BALANCING-LIKE SEQUENCES ASSOCIATED WITH INTEGRAL STANDARD DEVIATIONS OF CONSECUTIVE NATURAL NUMBERS

G. K. PANDA AND A. K. PANDA

ABSTRACT. The variance of first n natural numbers is $\frac{n^2-1}{12}$ and is a natural number if n is odd, n > 1 and is not a multiple of 3. The values of n corresponding to integral standard deviations constitute a sequence behaving like the sequence of Lucas-balancing numbers and the corresponding standard deviations constitute a sequence having some properties identical with balancing numbers. The factorization of the standard deviation sequence results in two other interesting sequences sharing important properties with the two original sequences.

1. INTRODUCTION

The concept of balancing numbers was first given by Behera and Panda [1] in connection with the Diophantine equation $1+2+\cdots+(n-1) = (n+1)+(n+2)+\cdots+(n+r)$, wherein, they call *n* a balancing number and *r* the balancer corresponding to *n*. The n^{th} balancing number is denoted by B_n and the balancing numbers satisfy the binary recurrence $B_{n+1} = 6B_n - B_{n-1}$ with $B_0 = 0$ and $B_1 = 1$ [1]. In [3], Panda explored many fascinating properties of balancing numbers, some of them are similar to the corresponding results on Fibonacci numbers, while some others are more exciting.

A detailed study of balancing and some related number sequences is available in [5]. In a latter paper [4], as a generalization of the sequence of balancing numbers, Panda and Rout studied a class of binary recurrences defined by $x_{n+1} = Ax_n - Bx_{n-1}$ with $x_0 = 0$ and $x_1 = 1$ where A and B are any natural numbers. They proved that when B = 1 and $A \notin \{1, 2\}$, sequences arising out of these recurrences have many important and interesting properties identical to those of balancing numbers. We, therefore, prefer to call this class of sequences as balancing-like sequences.

For each natural number n, $8B_n^2 + 1$ is a perfect square and $C_n = \sqrt{8B_n^2 + 1}$ is called a Lucas-balancing number [5]. We can, therefore, call $\{C_n\}$, the Lucas-balancing sequence. In a similar manner, if x_n is a balancing-like sequence with $kx_n^2 + 1$ is a perfect square for some natural number k and for all n and $y_n = \sqrt{kx_n^2 + 1}$, we call $\{y_n\}$ a Lucas-balancing-like sequence.

Khan and Kwong [2] called sequences arising out of the above class of recurrences corresponding to B = 1 as generalized natural number sequences because of their similarity with natural numbers with respect to certain properties. Observe that, the sequence of balancing numbers is a member of this class corresponding to A = 6, B = 1. In this paper, we establish the close association of another sequence of this class to an interesting Diophantine problem of basic statistics.

The variance of the real numbers x_1, x_2, \dots, x_n is given by $\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$, where $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ is the mean of x_1, x_2, \dots, x_n . Using the above formula, it can be checked that the variance of first n natural numbers (and hence the variance of any n consecutive natural numbers) is $s_n^2 = \frac{n^2 - 1}{12}$. It is easy to see that this variance is a natural number if and only if n is odd but

THE FIBONACCI QUARTERLY

not a multiple of 3. Our focus is on those values of n that correspond to integral values of the standard deviation s_n . Observe that for some N, s_N is a natural number say, $s_N = \sigma$ if $N^2 - 1 = 12\sigma^2$ which is equivalent to the Pell's equation $N^2 - 12\sigma^2 = 1$. The fundamental solution corresponds to $N_1 = 7$ and $\sigma_1 = 2$. Hence, the totality of solutions is given by

$$N_k + 2\sqrt{3}\sigma_k = (7 + 4\sqrt{3})^k; k = 1, 2, \cdots.$$
(1.1)

This gives

$$N_k = \frac{(7+4\sqrt{3})^k + (7-4\sqrt{3})^k}{2} \tag{1.2}$$

and

$$\sigma_k = \frac{(7+4\sqrt{3})^k - (7-4\sqrt{3})^k}{4\sqrt{3}}.$$
(1.3)

Because (N_k, σ_k) is a solution of the Pell's equation $N^2 - 12\sigma^2 = 1$, both N_k and σ_k are natural numbers for each k.

