
, (5.4)

so that (
αn+1 βn+1

γn+1 δn+1

)(
x
1

)
=

(
α β
γ δ

)(
α β
γ δ

)n(
x
1

)
,

or equivalently,

αn+1x+ βn+1

γn+1x+ δn+1
=

(ααnx+ βγn)x+ αβn + βδn
(γαnx+ δγn)x+ γβn + δδn

. (5.5)

Let u = lim
n→∞

αn/γn, v = lim
n→∞

βn/γn, w = lim
n→∞

δn/γn. Taking limits in (5.5) gives

ux+ v

x+ w
=

(αu+ β)x+ αv + βw

(γu+ δ)x+ γv + δw
.

Cross-multiplying, collecting coefficients of x2, x, 1, and regarding x as an indeterminate, we
find u2γ + u(δ − α)− β = 0 and v2γ + vw(δ − α)− βw2 = 0, so that

u = v/w = (α− δ ±
√

∆)/2γ. (5.6)

The hypothesis that a, b, c, d, e, f, g are all nonnegative forces u to be the greater of the two
possibilities, that is,

u =
v

w
=
α− δ +

√
(α− δ)2 + 4βγ

2γ
. (5.7)

The limit is then simply u, since, from uw = v, we have ux+uw = ux+v, so that (ux+v)/(x+
w) = u. Now substituting α = ea+ fc, β = eb+ fd, γ = ga+ hc, δ = gh+ hd into (5.7) gives
(5.3). A proof for lower nodes following the same steps finds a discriminant (α′−δ′)2+4β′γ′ =
(α− δ)2 + 4βγ. Of course, by (5.2), the second limit in (5.3) is (eu+ f)/(gu+ h). �

Limits for selected choices of a, b, c, d, e, f, g, h are shown below. The first two rows match
the infinite Fibonacci tree (Example 3.4) and the Kepler tree of fractions (Section 1).
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a, b, c, d e, f, g, h (UD)∞ (DU)∞

1, 1, 0, 1 0, 1, 1, 0 (−1 +
√

5)/2 (1 +
√

5)/2

1, 1, 0, 1 0, 1, 1, 1 −1 +
√

2
√

2

1,−1, 0, 1 1, 0, 1, 5 (−3 +
√

5)/2 (−5 +
√

5)/2

1,−1, 0, 1 1, 0, 1, 6 −2 +
√

3 −3 +
√

3
2, 1, 0, 1 0, 1, 1, 0 1/2 2

3, 1, 0, 1 0, 1, 1, 0 (−1 +
√

13)/6 (1 +
√

13)/2

1, 2, 1, 1 0, 1, 1, 0 (−1 +
√

5)/2 (1 +
√

5)/2

1, 3, 1, 1 0, 1, 1, 0 −1 +
√

2 1 +
√

2

1, 3, 2, 1 0, 1, 1, 0 (−1 +
√

5)/2 (1 +
√

5)/2

2, 5, 3, 1 0, 1, 1, 0 (−1 +
√

3)/2 1 +
√

3

Limits other than those indicated by (UD)∞ and (DU)∞ are also of interest. Consider an
infinite path p of the form Uk1DUk2D · · ·UkmD · · · in the infinite Fibonacci tree. Clearly,
the nodes of p converge if and only if the sequence (ki) is bounded. Assuming (ki) bounded,
we now study limits along periodic paths—where a period is a finite branch of the form B =
Uk1DUk2D · · ·UkmD, and the periodic path is the infinite concatenation BBB · · · , denoted
by B∞.

Theorem 5.2. Suppose that f(x) = (αx + β)/(γx + δ), where α 6= 0, γ 6= 0, and
(α−δ)2+4βγ > 0. Define f1(x) = f(x) and (fn(x) = f(fn−1(x)) for n ≥ 2. Then lim

n→∞
fn(x) =

(v − δ)/γ, where v is an eigenvalue of

(
α β
γ δ

)
.

Proof: Define (αn, βn, γn, δn) as in (5.4), so that (7) and (5.6) hold, which is to say that
the number u = lim

n→∞
fn(x) is one of the two numbers

u1 =
α− δ +

√
(α− δ)2 + 4βγ

2γ
, u2 =

α− δ −
√

(α− δ)2 + 4βγ

2γ
.

The eigenvalues of

(
α β
γ δ

)
are

v1 =
α+ δ +

√
(α− δ)2 − 4(αδ − βγ)

2γ
, v2 =

α+ δ −
√

(α− δ)2 − 4(αδ − βγ)

2γ
.

