BALANCING-LIKE SEQUENCES ASSOCIATED WITH INTEGRAL STANDARD DEVIATIONS OF CONSECUTIVE NATURAL NUMBERS

G. K. PANDA AND A. K. PANDA

Abstract

The variance of first n natural numbers is $\frac{n^{2}-1}{12}$ and is a natural number if n is odd, $n>1$ and is not a multiple of 3 .The values of n corresponding to integral standard deviations constitute a sequence behaving like the sequence of Lucas-balancing numbers and the corresponding standard deviations constitute a sequence having some properties identical with balancing numbers. The factorization of the standard deviation sequence results in two other interesting sequences sharing important properties with the two original sequences.

1. INTRODUCTION

The concept of balancing numbers was first given by Behera and Panda [1] in connection with the Diophantine equation $1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r)$, wherein, they call n a balancing number and r the balancer corresponding to n. The $n^{t h}$ balancing number is denoted by B_{n} and the balancing numbers satisfy the binary recurrence $B_{n+1}=6 B_{n}-B_{n-1}$ with $B_{0}=0$ and $B_{1}=1$ [1]. In [3], Panda explored many fascinating properties of balancing numbers, some of them are similar to the corresponding results on Fibonacci numbers, while some others are more exciting.

A detailed study of balancing and some related number sequences is available in [5]. In a latter paper [4], as a generalization of the sequence of balancing numbers, Panda and Rout studied a class of binary recurrences defined by $x_{n+1}=A x_{n}-B x_{n-1}$ with $x_{0}=0$ and $x_{1}=1$ where A and B are any natural numbers. They proved that when $B=1$ and $A \notin\{1,2\}$, sequences arising out of these recurrences have many important and interesting properties identical to those of balancing numbers. We, therefore, prefer to call this class of sequences as balancing-like sequences.

For each natural number $n, 8 B_{n}^{2}+1$ is a perfect square and $C_{n}=\sqrt{8 B_{n}^{2}+1}$ is called a Lucas-balancing number [5]. We can, therefore, call $\left\{C_{n}\right\}$, the Lucas-balancing sequence. In a similar manner, if x_{n} is a balancing-like sequence with $k x_{n}^{2}+1$ is a perfect square for some natural number k and for all n and $y_{n}=\sqrt{k x_{n}^{2}+1}$, we call $\left\{y_{n}\right\}$ a Lucas-balancing-like sequence.

Khan and Kwong [2] called sequences arising out of the above class of recurrences corresponding to $B=1$ as generalized natural number sequences because of their similarity with natural numbers with respect to certain properties. Observe that, the sequence of balancing numbers is a member of this class corresponding to $A=6, B=1$. In this paper, we establish the close association of another sequence of this class to an interesting Diophantine problem of basic statistics.

The variance of the real numbers $x_{1}, x_{2}, \cdots, x_{n}$ is given by $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$, where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the mean of $x_{1}, x_{2}, \cdots x_{n}$. Using the above formula, it can be checked that the variance of first n natural numbers (and hence the variance of any n consecutive natural numbers) is $s_{n}^{2}=\frac{n^{2}-1}{12}$. It is easy to see that this variance is a natural number if and only if n is odd but

THE FIBONACCI QUARTERLY

not a multiple of 3 . Our focus is on those values of n that correspond to integral values of the standard deviation s_{n}. Observe that for some N, s_{N} is a natural number say, $s_{N}=\sigma$ if $N^{2}-1=12 \sigma^{2}$ which is equivalent to the Pell's equation $N^{2}-12 \sigma^{2}=1$. The fundamental solution corresponds to $N_{1}=7$ and $\sigma_{1}=2$. Hence, the totality of solutions is given by

$$
\begin{equation*}
N_{k}+2 \sqrt{3} \sigma_{k}=(7+4 \sqrt{3})^{k} ; k=1,2, \cdots . \tag{1.1}
\end{equation*}
$$

This gives

$$
\begin{equation*}
N_{k}=\frac{(7+4 \sqrt{3})^{k}+(7-4 \sqrt{3})^{k}}{2} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{k}=\frac{(7+4 \sqrt{3})^{k}-(7-4 \sqrt{3})^{k}}{4 \sqrt{3}} . \tag{1.3}
\end{equation*}
$$

Because $\left(N_{k}, \sigma_{k}\right)$ is a solution of the Pell's equation $N^{2}-12 \sigma^{2}=1$, both N_{k} and σ_{k} are natural numbers for each k.

