RAMANUJAN-NAGELL TYPE EQUATIONS AND PERFECT NUMBERS

PHILIPPE ELLIA AND PAOLO MENEGATTI

Abstract

We prove that if δ is a triangular number congruent to 3 modulo 4 , then the equation $x-y=\delta$ has a finite number of solutions with x, y both perfect numbers. We outline a general approach to determine the exact number of solutions and show that there is none for $\delta=3,15$.

Introduction

An integer $n \in \mathbb{N}$ is said to be perfect if $\sigma(n)=2 n$ where σ is the sum of the divisors function. By results of Euler every even perfect number has the form $n=2^{p-1}\left(2^{p}-1\right)$ where $2^{p}-1$ is prime, whereas every odd perfect number is of the form $n=q^{4 b+1} . \prod p_{i}^{2 a_{i}}, q, p_{i}$ distinct primes, $q \equiv 1(\bmod 4)$; in particular if n is an odd perfect number, then $n \equiv 1(\bmod 4)$. It is still unknown if odd perfect numbers exist (for some recent results see [8, 9]).

In [6], Luca and Pomerance have proved, assuming the abc-conjecture, that the equation $x-y=\delta$ has a finite number of solutions with x, y perfect, if δ is odd. Our interest in the distance between two perfect numbers comes from this result and the following obvious remark: if one could prove that an odd integer cannot be the distance between two perfect numbers, then it would follow that every perfect number is even.

From Touchard's Theorem [2] it follows that an integer $\delta \equiv \pm 1(\bmod 12)$ cannot be the distance between two perfect numbers. In [1], it has been shown that there exist infinitely many odd (triangular) numbers $(\not \equiv \pm 1(\bmod 12))$ which cannot be the distance between perfect numbers. In this note, by using results on generalized Ramanujan-Nagell equations, we prove that if δ is a triangular number congruent to 3 modulo 4 , then $x-y=\delta$ has a finite number of solutions with x, y perfect numbers. We also outline a general approach to determine the exact number of solutions. For example, we show that $\delta=3,15$ cannot be the distance between two perfect numbers.

1. Ramanujan-Nagell Equations and Perfect Numbers

Let $D_{1}, D_{2} \in \mathbb{Z}$ be nonzero integers, then the equation (in x, n)

$$
\begin{equation*}
D_{1} x^{2}+D_{2}=2^{n} \tag{1.1}
\end{equation*}
$$

is a generalized Ramanujan-Nagell equation. Recall the following result of Thue [4].
Theorem 1.1. Let $a, b, c, d \in \mathbb{Z}$ such that $a d \neq 0, b^{2}-4 a c \neq 0$. Then the equation

$$
\begin{equation*}
a x^{2}+b x+c=d y^{n} \tag{1.2}
\end{equation*}
$$

has only a finite number of solutions in integers x and y when $n \geq 3$.
Applying this result to $D_{1} x^{2}+D_{2}=d y^{3}, d=1,2,4$, we conclude with the following corollary.
Corollary 1.2. For $n \geq 3$, equation (1.1) has a finite number of solutions (x, n).

RAMANUJAN-NAGELL TYPE EQUATIONS AND PERFECT NUMBERS

An odd perfect number n is congruent to 1 modulo 4 , while an even one, m, is congruent to 0 modulo 4 except if $m=6$. It follows, for odd δ, that $\delta \equiv 1(\bmod 4)$ if $\delta=n-m$ or $\delta \equiv 3$ $(\bmod 4)$ if $\delta=m-n$ or $\delta+6=n$. Using the result above we have the following theorem.