2. RECURRENCE RELATIONS FOR N_k AND σ_k

In the last section, we obtained the Binet forms for N_k and σ_k where σ_k is the standard deviation of N_k consecutive natural numbers. Notice that the standard deviation of a single number is zero and hence we may assume that $N_0 = 1$ and $\sigma_0 = 0$, and indeed, from the last section, we already have $N_1 = 7$ and $\sigma_1 = 2$. Observe that $u_n = (7+4\sqrt{3})^n$ and $v_n = (7-4\sqrt{3})^n$ both satisfy the binary recurrences

$$u_{n+1} = 14u_n - u_{n-1}, v_{n+1} = 14v_n - v_{n-1};$$

hence, the linear binary recurrences for both $\{N_k\}$ and $\{\sigma_k\}$ are given by

$$N_{k+1} = 14N_k - N_{k-1}; N_0 = 1, N_1 = 7$$

and

$$\sigma_{k+1} = 14\sigma_k - \sigma_{k-1}; \sigma_0 = 0, \sigma_1 = 2.$$

The first five terms of both sequences are thus $N_1 = 7, N_2 = 97, N_3 = 1351, N_4 = 18817, N_5 = 262087$ and $\sigma_1 = 2, \sigma_2 = 28, \sigma_3 = 390, \sigma_4 = 5432, \sigma_5 = 75658$. Using the above binary recurrences for N_k and σ_k , some useful results can be obtained. The following theorem deals with two identities in which N_k and σ_k behave like hyperbolic functions.

Theorem 2.1. For natural numbers k and l, $\sigma_{k+l} = \sigma_k N_l + N_k \sigma_l$ and $N_{k+l} = N_k N_l + 12 \sigma_k \sigma_l$.

Proof. Since the identity

$$N_k + 2\sqrt{3}\sigma_k = (7 + 4\sqrt{3})^k$$

holds for each natural number k, it follows that

$$N_{k+l} + 2\sqrt{3}\sigma_{k+l} = (7 + 4\sqrt{3})^{k+l} = (7 + 4\sqrt{3})^k (7 + 4\sqrt{3})^l$$
$$= (N_k + 2\sqrt{3}\sigma_k)(N_l + 2\sqrt{3}\sigma_l)$$
$$= (N_k N_l + 12\sigma_k \sigma_l) + 2\sqrt{3}(\sigma_k N_l + N_k \sigma_l)$$

Comparing the rational and irrational parts, the desired follows.

The following corollary is a direct consequence of Theorem 2.1

Corollary 2.2. If $k \in N$, $\sigma_{k+1} = 7\sigma_k + 2N_k$, $N_{k+1} = 7N_k + 24\sigma_k$, $\sigma_{2k} = 2\sigma_k N_k$, $N_{2k} = N_k^2 + 12\sigma_k^2$.

Theorem 2.1 can be used for the derivation of another similar result. The following theorem provides formulas for σ_{k-l} and N_{k-l} in terms of N_k, N_l, σ_k and σ_l .

Theorem 2.3. If k and l are natural numbers with k > l, then $\sigma_{k-l} = \sigma_k N_l - N_k \sigma_l$ and $N_{k-l} = N_k N_l - 12\sigma_k \sigma_l$.

