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Abstract. In this paper we consider Diophantine triples, (denotedD(n)-3-tuples,) {1, 2, 5}, {1, 5, 10}
for the case n = −1. We show using properties of Lucas and Fibonacci numbers that neither
of 3-tuples {1, 2, 5}, {1, 5, 10} can be extended to a D(−1)-4-tuple.

1. INTRODUCTION

Definition 1.1. A set of m positive integers is called a Diophantine m-tuple with the property
D(n) or simply D(n)-m-tuple, if the product of any two elements of this set increased by n is
a perfect square.

As a special case, a Diophantine m-tuple is a set of m positive integers with the property:
the product of any two of them increased by one unit is a perfect square, for example, {1, 3,
8, 120} is a Diophantine quadruple, since we have

1× 3 + 1 = 22, 1× 8 + 1 = 32, 1× 120 + 1 = 112,

3× 8 + 1 = 52, 3× 120 + 1 = 192, 8× 120 + 1 = 312.

The study of Diophantine m-tuple can be traced back to the third century AD, when the
Greek mathematician Diophantus discovered that

{
1
16 ,

33
16 ,

17
4 ,

105
16

}
is a set of four rationals

which has the above property. Then Fermat obtained the first Diophantine quadruple {1, 3, 8,
120}. Astoundingly, 777480

8288641 was found to extend the Fermat’s set to
{

1, 3, 8, 120, 777480
8288641

}
and

then the product of any two elements of this set increased by one unit is a perfect square of
a rational number, which was Euler’s contribution. Moreover, he acquired the infinite family
of Diophantine quadruple {a, b, a+ b+ 2r, 4r (r + a) (r + b)}, if ab+ 1 = r2. In January 1999,
Gibbs [8] found the first set of six positive rationals with the above property. In the integer
case, there is a famous conjecture: there does not exist a Diophantine quintuple.

The case n 6= 1 also have been studied by several mathematicians, for example, {1, 2, 5}
is a D(−1)-triple. It is interesting to note that if n is an integer of form n = 4k + 2, then
there does not exist a Diophantine quadruple with the property D(n). This theorem has been
independently proved by Brown [2], Gupta & Singh [9] and Mohanty & Ramasamy [13] all
in 1985. In 1993, Dujella [3] proved that if an integer n does not have the form n = 4k + 2
and n /∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one Diophantine quadruple
with the property D(n). In the case n = −1, the conjecture—there does not exist a D(−1)-
quadruple is known as D(−1)-quadruple conjecture.

In 1985, Brown [2] proved the nonextendability of the Diophantine D(−1) triple {1, 2, 5}.
Walsh [15] and Kihel [10] also independently proved that in 1999 and 2000 respectively. In
1984, Mohanty & Ramasamy [12] proved that the Diophantine D(−1) triple {1, 5, 10} can not
be extended to a D (−1) quadruple. Furthermore, Brown [2] proved that the following triple{

n2 + 1, (n+ 1)2 + 1, (2n+ 1)2 + 4
}
,
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can not be extended to a Diophantine quadruple with the property D (−1) if n ≡ 0 (mod4).
{17, 26, 85} is an example when n = 4. Dujella [4] was the first mathematician who proved
the nonextendability for all triples of the form {1, 2, c} in 1998. The endeavor in proving that
{1, 5, c} can not be extended was mostly attributed to Muriefah & Al-Rashed [14]. In 2005,
Filipin [7] proved the nonextendability of {1, 10, c}.

In [2, 4, 7, 10, 12, 14, 15] solution techniques involved the intersection of solutions of
systems of certain Pellian equations, including also employing methods such as linear forms
in logarithms from the results of Baker and Davenport, [1], and other deep theoretical results
from Diophantine analysis. Our paper uses only elementary number theory including use of
results related to Legendre symbols, basic properties of Fibonacci and Lucas numbers with
congruences, and thus, represents a distinctly original approach, i.e., without use of Pellian
equations.

There does not exist a Diophantine quintuple with the property D(−1). This was proved
by Dujella & Fuchs [6] in 2005. Moreover, in 2007, Dujella, Filipin & Fuchs [5] proved that
there are only exist finitely many quadruples with the property D(−1).

