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Abstract. We prove that if δ is a triangular number congruent to 3 modulo 4, then the
equation x − y = δ has a finite number of solutions with x, y both perfect numbers. We
outline a general approach to determine the exact number of solutions and show that there
is none for δ = 3, 15.

Introduction

An integer n ∈ N is said to be perfect if σ(n) = 2n where σ is the sum of the divisors
function. By results of Euler every even perfect number has the form n = 2p−1(2p − 1) where

2p−1 is prime, whereas every odd perfect number is of the form n = q4b+1.
∏

p2aii , q, pi distinct
primes, q ≡ 1 (mod 4); in particular if n is an odd perfect number, then n ≡ 1 (mod 4). It is
still unknown if odd perfect numbers exist (for some recent results see [8, 9]).

In [6], Luca and Pomerance have proved, assuming the abc-conjecture, that the equation
x − y = δ has a finite number of solutions with x, y perfect, if δ is odd. Our interest in
the distance between two perfect numbers comes from this result and the following obvious
remark: if one could prove that an odd integer cannot be the distance between two perfect
numbers, then it would follow that every perfect number is even.

From Touchard’s Theorem [2] it follows that an integer δ ≡ ±1 (mod 12) cannot be the
distance between two perfect numbers. In [1], it has been shown that there exist infinitely many
odd (triangular) numbers (6≡ ±1 (mod 12)) which cannot be the distance between perfect
numbers. In this note, by using results on generalized Ramanujan-Nagell equations, we prove
that if δ is a triangular number congruent to 3 modulo 4, then x−y = δ has a finite number of
solutions with x, y perfect numbers. We also outline a general approach to determine the exact
number of solutions. For example, we show that δ = 3, 15 cannot be the distance between two
perfect numbers.

1. Ramanujan-Nagell Equations and Perfect Numbers

Let D1,D2 ∈ Z be nonzero integers, then the equation (in x, n)

D1x
2 +D2 = 2n (1.1)

is a generalized Ramanujan-Nagell equation. Recall the following result of Thue [4].

Theorem 1.1. Let a, b, c, d ∈ Z such that ad 6= 0, b2 − 4ac 6= 0. Then the equation

ax2 + bx+ c = dyn (1.2)

has only a finite number of solutions in integers x and y when n ≥ 3.

Applying this result toD1x
2+D2 = dy3, d = 1, 2, 4, we conclude with the following corollary.

Corollary 1.2. For n ≥ 3, equation (1.1) has a finite number of solutions (x, n).
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An odd perfect number n is congruent to 1 modulo 4, while an even one, m, is congruent
to 0 modulo 4 except if m = 6. It follows, for odd δ, that δ ≡ 1 (mod 4) if δ = n−m or δ ≡ 3
(mod 4) if δ = m− n or δ + 6 = n. Using the result above we have the following theorem.

Theorem 1.3. Let δ = b(b − 1)/2 be a triangular number such that δ ≡ 3 (mod 4). The
equation x− y = δ has at most finitely many solutions x, y both perfect.

Proof. Wemay assumem−n = δ = b(b−1)/2, withm,n perfect numbers andm = 2p−1(2p−1).
Then we have:

2n = (2p − 1 + b)(2p − b). (1.3)

Moreover by Euler’s Theorem n = q4b+1
∏

p2aii , q, pi distinct primes, q ≡ 1 (mod 4).
Since (2p − 1+ b, 2p − b) = (2p − 1+ b, 2b− 1), if a prime p divides both A = 2p − 1 + b and

B = 2p− b, it must divide 2b− 1. In any case we can write A = pε.A′, ε ∈ {0, 1} and p2α ‖ A′.
Similarly B = pe.B′, e ∈ {0, 1}, p2β ‖ B′. It turns out that A or B is of the form: d times a
square, where d is a (square free) divisor of 2(2b−1). So 2p = dC2− b+1 or 2p = dD2+ b. By
Corollary 1.2 each equation dx2+D2 = 2n (D2 = −b+1 or b) has a finite number of solutions.
Since 2(2b− 1) has a finite number of divisors we are done. �

Remark 1.4. As far as δ = b(b − 1)/2 is congruent to 3 modulo 4 in order to show that δ
can’t be the distance between two perfect numbers one has:

(1) to show that δ + 6 is not perfect.
(2) for any square free divisor d of 2(2b − 1) to solve the equations: dx2 + D2 = 2n

(D2 ∈ {−b+1, b} (see proof of Theorem 1.3)). For any solution (x, n) such that n = p
is prime, check if 2p − 1 is prime. If it is, check if 2p−1(2p − 1)− δ is perfect.

