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Abstract. The goal of this paper is to introduce a new way of constructing continued frac-
tions in a Galois, totally and tamely ramified extension of local fields. We take a set of
elements of a special form using the norm of that extension and we show that the set such
defined is dense in the field by the means of continued fractions.

1. Introduction

A ring A is a discrete valuation ring (DVR) if it has a unique maximal ideal mA, it is a
principal ideal domain, but not a field. The residue field of A is the quotient field kA = A/mA.
Recall that a complete discrete valuation ring is a DVR that is complete with respect to the
topology in which {mn

A}n≥1 forms a basis of open neighborhoods of 0; that is, every series∑∞
j=0 ajπ

j converges to an element of A, where π is a generator (often called uniformizer) of

the (principal) maximal ideal mA.
Throughout this paper, k denotes a local field with a discrete valuation vk, which is a

field of fractions of a complete discrete valuation ring Ak [7, §2, P.3], with finite residue class
fields. Its maximal ideal is πk, its finite residue field is k = Ak/πk, and Uk = Ak − πk is the
multiplicative group of invertible elements of Ak. The local fields are the p-adic fields, which
are finite extensions of the field Qp of p-adic numbers (characteristic char = 0), and the finite
extensions of the power series field Fp((x)) (case char = p > 0); these are also locally compact,
but we do not need that here. We refer to [7, 3], for example, for more on this topic.

If K is a finite extension of k (here, we write this as k ↪→ K), we denote by AK the integral
closure of Ak in K. We define vK, ΠK, UK, K as before. We will always assume that k ↪→ K
is Galois, totally and tamely ramified extension. The ramification index of K/k, which is the
degree of this extension will be denoted by e. We also assume that vk is the restriction to
k of vK, so we will use the same notation v for both of them. Choose Π ∈ K, π ∈ k prime
elements, such that Πe = π (see [5, Theorem 5.11]). Denoting the norm of K/k by NK/k, it is
known that

v(x) =
1

e
v
(
NK/k(x)

)
, ∀ x ∈ K.

and we may assume that v(Π) = 1 and v(π) = e.
For easy writing, we use the notation [α, β, γ, . . .] to mean

α+
1

β +
1

γ +
1

. . .

.

We want to mention that there are several nonequivalent definitions of continued fractions
in the the field Qp of p-adic numbers (see [1, 2] and the references therein). There are similar-
ities as well as differences between these definitions and the classical real continued fractions.
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Among other continued fractions approaches, we want to mention the expansion of α ∈ Qp in
the form

α = [b0, b1, . . .],

where bj ∈ Z
[
1
p

]
∩ (0, p) (see Ruban [6]), and bj ∈ Z

[
1
p

]
∩
(
−p

2 ,
p
2

)
(see Browkin [1, 2] and the

references therein).
The groups of norms in such extensions play a very important role in class field theory. The

goal of this paper is to introduce a new way of constructing continued fractions in a Galois,
totally and tamely ramified extension of local fields K/k. We take a set of elements of a
special form using the norm of that extension and we show that the defined set is dense in the
larger field K by the means of continued fractions. This will give a glance to the “topological
distance” between the set of norms of K/k and K. The approximation will be exact, and we
will give the degree of the approximation as exact as we can by our method. In the last section
we solve an equation in two variables using our continued fraction expansion.

We take A ∪ {0} to be a complete system of representatives of K = k, such that A ⊂ Ak,
Ap = A where p is the (prime) characteristic of the residue field k. A has the structure of a
group that is isomorphic to k− {0} = K− {0} [4, Theorem 4.10]. Put

< :=
{

[Πp1N0c0, . . . ,Π
psNscs] | pi ∈ (1− e)Z, ci ∈ A1−e

and ∃xi ∈ K, NK/k(xi) = Ni, i = 1, . . . , s
}
.

We define the choice map c : UK → A∗ = A−{0} by c(u) := a, where a is the unique element
of A such that u ≡ a (mod Π) [4, Theorem 4.10]. The map c has the following properties:

(i) c is surjective and c|A = 1A.
(ii) c(u1u2) = c(u1)c(u2).

(iii) c(u−1) = c(u)−1.

2. The normic continued fractions approach

We shall need the following lemma.