Proof. By virtue of Theorem 2.1,

$$\sigma_k = \sigma_{(k-l)+l} = \sigma_{k-l} N_l + N_{k-l} \sigma_l$$

and

$$N_k = N_{(k-l)+l} = 12\sigma_{k-l}\sigma_l + N_{k-l}N_l$$

Solving these two equations for σ_{k-l} and N_{k-l} , we obtain

$$\sigma_{k-l} = \frac{\begin{vmatrix} \sigma_k & \sigma_l \\ N_k & N_l \end{vmatrix}}{\begin{vmatrix} N_l & \sigma_l \\ 12\sigma_l & N_l \end{vmatrix}} = \frac{\sigma_k N_l - N_k \sigma_l}{N_l^2 - 12\sigma_l^2}$$

and

$$N_{k-l} = \frac{\begin{vmatrix} N_k & \sigma_k \\ 12\sigma_l & N_k \end{vmatrix}}{\begin{vmatrix} \mathbb{N}_l & \sigma_l \\ 12\sigma_l & N_l \end{vmatrix}} = \frac{N_k N_l - 12\sigma_k \sigma_l}{N_l^2 - 12\sigma_l^2}$$

Since for each natural number l, (N_l, σ_l) is a solution of the Pell equation $N^2 - 12\sigma^2 = 1$, the proof is complete.

The following corollary follows from Theorem 2.3 in the exactly same way Corollary 2.2 follows from Theorem 2.1.

Corollary 2.4. For any natural number k > 1, $\sigma_{k-1} = 7\sigma_k - 2N_k$ and $N_{k-1} = 7N_k - 24\sigma_k$.

Theorems 2.1 and 2.3 can be utilized to form interesting higher order non-linear recurrences for both $\{N_k\}$ and $\{\sigma_k\}$ sequences. The following theorem is crucial in this regard.

Theorem 2.5. If k and l are natural numbers with k > l, $\sigma_{k-1}\sigma_{k+1} = \sigma_k^2 - \sigma_l^2$ and $N_{k-l}N_{k+l} + 1 = N_k^2 + N_l^2$.

Proof. By virtue of Theorems 2.1 and 2.3,

$$\sigma_{k-l}\sigma_{k+l} = \sigma_k^2 N_l^2 - N_k^2 \sigma_l^2$$

and since for each natural number $r,\,N_r^2=12\sigma_r^2+1,$

$$\sigma_{k-l}\sigma_{k+l} = \sigma_k^2(12\sigma_l^2 + 1) - \sigma_l^2(12\sigma_k^2 + 1) = \sigma_k^2 - \sigma_l^2.$$

Further,

$$N_{k-l}N_{k+l} = N_k^2 N_l^2 - 144\sigma_k^2 \sigma_l^2 = N_k^2 N_l^2 - 144.\frac{N_k^2 - 1}{12}.\frac{N_l^2 - 1}{12}$$

implies

$$N_{k-l}N_{k+l} + 1 = N_k^2 + N_l^2.$$

The following corollary is a direct consequence of Theorem 2.5.

Corollary 2.6. For any natural number k > 1, $\sigma_{k-1}\sigma_{k+1} = \sigma_k^2 - 4$ and $N_{k-1}N_{k+1} = N_k^2 + 48$.

DECEMBER 2014

THE FIBONACCI QUARTERLY

In view of Theorem 2.5, we also have $\sigma_{k+1}^2 - \sigma_k^2 = 2\sigma_{2k+1}$. Adding this identity for $k = 0, 1, \dots, l-1$, we get the identity

$$2(\sigma_1 + \sigma_3 + \dots + \sigma_{2l-1}) = \sigma_l^2.$$

This proves

Corollary 2.7. Twice the sum first l odd ordered terms of the standard deviation sequence is equal to the variance of first N_l natural numbers.

Again from Theorem 2.5,

$$7N_{2k+1} + 1 = N_{k+1}^2 + N_k^2$$

Summing over k = 0 to k = l - 1, we find

Corollary 2.8. For each natural number l, $7(N_1 + N_3 + \dots + N_{2l-1}) + (l-1) = 2(N_1^2 + N_2^2 + \dots + N_{l-l}^2) + N_l^2$.

3. BALANCING-LIKE SEQUENCES DERIVED FROM $\{N_k\}$ AND $\{\sigma_k\}$

The linear binary recurrences for the sequences $\{N_k\}$ and $\{\sigma_k\}$ along with their properties suggest that $\{\frac{\sigma_k}{2}\}$ is a balancing-like sequence whereas $\{N_k\}$ is the corresponding Lucasbalancing-like sequence [3]. In addition, these sequences are closely related to two other sequences that can also be described by similar binary recurrences.