Theorem 1.3. Let $\delta=b(b-1) / 2$ be a triangular number such that $\delta \equiv 3(\bmod 4)$. The equation $x-y=\delta$ has at most finitely many solutions x, y both perfect.
Proof. We may assume $m-n=\delta=b(b-1) / 2$, with m, n perfect numbers and $m=2^{p-1}\left(2^{p}-1\right)$. Then we have:

$$
\begin{equation*}
2 n=\left(2^{p}-1+b\right)\left(2^{p}-b\right) . \tag{1.3}
\end{equation*}
$$

Moreover by Euler's Theorem $n=q^{4 b+1} \prod p_{i}^{2 a_{i}}, q, p_{i}$ distinct primes, $q \equiv 1(\bmod 4)$.
Since $\left(2^{p}-1+b, 2^{p}-b\right)=\left(2^{p}-1+b, 2 b-1\right)$, if a prime p divides both $A=2^{p}-1+b$ and $B=2^{p}-b$, it must divide $2 b-1$. In any case we can write $A=p^{\varepsilon} \cdot A^{\prime}, \varepsilon \in\{0,1\}$ and $p^{2 \alpha} \| A^{\prime}$. Similarly $B=p^{e} . B^{\prime}, e \in\{0,1\}, p^{2 \beta} \| B^{\prime}$. It turns out that A or B is of the form: d times a square, where d is a (square free) divisor of $2(2 b-1)$. So $2^{p}=d C^{2}-b+1$ or $2^{p}=d D^{2}+b$. By Corollary 1.2 each equation $d x^{2}+D_{2}=2^{n}\left(D_{2}=-b+1\right.$ or $\left.b\right)$ has a finite number of solutions. Since $2(2 b-1)$ has a finite number of divisors we are done.
Remark 1.4. As far as $\delta=b(b-1) / 2$ is congruent to 3 modulo 4 in order to show that δ can't be the distance between two perfect numbers one has:
(1) to show that $\delta+6$ is not perfect.
(2) for any square free divisor d of $2(2 b-1)$ to solve the equations: $d x^{2}+D_{2}=2^{n}$ $\left(D_{2} \in\{-b+1, b\}\right.$ (see proof of Theorem 1.3)). For any solution (x, n) such that $n=p$ is prime, check if $2^{p}-1$ is prime. If it is, check if $2^{p-1}\left(2^{p}-1\right)-\delta$ is perfect.

Since a great deal is known on the generalized Ramanujan-Nagell equations (see [11] for a survey), in practice, for a given δ, the above procedure should allow to conclude (see also $[7,10]$ for an algorithmic approach). Sometimes it is possible to go faster, for example we have the following proposition.
Proposition 1.5. The equation $x-y=15$ has no solutions with x, y both perfect numbers.
Proof. This is the case $b=6$ of Theorem 1.3. If the Euler prime, q, of n divides both A and B it must divide $2 b-1=11$, so $q=11$ which is impossible since $q \equiv 1(\bmod 4)$. If $q \mid B$, then $A=2^{p}+5=d x^{2}$, with $d=1$ or 11 . Since x is odd we get $5 \equiv d(\bmod 8)$ which is absurd. We conclude that $q \mid A$ and $B=2^{p}-6=d x^{2}$, where $d \mid 22$. Reducing modulo 3 we see that $d=1$ is impossible. Reducing modulo 4 we exclude the cases $d=11,22$. Finally it is easy to see that the unique solution of $2 x^{2}+6=2^{n}$ is $(x, n)=(\pm 1,3)$.

To conclude let us see another example, the case $\delta=3$ which is still open.
Lemma 1.6. Assume m, n are perfect numbers such that $m-n=3$. Then $m=2^{p-1}\left(2^{p}-1\right)$ with $2^{p}-1$ prime and $2^{p}=5 u^{2}+3$ for some integer u.
Proof. Since $\delta=b(b-1) / 2$ with $b=3$ and since $\delta+6=9$ is not perfect, we see that m is even and n is odd. So $m=2^{p-1}\left(2^{p}-1\right)$ with $2^{p}-1$ prime. Moreover, $n=\left(2^{p-1}+1\right)\left(2^{p}-3\right)$ (equation (1.3) in the proof of Theorem 1.3). Also $M=\operatorname{gcd}(A, B)=5$ or $1\left(A=2^{p-1}+1\right.$, $\left.B=2^{p}-3\right)$.