Thus, if u = u1, then u = (v1 − δ)/γ, and if u = u2, then u = (v2 − δ)/γ. �

Returning to any suitable choice of a, b, c, d, e, f, g, h, let U =

(
a b
c d

)
and D =

(
e f
g h

)
;

that is, f1(x) = (ax+ b)/(cx+ d) and f2(x) = (ex+ f)/(gx+ h). Then

fk11 f2f
k2
1 f2 · · · fkm1 f2(x) = (αx+ β)/(γx+ δ), (5.8)

where (
α β
γ δ

)
= B = Uk1DUk2D · · ·UkmD, (5.9)

Therefore, Theorem 5.2 applies, so that the limit along B∞, starting at any node x in S, is
(v − δ)/γ, where v is an eigenvalue of B. Next, we show the connection between such a limit
and its continued fraction as determined by B.
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Corollary 5.3. Let S be the infinite Fibonacci tree given by (a, b, c, d, e, f, g, h) =
(1, 1, 0, 1, 0, 1, 1, 0). Let B∞ be the infinite path formed by concatenating the finite path
B = Uk1DUk2D · · ·UkmD, represented by the matrix in (5.9), and let u = lim

n→∞
fn(x). Then

u = [0, km, km−1, . . . , k1].

Proof: The assertion follows from the fact that left multiplication

(
α β
γ δ

)(
α β
γ δ

)n

matches attaching [km, km−1, . . . , k1] at the end of the continued fraction consisting of n copies
of [km, km−1, . . . , k1].

Example 5.4. In the infinite Fibonacci tree of Corollary 5.3, let B = UUDUUUDUD,
so that (k1, k2, k3) = (2, 3, 1). By Corollary 5.3, lim

n→∞
fn(x) = [0, 1, 3, 2] = (−3 +

√
37)/4.

6. Gaussian Fractions

In this section, the set (or tree) S is given by these rules: 1 ∈ S, and if x ∈ S, then
x + 1 ∈ S and ix ∈ S, and if x 6= 0, then 1/x ∈ S. We shall prove that S contains every
Gaussian rational number; that is, every number (a+ bi)/(c+ di), where c2 + d2 > 0.

Lemma 6.1. Suppose that b, c, d are integers. If any one of the numbers (b + ci)/d,
(bi− c)/d, (−b− ci)/d, (bi+ c)/d is in S, then the other three are also in S.

Proof: Iterating the rule that if x ∈ S, then ix ∈ S shows that ix, −x, and −ix are
in S. �

Lemma 6.2. If x ∈ S, then x− 1 ∈ S.

Proof: If x ∈ S, then by Lemma 6.1, −x ∈ S. Consequently, −x + 1 ∈ S, so that
x− 1 ∈ S by Lemma 6.1. �

Lemma 6.3. If x ∈ S and a+ bi is a Gaussian integer, then x+ a+ bi ∈ S.

Proof: Suppose that x ∈ S and that a is a real integer. If a > 0, then x → x + 1 →
x + 2 → · · · → x + a are in S; if a < 0, then x → x − 1 → x − 2 → · · · → x − a are in
S, by Lemma 6.2. So, we have x + a in S for every integer a. Suppose now that b is an
integer. Then −i(x+ a) ∈ S, by Lemma 6.1, whence −ix− ia+ b ∈ S, by Lemma 6.3. Then
i(−ix− ia+ b) ∈ S, which is to say that x+ a+ bi ∈ S. �

Theorem 6.4. Every Gaussian rational number (a+ bi)/(c+ di) is in S.

Proof: 1 ∈ S, so that −1 ∈ S by Lemma 6.1. Then 0 ∈ S, by rule 1, whence a + bi ∈ S
for every Gaussian integer a + bi. Now suppose that w/z is an arbitrary Gaussian rational,
where w and z are Gaussian integers and |z| is least possible. If |z| = 1, then w is a Gaussian
integer, so that w/z ∈ S. Assume then, that w/z /∈ S. Then there is a least integer δ > 1 for
which there is a Gaussian rational w′/z′ such that |z′| = δ and w′/z′ /∈ S. We may and do
assume that w′ = w and z′ = z. By the division algorithm [2], there exist Gaussian integers q
and r such that w = qz + r, where |r| < |z| . Then w/z = q + r/z. If r/z ∈ S, then w/z ∈ S,
by Lemma 6.3, a contradiction. On the other hand, if r/z /∈ S, then z/r ∈ S since |r| < |z| .
But then r/z ∈ S, another contradiction. Therefore, w/z ∈ S. �

We conclude this section with a tree of Gaussian integers.
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Example 6.5. Let S be the tree generated by these rules: 0 ∈ S, and if x ∈ S then
x + 1 ∈ S and ix ∈ S. Iterating the mapping x → x + 1 shows that every positive integer n
is in S. Then in, −n, and −in are in S, so that 0 = −1 + 1 ∈ S, and b′i+ 1, b′i+ 2, b′i+ 3, ...
are in S for every integer b′. For each of these numbers b′i + c, the number −b′i − c is in S,
so that, in conclusion, S includes every Gaussian integer a+ bi. For n ≥ 1, let S(n, i) be the

set of nodes in g(n) that have i offspring in
n−1
∪

h=1
g(h); e.g., S(n, 0) counts terminal nodes, and

S(n, 2) counts nodes that beget 2 new nodes. We conjecture that S(n, 0) = n− 5 for n ≥ 5,
that S(n, 1) = 2n− 7 for n ≥ 4, and that S(n, 2) = n− 1 for n ≥ 1, so that, if the conjectures
are true, then the sequence (|g(n)|) = (1, 1, 2, 4, 7, 11, 15, 19, 23, . . .) satisfies |g(n)| = 4n − 13
for n ≥ 5.

7. Figures
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5�2
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7�2

2�5
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Figure 1. x→ x+ 1, x→ 1/x; Example 3.4

146 VOLUME 52, NUMBER 5



THE INFINITE FIBONACCI TREE AND OTHER TREES ...
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Figure 2. x→ x+ 1, x→ 2x; Theorem 2.1
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Figure 3. x→ 1/x, x→ 1/(x+ 1); Example 3.5
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3

7

4

11
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8

15

12�11

40�7

12

3�2
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4�5

56�11

68�7

21�10

16

1

11�2

Figure 4. x→ x+ 4, x→ 12/x, from 3; Example 3.6
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Figure 5. x→ x+ 4, x→ 12/x; from 2; Example 3.6
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Figure 6. x→ x+ 1, x→ −1/(x+ 1); Example 4.1

8. Concluding Remarks

In many of the foregoing trees of rational numbers, the numbers in g(n) occur as “already
reduced” fractions This observation leads to the question of conditions on a, b, c, d under which
the numbers in g(n) given by (1.1) are reduced fractions; i.e., for each x = u/v in g(n − 1),
the integers au + bv and cu + dv in the fraction (au + bv)/(cu + dv) are relatively prime. It
is easy to prove that one such condition (which holds for many of the trees considered in this
paper) is that ∣∣∣∣ a b

c d

∣∣∣∣ = ±1.

Examples in which the fractions are not automatically reduced are given by Theorem 3.3 with
k > 1. A number of the trees are represented in the Online Encyclopedia of Integer Sequences
[3]; for Kepler’s tree, see A020651, and for a list of others, see the Comments section at
A226080. We conclude with three representative Mathematica (version ≥ 7) programs which
may be useful for further research.

Program 1. All the positive rational numbers, generated as in Figure 1, Ex-
ample 3.4, and A226080

z=10;g[1]={1};g[2]={2};g[3]={3,1/2};

d[s_,t_]:=Part[s,Sort[Flatten[Map[Position[s,#]&,Complement[s,t]]]]];

n=3;While[n<=z,n++;g[n]=d[Riffle[g[n-1]+1,1/g[n-1]],g[n-2]]];

Table[g[n],{n,z}]
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Program 2. All the rational numbers, generated as in Example 4.1, with a ListPlot
of the 20th generation

g[1]= {0};f1[x_]:=x+1;f2[x_]:=-1/(x+1);h[1]=g[1];

b[n_]:=b[n]=Union[f1[g[n-1]],f2[g[n-1]]];

h[n_]:=h[n]=Union[h[n-1],g[n-1]];

g[n_]:=g[n]=Complement[b[n],Intersection[b[n],h[n]]]

Table[g[n], {n,12}]

ListPlot[g[20]]

Program 3. All the Gaussian rationals, generated as in Theorem 6.4, with
positions of real integers

Off[Power::infy];x= {0};

Do[x=DeleteDuplicates[

Flatten[Transpose[{x,x+1,1/x,I*x}/.ComplexInfinity-> 0]]

], {6}];x

On[Power::infy];

t1=Flatten[Position[x, _?(IntegerQ[#] && NonNegative[#]&)]] (*A233694*)

t2=Flatten[Position[x, _?(IntegerQ[#] && Negative[#]&)]] (*A233695*)

Union[t1,t2] (*A233696*)
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