2. RECURRENCE RELATIONS FOR N_{k} AND σ_{k}

In the last section, we obtained the Binet forms for N_{k} and σ_{k} where σ_{k} is the standard deviation of N_{k} consecutive natural numbers. Notice that the standard deviation of a single number is zero and hence we may assume that $N_{0}=1$ and $\sigma_{0}=0$, and indeed, from the last section, we already have $N_{1}=7$ and $\sigma_{1}=2$. Observe that $u_{n}=(7+4 \sqrt{3})^{n}$ and $v_{n}=(7-4 \sqrt{3})^{n}$ both satisfy the binary recurrences

$$
u_{n+1}=14 u_{n}-u_{n-1}, v_{n+1}=14 v_{n}-v_{n-1} ;
$$

hence, the linear binary recurrences for both $\left\{N_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ are given by

$$
N_{k+1}=14 N_{k}-N_{k-1} ; N_{0}=1, N_{1}=7
$$

and

$$
\sigma_{k+1}=14 \sigma_{k}-\sigma_{k-1} ; \sigma_{0}=0, \sigma_{1}=2
$$

The first five terms of both sequences are thus $N_{1}=7, N_{2}=97, N_{3}=1351, N_{4}=18817, N_{5}=$ 262087 and $\sigma_{1}=2, \sigma_{2}=28, \sigma_{3}=390, \sigma_{4}=5432, \sigma_{5}=75658$. Using the above binary recurrences for N_{k} and σ_{k}, some useful results can be obtained. The following theorem deals with two identities in which N_{k} and σ_{k} behave like hyperbolic functions.

Theorem 2.1. For natural numbers k and $l, \sigma_{k+l}=\sigma_{k} N_{l}+N_{k} \sigma_{l}$ and $N_{k+l}=N_{k} N_{l}+12 \sigma_{k} \sigma_{l}$.
Proof. Since the identity

$$
N_{k}+2 \sqrt{3} \sigma_{k}=(7+4 \sqrt{3})^{k}
$$

holds for each natural number k, it follows that

$$
\begin{aligned}
N_{k+l}+2 \sqrt{3} \sigma_{k+l} & =(7+4 \sqrt{3})^{k+l}=(7+4 \sqrt{3})^{k}(7+4 \sqrt{3})^{l} \\
& =\left(N_{k}+2 \sqrt{3} \sigma_{k}\right)\left(N_{l}+2 \sqrt{3} \sigma_{l}\right) \\
& =\left(N_{k} N_{l}+12 \sigma_{k} \sigma_{l}\right)+2 \sqrt{3}\left(\sigma_{k} N_{l}+N_{k} \sigma_{l}\right)
\end{aligned}
$$

Comparing the rational and irrational parts,the desired follows.
The following corollary is a direct consequence of Theorem 2.1
Corollary 2.2. If $k \in N, \sigma_{k+1}=7 \sigma_{k}+2 N_{k}, N_{k+1}=7 N_{k}+24 \sigma_{k}, \sigma_{2 k}=2 \sigma_{k} N_{k}, N_{2 k}=$ $N_{k}^{2}+12 \sigma_{k}^{2}$.

Theorem 2.1 can be used for the derivation of another similar result. The following theorem provides formulas for σ_{k-l} and N_{k-l} in terms of N_{k}, N_{l}, σ_{k} and σ_{l}.
Theorem 2.3. If k and l are natural numbers with $k>l$, then $\sigma_{k-l}=\sigma_{k} N_{l}-N_{k} \sigma_{l}$ and $N_{k-l}=N_{k} N_{l}-12 \sigma_{k} \sigma_{l}$.

Proof. By virtue of Theorem 2.1,

$$
\sigma_{k}=\sigma_{(k-l)+l}=\sigma_{k-l} N_{l}+N_{k-l} \sigma_{l}
$$

and

$$
N_{k}=N_{(k-l)+l}=12 \sigma_{k-l} \sigma_{l}+N_{k-l} N_{l} .
$$

Solving these two equations for σ_{k-l} and N_{k-l}, we obtain

$$
\sigma_{k-l}=\frac{\left|\begin{array}{cc}
\sigma_{k} & \sigma_{l} \\
N_{k} & N_{l}
\end{array}\right|}{\left|\begin{array}{cc}
\mathbb{N}_{l} & \sigma_{l} \\
12 \sigma_{l} & N_{l}
\end{array}\right|}=\frac{\sigma_{k} N_{l}-N_{k} \sigma_{l}}{N_{l}^{2}-12 \sigma_{l}^{2}}
$$

and

$$
N_{k-l}=\frac{\left|\begin{array}{cc}
N_{k} & \sigma_{k} \\
12 \sigma_{l} & N_{k}
\end{array}\right|}{\left|\begin{array}{cc}
\mathbb{N}_{l} & \sigma_{l} \\
12 \sigma_{l} & N_{l}
\end{array}\right|}=\frac{N_{k} N_{l}-12 \sigma_{k} \sigma_{l}}{N_{l}^{2}-12 \sigma_{l}^{2}} .
$$