2. NONEXTENDABILITY OF {1, 2, 5}

We will use the property of Fibonacci and Lucas sequences to prove the nonextendability
of Diophantine triple {1, 2, 5} with the property D (−1).

Definition 2.1. Fn is Fibonacci sequence beginning with F0 = 0, F1 = 1 and satisfying the
property Fn+2 = Fn+1+Fn. Ln is Lucas sequence beginning with L0 = 2, L1 = 1 and satisfying
the property Ln+2 = Ln+1 + Ln.

It is well-known that if (X,Y ) are positive integers such that X2−5Y 2 = ±4, then (X,Y ) =
(Lm, Fm) for some positive integer m and the sign on the right is given by (−1)m, also this
result can be found in Koshy’s [11] book, Theorem 5.4 in page 75 and Theorem 5.10 in page
83. If 1, 5, d are in the same D (−1) set, then exists integers A,B such that d − 1 = A2 and
5d− 1 = B2, thus we have B2 − 5A2 = 4 and then A = F2n for some positive integer n.

In order to prove that {1, 2, 5, d} and {1, 5, 10, d} are not Diophantine quadruple, we need
prove 2d− 1 and 10d− 1 are not perfect squares, respectively. Since d = A2 + 1 and A = F2n

for some positive integer n, we reduce these two questions to prove 2F 2
2n + 1 and 10F 2

2n + 9
are not perfect squares for any positive integer n, respectively.

Lemma 2.2. For any nonnegative integer q,
5
(
F 2
3q + 2F 2

2·3q + 1
)

= (L2·3q + 1) (2L2·3q − 1) .

Proof. This lemma can be derived by the following calculation:
5
(
F 2
3q + 2F 2

2·3q + 1
)
− (L2·3q + 1) (2L2·3q − 1)

= 5F 2
3q + 10F 2

2·3q + 5− 2L2
2·3q − L2·3q + 1

=
(
5F 2

3q − 4
)

+ 2
(
5F 2

2·3q + 4
)

+ 2− 2L2
2·3q − L2·3q

= L2
3q + 2− L2·3q

= L2·3q − L2·3q
= 0. �

We will use this formula for Lemma 2.3 and Lemma 3.1, F 2
nm − F 2

m = F(n+1)mF(n−1)m
with m (n− 1) even, this formula can be found in Koshy’s [11] book, the 55th Fibonacci and

Lucas identity in page 90 with n replaced by m and 2k replaced by m (n− 1). Let α =
√
5+1
2 ,

β = 1−
√
5

2 , then Fm = 1√
5

(αm − βm), Lm = αm + βm and αβ = −1.
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THE FIBONACCI QUARTERLY

Lemma 2.3. If n is a positive integer not divisible by 3, then F 2
2·3q ·n ≡ F 2

2·3q (mod (L2·3q + 1)).

Proof. If 3 - n, then 3 | (n+ 1) or 3 | (n− 1), thus F3m | F(n+1)m or F3m | F(n−1)m. For even

integer m, F3m = 1√
5

(
α3m − β3m

)
= 1√

5
(αm − βm)

(
α2m + αmβm + β2m

)
= 1√

5
(αm − βm)

(
(αm + βm)2 − (αβ)m

)
= Fm

(
L2
m − 1

)
= Fm (Lm + 1) (Lm − 1), then

(Lm + 1) | F3m |
(
F 2
nm − F 2

m

)
. By letting m = 2 · 3q, we get F 2

2·3q ·n ≡ F 2
2·3q (mod (L2·3q + 1)).

�

{Lm}m≥1 is periodic modulo 4 with period 6, then L2·3q ≡ L0 = 2 (mod4) for q ≥ 1.

Theorem 2.4. The Diophantine triple {1, 2, 5} cannot be extended to a Diophantine quadruple
{1, 2, 5, d} with the property D (−1), for all integers d > 5.

Proof. We only need to prove 2F 2
2n + 1 is not a perfect square for any positive integer n.

