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Abstract. The variance of first n natural numbers is n2−1
12

and is a natural number if n
is odd, n > 1 and is not a multiple of 3.The values of n corresponding to integral standard
deviations constitute a sequence behaving like the sequence of Lucas-balancing numbers and
the corresponding standard deviations constitute a sequence having some properties identical
with balancing numbers. The factorization of the standard deviation sequence results in two
other interesting sequences sharing important properties with the two original sequences.

1. INTRODUCTION

The concept of balancing numbers was first given by Behera and Panda [1] in connection
with the Diophantine equation 1+2+· · ·+(n−1) = (n+1)+(n+2)+· · ·+(n+r), wherein, they
call n a balancing number and r the balancer corresponding to n. The nth balancing number
is denoted by Bn and the balancing numbers satisfy the binary recurrence Bn+1 = 6Bn−Bn−1
with B0 = 0 and B1 = 1 [1]. In [3], Panda explored many fascinating properties of balancing
numbers, some of them are similar to the corresponding results on Fibonacci numbers, while
some others are more exciting.

A detailed study of balancing and some related number sequences is available in [5]. In a
latter paper [4], as a generalization of the sequence of balancing numbers, Panda and Rout
studied a class of binary recurrences defined by xn+1 = Axn −Bxn−1 with x0 = 0 and x1 = 1
where A and B are any natural numbers. They proved that when B = 1 and A /∈ {1, 2},
sequences arising out of these recurrences have many important and interesting properties
identical to those of balancing numbers. We, therefore, prefer to call this class of sequences as
balancing-like sequences.

For each natural number n, 8B2
n + 1 is a perfect square and Cn =

√
8B2

n + 1 is called
a Lucas-balancing number [5]. We can, therefore, call {Cn}, the Lucas-balancing sequence.
In a similar manner, if xn is a balancing-like sequence with kx2n + 1 is a perfect square for

some natural number k and for all n and yn =
√
kx2n + 1, we call {yn} a Lucas-balancing-like

sequence.
Khan and Kwong [2] called sequences arising out of the above class of recurrences corre-

sponding to B = 1 as generalized natural number sequences because of their similarity with
natural numbers with respect to certain properties. Observe that, the sequence of balancing
numbers is a member of this class corresponding to A = 6, B = 1. In this paper, we establish
the close association of another sequence of this class to an interesting Diophantine problem
of basic statistics.

The variance of the real numbers x1,x2,· · · ,xn is given by 1
nΣn

i=1(xi−x̄)2, where x̄ = 1
nΣn

i=1xi
is the mean of x1,x2,· · · xn. Using the above formula, it can be checked that the variance of
first n natural numbers (and hence the variance of any n consecutive natural numbers) is

s2n = n2−1
12 . It is easy to see that this variance is a natural number if and only if n is odd but
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not a multiple of 3. Our focus is on those values of n that correspond to integral values of
the standard deviation sn. Observe that for some N , sN is a natural number say, sN = σ if
N2 − 1 = 12σ2 which is equivalent to the Pell’s equation N2 − 12σ2 = 1. The fundamental
solution corresponds to N1 = 7 and σ1 = 2. Hence, the totality of solutions is given by

Nk + 2
√

3σk = (7 + 4
√

3)k; k = 1, 2, · · · . (1.1)

This gives

Nk =
(7 + 4

√
3)k + (7− 4

√
3)k

2
(1.2)

and

σk =
(7 + 4

√
3)k − (7− 4

√
3)k

4
√

3
. (1.3)

Because (Nk, σk) is a solution of the Pell’s equation N2 − 12σ2 = 1, both Nk and σk are
natural numbers for each k.

2. RECURRENCE RELATIONS FOR Nk AND σk

In the last section, we obtained the Binet forms for Nk and σk where σk is the standard
deviation of Nk consecutive natural numbers. Notice that the standard deviation of a single
number is zero and hence we may assume that N0 = 1 and σ0 = 0, and indeed, from the last
section, we already have N1 = 7 and σ1 = 2. Observe that un = (7+4

√
3)n and vn = (7−4

√
3)n

both satisfy the binary recurrences

un+1 = 14un − un−1, vn+1 = 14vn − vn−1;
hence, the linear binary recurrences for both {Nk} and {σk} are given by

Nk+1 = 14Nk −Nk−1;N0 = 1, N1 = 7

and
σk+1 = 14σk − σk−1;σ0 = 0, σ1 = 2.

The first five terms of both sequences are thus N1 = 7, N2 = 97, N3 = 1351, N4 = 18817, N5 =
262087 and σ1 = 2, σ2 = 28, σ3 = 390, σ4 = 5432, σ5 = 75658. Using the above binary
recurrences for Nk and σk, some useful results can be obtained. The following theorem deals
with two identities in which Nk and σk behave like hyperbolic functions.