Since for each natural number $l,\left(N_{l}, \sigma_{l}\right)$ is a solution of the Pell equation $N^{2}-12 \sigma^{2}=1$, the proof is complete.

The following corollary follows from Theorem 2.3 in the exactly same way Corollary 2.2 follows from Theorem 2.1.

Corollary 2.4. For any natural number $k>1, \sigma_{k-1}=7 \sigma_{k}-2 N_{k}$ and $N_{k-1}=7 N_{k}-24 \sigma_{k}$.
Theorems 2.1 and 2.3 can be utilized to form interesting higher order non-linear recurrences for both $\left\{N_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ sequences. The following theorem is crucial in this regard.
Theorem 2.5. If k and l are natural numbers with $k>l, \sigma_{k-1} \sigma_{k+1}=\sigma_{k}^{2}-\sigma_{l}^{2}$ and $N_{k-l} N_{k+l}+$ $1=N_{k}^{2}+N_{l}^{2}$.
Proof. By virtue of Theorems 2.1 and 2.3,

$$
\sigma_{k-l} \sigma_{k+l}=\sigma_{k}^{2} N_{l}^{2}-N_{k}^{2} \sigma_{l}^{2}
$$

and since for each natural number $r, N_{r}^{2}=12 \sigma_{r}^{2}+1$,

$$
\sigma_{k-l} \sigma_{k+l}=\sigma_{k}^{2}\left(12 \sigma_{l}^{2}+1\right)-\sigma_{l}^{2}\left(12 \sigma_{k}^{2}+1\right)=\sigma_{k}^{2}-\sigma_{l}^{2}
$$

Further,

$$
N_{k-l} N_{k+l}=N_{k}^{2} N_{l}^{2}-144 \sigma_{k}^{2} \sigma_{l}^{2}=N_{k}^{2} N_{l}^{2}-144 \cdot \frac{N_{k}^{2}-1}{12} \cdot \frac{N_{l}^{2}-1}{12}
$$

implies

$$
N_{k-l} N_{k+l}+1=N_{k}^{2}+N_{l}^{2} .
$$

The following corollary is a direct consequence of Theorem 2.5 .
Corollary 2.6. For any natural number $k>1, \sigma_{k-1} \sigma_{k+1}=\sigma_{k}^{2}-4$ and $N_{k-1} N_{k+1}=N_{k}^{2}+48$.

THE FIBONACCI QUARTERLY

In view of Theorem 2.5, we also have $\sigma_{k+1}^{2}-\sigma_{k}^{2}=2 \sigma_{2 k+1}$. Adding this identity for $k=$ $0,1, \cdots, l-1$, we get the identity

$$
2\left(\sigma_{1}+\sigma_{3}+\cdots+\sigma_{2 l-1}\right)=\sigma_{l}^{2} .
$$

This proves
Corollary 2.7. Twice the sum first l odd ordered terms of the standard deviation sequence is equal to the variance of first N_{l} natural numbers.

Again from Theorem 2.5,

$$
7 N_{2 k+1}+1=N_{k+1}^{2}+N_{k}^{2}
$$

Summing over $k=0$ to $k=l-1$, we find
Corollary 2.8. For each natural number l, $7\left(N_{1}+N_{3}+\cdots+N_{2 l-1}\right)+(l-1)=2\left(N_{1}^{2}+N_{2}^{2}+\right.$ $\left.\cdots+N_{l-l}^{2}\right)+N_{l}^{2}$.

3. BALANCING-LIKE SEQUENCES DERIVED FROM $\left\{N_{k}\right\}$ AND $\left\{\sigma_{k}\right\}$

The linear binary recurrences for the sequences $\left\{N_{k}\right\}$ and $\left\{\sigma_{k}\right\}$ along with their properties suggest that $\left\{\frac{\sigma_{k}}{2}\right\}$ is a balancing-like sequence whereas $\left\{N_{k}\right\}$ is the corresponding Lucas-balancing-like sequence [3]. In addition, these sequences are closely related to two other sequences that can also be described by similar binary recurrences.