Since a great deal is known on the generalized Ramanujan-Nagell equations (see [11] for
a survey), in practice, for a given δ, the above procedure should allow to conclude (see also
[7, 10] for an algorithmic approach). Sometimes it is possible to go faster, for example we have
the following proposition.

Proposition 1.5. The equation x− y = 15 has no solutions with x, y both perfect numbers.

Proof. This is the case b = 6 of Theorem 1.3. If the Euler prime, q, of n divides both A and B
it must divide 2b − 1 = 11, so q = 11 which is impossible since q ≡ 1 (mod 4). If q | B, then
A = 2p + 5 = dx2, with d = 1 or 11. Since x is odd we get 5 ≡ d (mod 8) which is absurd.
We conclude that q | A and B = 2p − 6 = dx2, where d | 22. Reducing modulo 3 we see that
d = 1 is impossible. Reducing modulo 4 we exclude the cases d = 11, 22. Finally it is easy to
see that the unique solution of 2x2 + 6 = 2n is (x, n) = (±1, 3). �

To conclude let us see another example, the case δ = 3 which is still open.

Lemma 1.6. Assume m,n are perfect numbers such that m− n = 3. Then m = 2p−1(2p − 1)
with 2p − 1 prime and 2p = 5u2 + 3 for some integer u.

Proof. Since δ = b(b − 1)/2 with b = 3 and since δ + 6 = 9 is not perfect, we see that m is
even and n is odd. So m = 2p−1(2p − 1) with 2p − 1 prime. Moreover, n = (2p−1 + 1)(2p − 3)
(equation (1.3) in the proof of Theorem 1.3). Also M = gcd(A,B) = 5 or 1 (A = 2p−1 + 1,
B = 2p − 3).

If M = 1, from Euler’s Theorem, A or B is a square. Since A = (2(p−1)/2))2 +1, A can’t be
a square. Since B = 2p − 3 ≡ 2 (mod 3), B can’t be a square. It follows that M = 5.

Since n = m− 3 and m ≡ 1 (mod 3), we get n ≡ 1 (mod 3). We also have n = qD2 (q ≡ 1
(mod 4), the Euler’s prime). It follows that q ≡ 1 (mod 3). In particular q 6= 5. Finally if
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q - A, then A = 2p−1+1 = 5C2. Since C is odd C2 ≡ 1 (mod 8). Since we may assume p ≥ 4,
we get a contradiction. So q | A and B = 2p − 3 = 5u2 for some integer u. �

Corollary 1.7. If δ = |x− y|, with x, y perfect numbers, then δ > 3.

Proof. The cases δ ≤ 2 follow from considerations on congruences (see [5]). If δ = 3, then
from Lemma 1.6: m−n = 3, where m = 2p−1(2p − 1) and 2p = 5u2 +3. So (u, p) is a solution
of the equation 5x2 + 3 = 2n. It is known [3] that the only solutions in positive integers of
this equations are (x, n) = (1, 3), (5, 7). Since 25 and 26(27 − 1) − 3 = 8125 are not perfect
numbers, we conclude. �

If δ is not a triangular number congruent to 3 (mod 4) we no longer have the factorization
2n = (2p − 1 + b)(2p − b) and things get harder. The cases δ = 5, 7 can be excluded by
congruence considerations. However for odd δ ≤ 15, the case δ = 9 is still open, as is the
problem to show that a triangular number congruent to 3 modulo 4 can’t be the distance
between two perfect numbers.
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