If $M=1$, from Euler's Theorem, A or B is a square. Since $A=\left(2^{(p-1) / 2)}\right)^{2}+1, A$ can't be a square. Since $B=2^{p}-3 \equiv 2(\bmod 3), B$ can't be a square. It follows that $M=5$.

Since $n=m-3$ and $m \equiv 1(\bmod 3)$, we get $n \equiv 1(\bmod 3)$. We also have $n=q D^{2}(q \equiv 1$ $(\bmod 4)$, the Euler's prime). It follows that $q \equiv 1(\bmod 3)$. In particular $q \neq 5$. Finally if

THE FIBONACCI QUARTERLY

$q \nmid A$, then $A=2^{p-1}+1=5 C^{2}$. Since C is odd $C^{2} \equiv 1(\bmod 8)$. Since we may assume $p \geq 4$, we get a contradiction. So $q \mid A$ and $B=2^{p}-3=5 u^{2}$ for some integer u.

Corollary 1.7. If $\delta=|x-y|$, with x, y perfect numbers, then $\delta>3$.
Proof. The cases $\delta \leq 2$ follow from considerations on congruences (see [5]). If $\delta=3$, then from Lemma 1.6: $m-n=3$, where $m=2^{p-1}\left(2^{p}-1\right)$ and $2^{p}=5 u^{2}+3$. So (u, p) is a solution of the equation $5 x^{2}+3=2^{n}$. It is known [3] that the only solutions in positive integers of this equations are $(x, n)=(1,3),(5,7)$. Since 25 and $2^{6}\left(2^{7}-1\right)-3=8125$ are not perfect numbers, we conclude.

If δ is not a triangular number congruent to $3(\bmod 4)$ we no longer have the factorization $2 n=\left(2^{p}-1+b\right)\left(2^{p}-b\right)$ and things get harder. The cases $\delta=5,7$ can be excluded by congruence considerations. However for odd $\delta \leq 15$, the case $\delta=9$ is still open, as is the problem to show that a triangular number congruent to 3 modulo 4 can't be the distance between two perfect numbers.

References

[1] Ph. Ellia, On the distance between perfect numbers, J. of Combinatorics and Number Theory, 4.2 (2012), 105-108.
[2] J. A. Holdener, A theorem of Touchard on the form of odd perfect numbers, Amer. Math. Monthly, 109, (2002), 661-663.
[3] M. Le, On the Diophantine equation $D_{1} x^{2}+D_{2}=2^{n+2}$, Acta Arith., 64 (1993), 29-41.
[4] W. Ljunggren, On the Diophantine equation $C x^{2}+D=2 y^{n}$, Math. Scand., 18 (1966), 69-86.
[5] F. Luca, Can two consecutive numbers both be perfect?, Problem 10711, Amer. Math. Monthly, 106, 781782 (1999); Solution 108 (2001), 80-81.
[6] F. Luca and C. Pomerance, On the radical of a perfect number, New York J. Math., 16 (2010), 23-30.
[7] M. Mignotte, On the automatic resolution of certain Diophantine equation, EUROSAM 8, Proceedings, Lecture Notes in Comput. Sci., 174 (1984), 378-385.
[8] P. N. Pace, Odd perfect numbers have at least nine distinct prime factors, Math. Comp., 76 (2007), 21092126.
[9] P. Ochem and M. Rao, Odd perfect numbers are greater than 10^{1500}, Math. Comp., 81 (2012), 1869-1877.
[10] A. Petho, B. M. M. -de Weger, Products of prime powers in binary recurrence sequences I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp., 47 (1986), 713-727.
[11] N. Saradha and A. Srinivasan, Generalized Lebesgue-Ramanujan-Nagell equations, in Saradha N. Diophantine Equations, Narosa Publishing House, New Delhi, India, 207-223, 2007.

MSC2010: 11A99
Dipartimento di Matematica e Informatica, Università di Ferrara, 35 via Machiavelli, 44100 FERRARA (IT.)

E-mail address: phe@unife.it
Dipartimento di Matematica e Informatica, Università di Ferrara, 35 via Machiavelli, 44100 FERRARA (IT.)

E-mail address: paolo.menegatti@student.unife.it