Lemma 2.1. We have

v
(
1 + Πx−NK/k(1 + Πx)

)
≥ 1 + v(x), whenever v(x) ≥ 0.

Proof. We have

1 + Πx−NK/k(1 + Πx) = 1 + Πx− (1 + Πx)(1 + Π(1)x) · · · (1 + Π(e−1)x)

= Πx− TrK/k(Πx)−
∑

Π(i)Π(j)x(i)x(j) − · · ·

where x(i),Π(i) are the conjugates of x,Π in the extension. Since v(Π(i)) = v(Π) and v(x(i)) =

v(x) for all conjugates Π(i) of Π and x(i) of x, we get

v
(
1 + Πx−NK/k(1 + Πx)

)
≥ min

(
v(Πx), v

(
TrK/k(Πx)

)
, . . .

)
= 1 + v(x)

when v(x) ≥ 0. We have used here the fact that we deal with local fields, hence with Henselian
fields (fields where Hensel’s lemma holds, that is, a simple root in a residue field can be lifted
in the field above). �

Take an element α ∈ K − {0}, and define the (finite or infinite) sequences {αn}n, {an}n,
{un}n as follows:

α0 :=α, a0 := NK/k(α), u0 := αΠ−v(α)
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If αn, an, un are defined, then

αn+1 :=
(
αn − c(un)1−eΠ(1−e)v(αn)NK/k(αn)

)−1
, (2.1)

(if the inverse exists, otherwise the sequence “terminates” at n)

an+1 :=NK/k(αn+1), un+1 := αn+1Π
−v(αn+1),

where c is the choice map defined in Section 1. Putting

αn = Πv(αn)un = Πv(αn)c(un)u′n

where u′n is a unit in UK which starts with 1 in the canonical expansion after powers of Π and
coefficients in A, that is, u′n = 1 + Πxn and v(xn) ≥ 0, we see that (2.1) can be rewritten in
the following form:

αn+1 = (c(un))−1Π−v(αn)
(
u′n −NK/k(u′n)

)−1
. (2.2)

Thus, the sequence terminates if u′n − NK/k(u′n) = 0 (we will deal with this condition in
Theorem 3.5).

Our intuition tells us that α 6= 0 can be expanded as

c(u0)
1−ea0Π

(1−e)v(α0) +
1

c(u1)
1−ea1Π

(1−e)v(α1) +
1

c(u2)
1−ea2Π

(1−e)v(α2) +
1

. . .

and proving this and other basic properties will be our goal in the main section of this paper.

3. The results

We start with a lemma on the valuation of αn.

Lemma 3.1. With the notations of the previous section, let

tn := v
(
un
′ −NK/k(un

′)
)
.

We assume that NK/k(un
′) 6= un

′, hence tn <∞. Then

v(αnαn+1) = −tn < 0, for all n ∈ N. (3.1)

Furthermore,

v(αn+1) = −tn + tn−1 + · · ·+ (−1)nt0 + (−1)nv(α0), for all n ∈ N.

Proof. We first observe that αn+1 exists since NK/k(un
′) 6= un

′. The first claim is immediate
from Lemma 2.1 and equation (2.2). The last claim follows by induction. �

We will define now the approximation of elements of K with elements of <. Take

p−1 := 1, q−1 := 0, p0 := a0c(u0)
1−eΠ(1−e)v(α0), q0 := 1, (3.2)

and

pn+1 :=an+1c(un+1)
1−eΠ(1−e)v(αn+1)pn + pn−1,

qn+1 :=an+1c(un+1)
1−eΠ(1−e)v(αn+1)qn + qn−1,

(3.3)

assuming that αn+1 defined by (2.1) exists. We will call
{
pn
qn

}
n∈N∪{−1}

the convergents of α

and we observe that they belong to the set <.
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Lemma 3.2. We have
qn+1pn − pn+1qn = (−1)n.

Proof. Follows from the definitions (3.2) and (3.3) of pn and qn. �

Theorem 3.3. Let α0 ∈ K∗. We have v(q0) = 0 and

v(pn) = v(α0α1 · · ·αn)

v(qn) = v(α1α2 . . . αn) ≤ −
[
n+ 1

2

]
− ε v(α0), for all n > 0,

(3.4)

where ε = 0, 1, if n is even, respectively, odd.