Theorem 2.1. For natural numbers k and l, σk+l = σkNl+Nkσl and Nk+l = NkNl+12σkσl.

Proof. Since the identity

Nk + 2
√

3σk = (7 + 4
√

3)k

holds for each natural number k, it follows that

Nk+l + 2
√

3σk+l = (7 + 4
√

3)k+l = (7 + 4
√

3)k(7 + 4
√

3)l

= (Nk + 2
√

3σk)(Nl + 2
√

3σl)

= (NkNl + 12σkσl) + 2
√

3(σkNl +Nkσl)

Comparing the rational and irrational parts,the desired follows. �

The following corollary is a direct consequence of Theorem 2.1

Corollary 2.2. If k ∈ N , σk+1 = 7σk + 2Nk, Nk+1 = 7Nk + 24σk, σ2k = 2σkNk, N2k =
N2
k + 12σ2k.
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Theorem 2.1 can be used for the derivation of another similar result. The following theorem
provides formulas for σk−l and Nk−l in terms of Nk, Nl, σk and σl.

Theorem 2.3. If k and l are natural numbers with k > l, then σk−l = σkNl − Nkσl and
Nk−l = NkNl − 12σkσl.

Proof. By virtue of Theorem 2.1,

σk = σ(k−l)+l = σk−lNl +Nk−lσl

and
Nk = N(k−l)+l = 12σk−lσl +Nk−lNl.

Solving these two equations for σk−l and Nk−l, we obtain

σk−l =

∣∣∣∣σk σl
Nk Nl

∣∣∣∣∣∣∣∣ Nl σl
12σl Nl

∣∣∣∣ =
σkNl −Nkσl
N2
l − 12σ2l

and

Nk−l =

∣∣∣∣ Nk σk
12σl Nk

∣∣∣∣∣∣∣∣ Nl σl
12σl Nl

∣∣∣∣ =
NkNl − 12σkσl
N2
l − 12σ2l

.

Since for each natural number l, (Nl, σl) is a solution of the Pell equation N2 − 12σ2 = 1, the
proof is complete. �

The following corollary follows from Theorem 2.3 in the exactly same way Corollary 2.2
follows from Theorem 2.1.

Corollary 2.4. For any natural number k > 1, σk−1 = 7σk − 2Nk and Nk−1 = 7Nk − 24σk.

Theorems 2.1 and 2.3 can be utilized to form interesting higher order non-linear recurrences
for both {Nk} and {σk} sequences. The following theorem is crucial in this regard.

Theorem 2.5. If k and l are natural numbers with k > l, σk−1σk+1 = σ2k−σ2l and Nk−lNk+l+
1 = N2

k +N2
l .

Proof. By virtue of Theorems 2.1 and 2.3,

σk−lσk+l = σ2kN
2
l −N2

kσ
2
l

and since for each natural number r, N2
r = 12σ2r + 1,

σk−lσk+l = σ2k(12σ2l + 1)− σ2l (12σ2k + 1) = σ2k − σ2l .
Further,

Nk−lNk+l = N2
kN

2
l − 144σ2kσ

2
l = N2

kN
2
l − 144.

N2
k − 1

12
.
N2
l − 1

12
implies

Nk−lNk+l + 1 = N2
k +N2

l .

�

The following corollary is a direct consequence of Theorem 2.5.

Corollary 2.6. For any natural number k > 1, σk−1σk+1 = σ2k−4 and Nk−1Nk+1 = N2
k + 48.
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In view of Theorem 2.5, we also have σ2k+1 − σ2k = 2σ2k+1. Adding this identity for k =
0, 1, · · · , l − 1, we get the identity

2(σ1 + σ3 + · · ·+ σ2l−1) = σ2l .

This proves

Corollary 2.7. Twice the sum first l odd ordered terms of the standard deviation sequence is
equal to the variance of first Nl natural numbers.

Again from Theorem 2.5,

7N2k+1 + 1 = N2
k+1 +N2

k

Summing over k = 0 to k = l − 1, we find

Corollary 2.8. For each natural number l, 7(N1 +N3 + · · ·+N2l−1) + (l− 1) = 2(N2
1 +N2

2 +
· · ·+N2

l−l) +N2
l .

3. BALANCING-LIKE SEQUENCES DERIVED FROM {Nk} AND {σk}

The linear binary recurrences for the sequences {Nk} and {σk} along with their proper-
ties suggest that{σk2 } is a balancing-like sequence whereas {Nk} is the corresponding Lucas-
balancing-like sequence [3]. In addition, these sequences are closely related to two other
sequences that can also be described by similar binary recurrences.