The following theorem deals with a sequence derived from $\left\{N_{k}\right\}$, the terms of which are factors of corresponding terms of the sequence $\left\{\sigma_{k}\right\}$.
Theorem 3.1. For each natural number $k, \frac{N_{k}+1}{2}$ is a perfect square. Further, $M_{k}=\sqrt{\frac{N_{k}+1}{2}}$ divides σ_{k}.

Proof. By virtue of Theorem 2.1 and the Pell's equation $N^{2}-12 \sigma^{2}=1$

$$
\frac{N_{2 k}+1}{2}=\frac{N_{k}^{2}+12 \sigma_{k}^{2}+1}{2}=N_{k}^{2}
$$

implying that $M_{2 k}=N_{k}$. Since $\sigma_{2 k}=2 \sigma_{k} N_{k}, M_{2 k}$ divides $\sigma_{2 k}$ for each natural number k. Further

$$
\begin{aligned}
\frac{N_{2 k+1}+1}{2} & =\frac{7 N_{2 k}+24 \sigma_{k}+1}{2}=\frac{7\left(N_{k}^{2}+12 \sigma_{k}^{2}\right)+48 \sigma_{k} N_{k}+1}{2} \\
& =84 \sigma_{k}^{2}+24 \sigma_{k} N_{k}+4=36 \sigma_{k}^{2}+24 \sigma_{k} N_{k}+4 N_{k}^{2}=\left(6 \sigma_{k}+2 N_{k}\right)^{2}=\left(7 \sigma_{k}+2 N_{k}-\sigma_{k}\right)^{2} \\
& =\left(\sigma_{k+1}-\sigma_{k}\right)^{2}
\end{aligned}
$$

from which we obtain $M_{2 k+1}=\sigma_{k+1}-\sigma_{k}$. By virtue of Theorem 2.5, $\sigma_{k+1}^{2}-\sigma_{k}^{2}=2 \sigma_{2 k+1}$ and thus

$$
\sigma_{2 k+1}=\frac{\sigma_{k+1}+\sigma_{k}}{2}\left(\sigma_{k+1}-\sigma_{k}\right)=\delta_{k}\left(\sigma_{k+1}-\sigma_{k}\right)
$$

where $\delta_{k}=\frac{\sigma_{k+1}+\sigma_{k}}{2}$ is a natural number since σ_{k} is even for each k and hence $M_{2 k+1}$ divides $\sigma_{2 k+1}$.

We have shown while proving Theorem 3.1 that $M_{2 k+1}=\sigma_{k+1}-\sigma_{k}$. Thus, we have
Corollary 3.2. The sum of first l odd terms of the sequence $\left\{M_{k}\right\}$ is equal to the standard deviation of the first N_{l} natural numbers.

BALANCING-LIKE SEQUENCES

By virtue of Theorem 3.1, M_{k} divides σ_{k} for each natural number k. Therefore, it is natural to study the sequence $L_{k}=\frac{\sigma_{k}}{M_{k}}$. From the proof of Theorem 3.1, it follows that $L_{2 k}=2 \sigma_{k}$ and $L_{2 k+1}=\frac{\left(\sigma_{k+1}+\sigma_{k}\right)}{2}$.

Our next objective is to show that the sequence $\left\{L_{k}\right\}_{k=1}^{\infty}$ is a balancing-like sequence and $\left\{M_{k}\right\}_{k=1}^{\infty}$ is the corresponding Lucas-balancing-like sequence. This claim is validated by the following theorem.

Theorem 3.3. For each natural number $k, M_{k}^{2}=3 L_{k}^{2}+1$. Further, the sequences $\left\{L_{k}\right\}_{k=1}^{\infty}$ and $\left\{M_{k}\right\}_{k=1}^{\infty}$ satisfy the binary recurrences $L_{k+1}=4 L_{k}-L_{k-1}, k \geq 1$ with $L_{0}=0$ and $L_{1}=1$ and $M_{k+1}=4 M_{k}-M_{k-1}, k \geq 1$ with $M_{0}=1$ and $M_{1}=2$.