The following theorem deals with a sequence derived from $\{N_k\}$, the terms of which are factors of corresponding terms of the sequence $\{\sigma_k\}$.

Theorem 3.1. For each natural number k, $\frac{N_k+1}{2}$ is a perfect square. Further, $M_k = \sqrt{\frac{N_k+1}{2}}$ divides σ_k .

Proof. By virtue of Theorem 2.1 and the Pell's equation $N^2 - 12\sigma^2 = 1$

$$\frac{N_{2k}+1}{2} = \frac{N_k^2 + 12\sigma_k^2 + 1}{2} = N_k^2$$

implying that $M_{2k} = N_k$. Since $\sigma_{2k} = 2\sigma_k N_k$, M_{2k} divides σ_{2k} for each natural number k. Further

$$\frac{N_{2k+1}+1}{2} = \frac{7N_{2k}+24\sigma_k+1}{2} = \frac{7(N_k^2+12\sigma_k^2)+48\sigma_kN_k+1}{2}$$
$$= 84\sigma_k^2+24\sigma_kN_k+4 = 36\sigma_k^2+24\sigma_kN_k+4N_k^2 = (6\sigma_k+2N_k)^2 = (7\sigma_k+2N_k-\sigma_k)^2$$
$$= (\sigma_{k+1}-\sigma_k)^2$$

from which we obtain $M_{2k+1} = \sigma_{k+1} - \sigma_k$. By virtue of Theorem 2.5, $\sigma_{k+1}^2 - \sigma_k^2 = 2\sigma_{2k+1}$ and thus

$$\sigma_{2k+1} = \frac{\sigma_{k+1} + \sigma_k}{2} (\sigma_{k+1} - \sigma_k) = \delta_k (\sigma_{k+1} - \sigma_k)$$

where $\delta_k = \frac{\sigma_{k+1} + \sigma_k}{2}$ is a natural number since σ_k is even for each k and hence M_{2k+1} divides σ_{2k+1} .

We have shown while proving Theorem 3.1 that $M_{2k+1} = \sigma_{k+1} - \sigma_k$. Thus, we have

Corollary 3.2. The sum of first l odd terms of the sequence $\{M_k\}$ is equal to the standard deviation of the first N_l natural numbers.

By virtue of Theorem 3.1, M_k divides σ_k for each natural number k. Therefore, it is natural to study the sequence $L_k = \frac{\sigma_k}{M_k}$. From the proof of Theorem 3.1, it follows that $L_{2k} = 2\sigma_k$ and $L_{2k+1} = \frac{(\sigma_{k+1}+\sigma_k)}{2}$.

Our next objective is to show that the sequence $\{L_k\}_{k=1}^{\infty}$ is a balancing-like sequence and $\{M_k\}_{k=1}^{\infty}$ is the corresponding Lucas-balancing-like sequence. This claim is validated by the following theorem.

Theorem 3.3. For each natural number k, $M_k^2 = 3L_k^2 + 1$. Further, the sequences $\{L_k\}_{k=1}^{\infty}$ and $\{M_k\}_{k=1}^{\infty}$ satisfy the binary recurrences $L_{k+1} = 4L_k - L_{k-1}, k \ge 1$ with $L_0 = 0$ and $L_1 = 1$ and $M_{k+1} = 4M_k - M_{k-1}, k \ge 1$ with $M_0 = 1$ and $M_1 = 2$.