The following theorem deals with a sequence derived from {Nk}, the terms of which are
factors of corresponding terms of the sequence {σk} .

Theorem 3.1. For each natural number k, Nk+1
2 is a perfect square. Further, Mk =

√
Nk+1

2

divides σk.

Proof. By virtue of Theorem 2.1 and the Pell’s equation N2 − 12σ2 = 1

N2k + 1

2
=
N2
k + 12σ2k + 1

2
= N2

k

implying that M2k = Nk. Since σ2k = 2σkNk, M2k divides σ2k for each natural number k.
Further

N2k+1 + 1

2
=

7N2k + 24σk + 1

2
=

7(N2
k + 12σ2k) + 48σkNk + 1

2

= 84σ2k + 24σkNk + 4 = 36σ2k + 24σkNk + 4N2
k = (6σk + 2Nk)

2 = (7σk + 2Nk − σk)2

= (σk+1 − σk)2

from which we obtain M2k+1 = σk+1−σk. By virtue of Theorem 2.5, σ2k+1− σ2k = 2σ2k+1 and
thus

σ2k+1 =
σk+1 + σk

2
(σk+1 − σk) = δk(σk+1 − σk)

where δk =
σk+1+σk

2 is a natural number since σk is even for each k and hence M2k+1 divides
σ2k+1. �

We have shown while proving Theorem 3.1 that M2k+1 = σk+1 − σk. Thus, we have

Corollary 3.2. The sum of first l odd terms of the sequence {Mk} is equal to the standard
deviation of the first Nl natural numbers.

190 VOLUME 52, NUMBER 5



BALANCING-LIKE SEQUENCES

By virtue of Theorem 3.1, Mk divides σk for each natural number k. Therefore, it is natural
to study the sequence Lk = σk

Mk
. From the proof of Theorem 3.1, it follows that L2k = 2σk

and L2k+1 =
(σk+1+σk)

2 .
Our next objective is to show that the sequence {Lk}∞k=1 is a balancing-like sequence and

{Mk}∞k=1 is the corresponding Lucas-balancing-like sequence. This claim is validated by the
following theorem.

Theorem 3.3. For each natural number k, M2
k = 3L2

k + 1. Further, the sequences {Lk}∞k=1
and {Mk}∞k=1 satisfy the binary recurrences Lk+1 = 4Lk−Lk−1, k ≥ 1 with L0 = 0 and L1 = 1
and Mk+1 = 4Mk −Mk−1, k ≥ 1 with M0 = 1 and M1 = 2.

Proof. In view of the Pell’s equation N2−12σ2 = 1, Corollary 2.4 and the discussion following
Corollary 3.2,

3L2
2k + 1 = 3(2σk)

2 + 1 = N2
k = M2

2k

and

3L2
2k−1 + 1 = 3(

σk + σk−1
2

)2 + 1 = 3(4σk −Nk)
2 + 1

= (6σk − 2Nk)
2 = (σk − σk−1)2 = M2

2k−1.

To this end, using Corollary 2.2, we get

4M2k+1 −M2k = 4(σk+1 − σk)−Nk = 4(6σk + 2Nk)−Nk = Nk+1 = M2k+2

and

4M2k −M2k−1 = 4Nk − (σk+1 − σk) = 4Nk − (−6σk + 2Nk)

= 6σk + 2Nk = σk+1 − σk = M2k+1.

Thus, the sequence Mk satisfies the binary recurrence

Mk+1 = 4Mk −Mk−1.

Similarly, the identities

4L2k+1 − L2k = 2(σk+1 + σk)− 2σk = 2σk+1 = L2k+2

and

4L2k − L2k−1 = 8σk −
σk + σk−1

2
= 8σk − (4σk −Nk = 4σk +Nk =

σk + σk
2

= L2k+1

confirm that the sequence Lk satisfies the binary recurrences Lk+1 = 4Lk − Lk−1. �

It is easy to check that the Binet forms of the sequences {Lk} and {Mk} are respectively

Lk =
(2 +

√
3)k − (2−

√
3)k

2
√

3

and

Mk =
(2 +

√
3)k + (2−

√
3)k

2
k = 1, 2, · · · .

Using the Binet forms or otherwise, the interested reader is invited the following identities.

(1) L1 + L3 + · · ·+ L2n−1) = L2
n,

(2) M1 +M3 + · · ·+M2n−1 = L2n
2 ,

(3) L2 + L4 + · · ·+ L2k = LkLk+1,

(4) M2 +M4 + · · ·+M2k =
(L2k+1−1)

2 ,
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(5) Lx+y = LxMy +MxLy,
(6) Mx+y = MxMy + 3LxLy.
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