Proof. The first assertion follows from (3.2) and the second claim will be proved by induction.
Obviously, from (3.2) and (3.3) we get v(p0) = v(α0) and v(p1) = v(α0α1). Now we show that

v(pn+1) = v(α0α1 · · ·αn+1),

using the induction assumption. So,

v(pn+1) = v(an+1c(un+1)
(1−e)Π(1−e)v(αn+1)pn + pn−1)

= min{v(α0 · · ·αn+1), v(α0 · · ·αn−1)}
= v(α0α1 · · ·αn+1),

since v(αnαn+1) = −tn < 0, according to the Lemma 3.1.
The second claim of (3.3) will also be proved by induction. From (3.3), for n = 1 we have

v(q1) = (1− e)v(α1) + v(a1) + v(q0) = v(α1) + v(q0) = v(α1).

Suppose that the assertion is true for q1, . . . , qn, for n ≥ 2. Then,

v(qn+1) = v
(
c(un+1)

1−ean+1Π
(1−e)v(αn+1)qn + qn−1

)
= v(αn+1) + v(qn) = v(α1α2 · · ·αn+1),

since

v(an+1c(un+1)
1−eΠ(1−e)v(αn+1)qn) = (1− e)v(αn+1) + v(an+1) + v(qn)

= v(αn+1) + v(qn) = v(α1α2 · · ·αn+1)

< v(α1α2 · · ·αn−1) = v(qn−1),

using (3.1).
We now show the inequality (3.3) satisfied by v(qn). From Lemma 3.1 and the previous

result of this theorem we have

v(q2m) = v(α1α2) + · · ·+ v(α2m−1α2m)

= −t1 − t2 − · · · t2m−1 ≤ −m
and

v(q2m+1) = v(α0α1) + · · ·+ v(α2mα2m+1)− v(α0)

= −t0 − t1 − · · · − t2m − v(α0) ≤ −(m+ 1)− v(α0).

The theorem is shown. �

Now we will study the behavior of the sequence
{
pn
qn

}
n∈N∪{−1}

. We shall prove now that

our sequence is Cauchy and, consequently, it has a limit.
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Theorem 3.4. The sequence
{
pn
qn

}
n∈N∪{−1}

is convergent and its limit is α.

Proof. First observe that

v

(
pn+1

qn+1
− pn
qn

)
= v

(
(−1)n+1

qnqn+1

)
= −v(qnqn+1)

= v(α0) + t0 + t1 + · · ·+ tn ≥ n+ 1 + v(α0)

and

v

(
ps
qs
− pr
qr

)
≥ min

(
v

(
ps
qs
− ps−1
qs−1

)
, . . . , v

(
pr+1

qr+1
− pr
qr

))
= v(α0) + t0 + t1 + · · ·+ tr →∞ as s, r →∞

assuming, without loss of generality, that s ≥ r.
Next, take

v

(
α− pn

qn

)
= v

(
(−1)n

qn(αn+1qn + qn−1)

)
= −v(qn)− v(αn+1qn + qn−1)

since

α =
αn+1pn + pn−1
αn+1qn + qn−1

,

which follows from our definition (2.1) of αn. Now set wn+1 := αn+1qn + qn−1 and estimate

wn+1 = αn+1(qn + α−1n+1qn−1)

= αn+1

(
qn +

(
αn − anc(un)1−eΠ(1−e)v(αn)

)
qn−1

)
= αn+1

(
qn + αnqn−1 − anc(un)1−eΠ(1−e)v(αn)qn−1

)
= αn+1(αnqn−1 + qn−2) = αn+1wn = α1 · · ·αn+1. (3.5)

Hence

v

(
α− pn

qn

)
= −v(qn)− v(α1 · · ·αn+1) = −v(qnqn+1)→∞,

as n→∞, so α is the limit of our sequence. �

It is known that in the classical case, finite continued fractions with integer terms represent
rational numbers. We investigate the same problem next for our continued fraction expansion.

Theorem 3.5. The sequence {αn}n is finite if and only if there exists n such that

αn = aξe−1Π
v(αn), (3.6)

where a ∈ A and ξe−1 is an (e− 1)–root of unity in k.