Proof. In view of the Pell's equation $N^2 - 12\sigma^2 = 1$, Corollary 2.4 and the discussion following Corollary 3.2,

$$3L_{2k}^2 + 1 = 3(2\sigma_k)^2 + 1 = N_k^2 = M_{2k}^2$$

and

$$3L_{2k-1}^2 + 1 = 3(\frac{\sigma_k + \sigma_{k-1}}{2})^2 + 1 = 3(4\sigma_k - N_k)^2 + 1$$
$$= (6\sigma_k - 2N_k)^2 = (\sigma_k - \sigma_{k-1})^2 = M_{2k-1}^2$$

To this end, using Corollary 2.2, we get

$$4M_{2k+1} - M_{2k} = 4(\sigma_{k+1} - \sigma_k) - N_k = 4(6\sigma_k + 2N_k) - N_k = N_{k+1} = M_{2k+2}$$

and

$$4M_{2k} - M_{2k-1} = 4N_k - (\sigma_{k+1} - \sigma_k) = 4N_k - (-6\sigma_k + 2N_k)$$
$$= 6\sigma_k + 2N_k = \sigma_{k+1} - \sigma_k = M_{2k+1}.$$

Thus, the sequence M_k satisfies the binary recurrence

$$M_{k+1} = 4M_k - M_{k-1}.$$

Similarly, the identities

$$4L_{2k+1} - L_{2k} = 2(\sigma_{k+1} + \sigma_k) - 2\sigma_k = 2\sigma_{k+1} = L_{2k+2}$$

and

$$4L_{2k} - L_{2k-1} = 8\sigma_k - \frac{\sigma_k + \sigma_{k-1}}{2} = 8\sigma_k - (4\sigma_k - N_k) = 4\sigma_k + N_k = \frac{\sigma_k + \sigma_k}{2} = L_{2k+1}$$

confirm that the sequence L_k satisfies the binary recurrences $L_{k+1} = 4L_k - L_{k-1}$.

It is easy to check that the Binet forms of the sequences $\{L_k\}$ and $\{M_k\}$ are respectively

$$L_k = \frac{(2+\sqrt{3})^k - (2-\sqrt{3})^k}{2\sqrt{3}}$$

and

$$M_k = \frac{(2+\sqrt{3})^k + (2-\sqrt{3})^k}{2}k = 1, 2, \cdots$$

Using the Binet forms or otherwise, the interested reader is invited the following identities.

(1) $L_1 + L_3 + \dots + L_{2n-1} = L_n^2$, (2) $M_1 + M_3 + \dots + M_{2n-1} = \frac{L_{2n}}{2}$, (3) $L_2 + L_4 + \dots + L_{2k} = L_k L_{k+1}$, (4) $M_2 + M_4 + \dots + M_{2k} = \frac{(L_{2k+1}-1)}{2}$,

DECEMBER 2014

THE FIBONACCI QUARTERLY

- (5) $L_{x+y} = L_x M_y + M_x L_y,$
- (6) $M_{x+y} = M_x M_y + 3L_x L_y$.

4. ACKNOWLEDGEMENT

It is a pleasure to thank the anonymous referee for his valuable suggestions and comments which resulted in an improved presentation of this paper.

References

- [1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fib. Quart., 37(2)(1999), 98-105.
- [2] M. A. Khan and H. Kwong, Some Binomial Identities Associated with the Generalized Natural Number sequence, Fib. Quart., 49(1)(2011), 57–65.
- [3] G. K. Panda, Some fascinating properties of balancing numbers, In Proc. Eleventh Internat. Conference on Fibonacci Numbers and their Applications, Cong Numerantium, **194**(2009), 185–189.
- [4] G. K. Panda and S. S. Rout, A class of recurrent sequences exhibiting some exciting properties of balancing numbers, Int. J. Math. Comp. Sci., 6(2012), 4-6.
- [5] P. K. Ray, Balancing and cobalancing numbers, Ph.D thesis, submitted to National Institute of Technology, Rourkela, 2009.

MSC2010(A.M.S.): 11 B 37, 11 B 83

Department of Mathematics, National Institute of Technology Rourkela, Odisha, 769 008, India

E-mail address: gkpanda_nit@rediffmail.com

Department of Mathematics, National Institute of Technology Rourkela, Odisha, 769 008, India

E-mail address: akpandamath@gmail.com