Proof. In view of the Pell's equation $N^{2}-12 \sigma^{2}=1$, Corollary 2.4 and the discussion following Corollary 3.2,

$$
3 L_{2 k}^{2}+1=3\left(2 \sigma_{k}\right)^{2}+1=N_{k}^{2}=M_{2 k}^{2}
$$

and

$$
\begin{aligned}
3 L_{2 k-1}^{2}+1 & =3\left(\frac{\sigma_{k}+\sigma_{k-1}}{2}\right)^{2}+1=3\left(4 \sigma_{k}-N_{k}\right)^{2}+1 \\
& =\left(6 \sigma_{k}-2 N_{k}\right)^{2}=\left(\sigma_{k}-\sigma_{k-1}\right)^{2}=M_{2 k-1}^{2}
\end{aligned}
$$

To this end, using Corollary 2.2, we get

$$
4 M_{2 k+1}-M_{2 k}=4\left(\sigma_{k+1}-\sigma_{k}\right)-N_{k}=4\left(6 \sigma_{k}+2 N_{k}\right)-N_{k}=N_{k+1}=M_{2 k+2}
$$

and

$$
\begin{aligned}
4 M_{2 k}-M_{2 k-1} & =4 N_{k}-\left(\sigma_{k+1}-\sigma_{k}\right)=4 N_{k}-\left(-6 \sigma_{k}+2 N_{k}\right) \\
& =6 \sigma_{k}+2 N_{k}=\sigma_{k+1}-\sigma_{k}=M_{2 k+1} .
\end{aligned}
$$

Thus, the sequence M_{k} satisfies the binary recurrence

$$
M_{k+1}=4 M_{k}-M_{k-1} .
$$

Similarly, the identities

$$
4 L_{2 k+1}-L_{2 k}=2\left(\sigma_{k+1}+\sigma_{k}\right)-2 \sigma_{k}=2 \sigma_{k+1}=L_{2 k+2}
$$

and

$$
4 L_{2 k}-L_{2 k-1}=8 \sigma_{k}-\frac{\sigma_{k}+\sigma_{k-1}}{2}=8 \sigma_{k}-\left(4 \sigma_{k}-N_{k}=4 \sigma_{k}+N_{k}=\frac{\sigma_{k}+\sigma_{k}}{2}=L_{2 k+1}\right.
$$

confirm that the sequence L_{k} satisfies the binary recurrences $L_{k+1}=4 L_{k}-L_{k-1}$.
It is easy to check that the Binet forms of the sequences $\left\{L_{k}\right\}$ and $\left\{M_{k}\right\}$ are respectively

$$
L_{k}=\frac{(2+\sqrt{3})^{k}-(2-\sqrt{3})^{k}}{2 \sqrt{3}}
$$

and

$$
M_{k}=\frac{(2+\sqrt{3})^{k}+(2-\sqrt{3})^{k}}{2} k=1,2, \cdots .
$$

Using the Binet forms or otherwise, the interested reader is invited the following identities.
(1) $\left.L_{1}+L_{3}+\cdots+L_{2 n-1}\right)=L_{n}^{2}$,
(2) $M_{1}+M_{3}+\cdots+M_{2 n-1}=\frac{L_{2 n}}{2}$,
(3) $L_{2}+L_{4}+\cdots+L_{2 k}=L_{k} L_{k+1}$,
(4) $M_{2}+M_{4}+\cdots+M_{2 k}=\frac{\left(L_{2 k+1}-1\right)}{2}$,
(5) $L_{x+y}=L_{x} M_{y}+M_{x} L_{y}$,
(6) $M_{x+y}=M_{x} M_{y}+3 L_{x} L_{y}$.

4. ACKNOWLEDGEMENT

It is a pleasure to thank the anonymous referee for his valuable suggestions and comments which resulted in an improved presentation of this paper.

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fib. Quart., 37(2)(1999), 98-105.
[2] M. A. Khan and H. Kwong, Some Binomial Identities Associated with the Generalized Natural Number sequence, Fib. Quart., 49(1)(2011), 57-65.
[3] G. K. Panda, Some fascinating properties of balancing numbers, In Proc. Eleventh Internat. Conference on Fibonacci Numbers and their Applications, Cong Numerantium, 194(2009), 185-189.
[4] G. K. Panda and S. S. Rout, A class of recurrent sequences exhibiting some exciting properties of balancing numbers, Int. J. Math. Comp. Sci., 6(2012), 4-6.
[5] P. K. Ray,Balancing and cobalancing numbers, Ph.D thesis, submitted to National Institute of Technology, Rourkela, 2009.

MSC2010(A.M.S.): 11 B 37, 11 B 83
Department of Mathematics, National Institute of Technology Rourkela, Odisha, 769 008, InDIA

E-mail address: gkpanda_nit@rediffmail.com
Department of Mathematics, National Institute of Technology Rourkela, Odisha, 769 008, InDIA

E-mail address: akpandamath@gmail.com