Proof. Our sequence terminates if and only if there exists n such that

un − c(un)1−eNK/k(un) = 0.

This is the same as saying that

1 + Πxn = NK/k (1 + Πxn) ∈ k
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where un = c(un) (1 + Πxn), for an element xn ∈ K with v(xn) ≥ 0. So there exists an element
x′n ∈ k such that

xn = x′nΠe−1 and v(x′n) ≥ 0.

We also must have the condition

NK/k(1 + πx′n) = 1 + πx′n

fulfilled, which is equivalent to (knowing that (1 + πx′n) ∈ k)

NK/k(1 + πx′n) = (1 + πx′n)e = 1 + πx′n. (3.7)

Obviously, 1 + πx′n can never be zero, so the only case we could have (3.7) is when

(1 + πx′n)e−1 = 1,

hence un must be of the form

un = c(un)ξe−1 and αn = c(un)ξe−1Π
v(αn) (3.8)

where ξe−1 = 1 + Πxn ∈ k is an (e− 1)-root of unity. �

Remark 3.6. In the p-adic field Qp, the condition (3.6) could be re-written as Logp(αn) = 0,
in terms of the analytic continuation of the usual logarithm, called the Iwasawa logarithm

Logp, (for example, if x ∈ Z∗p, then Logp(x) = 1
p−1Logp(xp−1) = 1

1−p
∑

k≥1
(1−xp−1)k

k ), but this

gives no other indication on the set of elements of the form (3.6).

4. An application

We will use our continued fraction process to solve an equation, namely

ax+ by + d = 0 (4.1)

where

gcd(a, b) = 1 and a, b, d ∈ AK

are such that
a

b
− c

(a
b

Πv( b
a
)
)(1−e)

Π(1−e)v(a
b
) NK/k

(a
b

)
= ξe−1

is an (e− 1)-root of unity in a Galois, totally and tamely ramified extension k ↪→ K of degree
e and

v(d) ≥ v
(
b

a

)
.

We are looking for solutions in AK. Suppose that we found a solution of (4.1), say (x0, y0).
Thus

ax0 + by0 + d = 0. (4.2)

Subtracting (4.2) from (4.1) we get

a(x− x0) + b(y − y0) = 0

or

y − y0 =
a

b
(x0 − x).

Since gcd(a, b) = 1 we must have b
∣∣(x− x0) in AK, so

x =x0 − bt
y =y0 + at

(4.3)
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for some t ∈ AK. So we have showed that if (x, y) is solution of (4.1), then it must satisfies
(4.3) for some t ∈ AK. Conversely, we take (x1, y1) of the form (4.3) and we show that it is a
solution of (4.1). We have

ax1 + by1 + d = ax0 + by0 + d+ abt1 − abt1 = ax0 + by0 + d = 0.

We must find now a particular solution of (4.1). This can be done using our continued fraction
expansion for α0 = a/b. We will use the notations of Section 2. Since

α1 =

(
a

b
− c

(a
b

Πv( b
a
)
)(1−e)

Π(1−e)v(a
b
)NK/k

(a
b

))−1
is an (e− 1)-root of unity this implies that α2 does not exist. Hence

p1
q1

=
a

b

and
p1
q1
− p0
q0

=
1

q1q0
or

a

b
− p0
q0

=
1

bq0
.

Furthermore, aq0 − bp0 = 1 or aq0 − bp0 − 1 = 0. Multiplying the previous relation by −d we
get

−adq0 + bdp0 + d = 0

and taking

x0 =− dq0 = −d

y0 = dp0 = d a0 c
(a
b

Πv(a
b
)
)1−e

Π(1−e)v(a
b
)

(4.4)

we have produced a particular solution of (4.1) and consequently, we have found all the solution
of our equation in algebraic integers of the extension k ↪→ K. However we must make sure that
our particular solution is in AK, so we have to check that both v(x0) and v(y0) are positive.
We have no trouble with x0 since q0 = 1 and d ∈ AK. For y0 we get

v(y0) = v(d) + v(p0) = v(d) + v
(
a0c(u0)

1−eΠ(1−e)v(a
b
)
)

= v(d) + v
(a
b

)
≥ 0

and we have solved the problem.
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