Suppose there exists a positive integer l such that l2 = 2F 2
2n + 1. Write 2n in the form

2n = 2 · 3q · k with q ≥ 0 and 3 - k.
If q = 0, then F 2

2n = F 2
2·30·k ≡ F 2

2·30 = F 2
2 = 1 (mod (L2·30 + 1)), then F 2

2n ≡ 1 (mod4)

and l2 = 2F 2
2n + 1 ≡ 3 (mod4), a contradiction to the fact that the square of any integer is

congruent to 0 or 1 modulo 4.
If q ≥ 1, then L2·3q ≡ 2 (mod4), then L2·3q + 1 ≡ 3 (mod4). Therefore, there is a prime

number p such that p| (L2·3q + 1) and p ≡ 3 (mod4).
According to Lemma 2.2, p |

(
5
(
F 2
3q + 2F 2

2·3q + 1
))

, since p - 5, then 2F 2
2·3q+1 ≡ −F 2

3q (modp).

Then we have 1 =
(
l2

p

)
=
(
2F 2

2n+1
p

)
=
(
2F 2

2·3q ·k+1

p

)
=
(
2F 2

2·3q+1

p

)
=
(
−F 2

3q

p

)
=
(
−1
p

)(
F 2
3q

p

)
=(

−1
p

)
= −1 since p ≡ 3 (mod4), a contradiction.

In conclusion, the Diophantine triple {1, 2, 5} cannot be extended to a Diophantine quadru-
ple {1, 2, 5, d}, for all integers d > 5. �

3. NONEXTENDABILITY OF {1, 5, 10}

Lemma 3.1. If q and n are positive integers and n is odd, then F 2
2q ·n ≡ F 2

2q (modL2q+1).

Proof. In formula F 2
nm − F 2

m = F(n+1)mF(n−1)m, if n is odd, then 4 | (n+ 1) or 4 | (n− 1),

thus F4m | F(n+1)m or F4m | F(n−1)m. And F4m = F2mL2m, then L2m | F4m |
(
F 2
nm − F 2

m

)
. By

letting m = 2q, we get F 2
2q ·n ≡ F 2

2q (modL2q+1). �

Lemma 3.2. For any positive integer q, L2q+1 ≡ 7 (mod10).

Proof. We will proof this lemma by using induction. When q = 1, then L2q+1 = L4 =
7 (mod10). Suppose that L2q+1 ≡ 7 (mod10) is true, then L2q+2 = L2

2q+1 − 2 ≡ 72 − 2 ≡
7 (mod10). Therefore, L2q+1 ≡ 7 (mod10) is true for any positive integer q. �

Theorem 3.3. The Diophantine triple {1, 5, 10} cannot be extended to a D (−1) quadruple
{1, 5, 10, d}, for all integers d > 10.

Proof. We only need to prove 10F 2
2n0

+ 9 is not a perfect square for any positive integer n0.

Suppose there exists a positive integer l such that l2 = 10F 2
2n0

+ 9.

If n0 is odd, then F 2
2n0
≡ 1 (mod7) by Lemma 3.1 for q = 1, then l2 = 10F 2

2n0
+9 ≡ 5 (mod7).

Thus, 1 =
(
l2

7

)
=
(
5
7

)
= −1 gave us a contradiction, therefore n0 is even. Rewrite 2n0 in

the form 2n0 = 2q · n such that q ≥ 2 and 2 - n. By Lemma 3.2, L2q+1 ≡ 7 (mod10), then
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(
L2q+1

5

)
=
(
2
5

)
= −1, then there exists an odd prime p such that p | L2q+1 and

(p
5

)
= −1.

Since 10F 2
2q + 9 = 2

(
5F 2

2q + 4
)

+ 1 = 2L2
2q + 1 = 2 (L2q+1 + 2) + 1 = 2L2q+1 + 5, then 1 =(

l2

p

)
=

(
10F 2

2n0
+9

p

)
=
(
10F 2

2q ·n+9

p

)
=
(
10F 2

2q
+9

p

)
=
(
2L2q+1+5

p

)
=
(
5
p

)
= −1, a contradiction.

In conclusion, then the Diophantine triple {1, 5, 10} cannot be extended to a Diophantine
quadruple {1, 5, 10, d}, for all integers d > 10. �
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