A CONNECTION BETWEEN π AND ϕ

MICHAEL D. HIRSCHHORN

ABSTRACT. We find an expression for π as a limit involving the golden ratio ϕ .

1. INTRODUCTION

We prove that

$$\sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{n}} \\ \sim \frac{\phi^{5n+\frac{5}{2}}}{2\pi n\sqrt[4]{5}} \left(1 - \frac{5-\sqrt{5}}{10n} + \frac{13-5\sqrt{5}}{50n^{2}} - \frac{175-83\sqrt{5}}{1250n^{3}} + \frac{437-205\sqrt{5}}{6250n^{4}} - \cdots \right)$$

as $n \to \infty$, where ϕ is the golden ratio, and consequently,

$$\frac{1}{\pi} = \lim_{n \to \infty} 2n \sqrt[4]{5} \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{n} / \phi^{5n+\frac{5}{2}}.$$

In order to carry out this program, we use the methods developed in two earlier papers on the Apéry numbers [2, 3].

2. The Dominant Term

The first step is to find the value of k for which the term $\binom{n}{k}^2 \binom{n+k}{n}$ is a maximum. We do this by setting

$$\binom{n}{k}^{2}\binom{n+k}{n} = \binom{n}{k+1}^{2}\binom{n+k+1}{n}.$$

This yields

$$\frac{n!(n+k)!}{k!^3(n-k)!^2} = \frac{n!(n+k+1)!}{(k+1)!^3(n-k-1)!^2},$$

or

$$(k+1)^3 = (n+k+1)(n-k)^2$$

If we suppose $k = \theta n$, where θ is to be determined, and divide by n^3 , we find

$$\left(\theta + \frac{1}{n}\right)^3 = \left(1 + \theta + \frac{1}{n}\right)\left(1 - \theta\right)^2.$$

If we let $n \to \infty$, this becomes

$$\theta^3 = (1+\theta)(1-\theta)^2,$$

 $1 - \theta - \theta^2 = 0.$

or

A CONNECTION BETWEEN π AND ϕ

It follows that

$$\theta = \frac{\sqrt{5} - 1}{2} = \frac{1}{\phi},$$

where ϕ is the golden ratio.

Thus, the value of k that we seek is given by

 $k\approx \theta n$

where $\theta = \frac{1}{\phi}$. At $k \approx \theta n$, the value of the term is

$$H = {\binom{n}{\theta n}}^2 {\binom{n+\theta n}{n}}$$

= $\frac{n!(n+\theta n)!}{(\theta n)!^3(n-\theta n)!^2}$
 $\approx \frac{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n \sqrt{2\pi (1+\theta)n} \left(\frac{(1+\theta)n}{e}\right)^{(1+\theta)n}}{\left(\sqrt{2\pi \theta n} \left(\frac{\theta n}{e}\right)^{\theta n}\right)^3 \left(\sqrt{2\pi (1-\theta)n} \left(\frac{(1-\theta)n}{e}\right)^{(1-\theta)n}\right)^2}$
= $\left(\frac{1}{\sqrt{2\pi n}}\right)^3 \frac{\sqrt{1+\theta}}{(\sqrt{\theta})^3(\sqrt{1-\theta})^2} \left(\frac{(1+\theta)^{1+\theta}}{\theta^{3\theta}(1-\theta)^{2(1-\theta)}}\right)^n$

after considerable simplification.

Now,

$$1 - \theta = \theta^2$$
 and $1 + \theta = \frac{1}{\theta}$

 \mathbf{SO}

$$\frac{\sqrt{1+\theta}}{(\sqrt{\theta})^3(\sqrt{1-\theta})^2} = \frac{1}{1-\theta}\sqrt{\frac{1+\theta}{\theta^3}} = \frac{1}{\theta^2}\sqrt{\frac{1}{\theta^4}} = \frac{1}{\theta^4} = \phi^4$$

and

$$\frac{(1+\theta)^{1+\theta}}{\theta^{3\theta}(1-\theta)^{2(1-\theta)}} = \frac{1}{\theta^{1+\theta}\theta^{3\theta}(\theta^2)^{2(1-\theta)}} = \frac{1}{\theta^5} = \phi^5.$$

 So

$$H \approx \frac{\phi^{5n+4}}{(2\pi n)^{\frac{3}{2}}},$$

(see Figure 1.).

At points near θn , the terms of the sum are given by

$$\binom{n}{\theta n+k}^2 \binom{n+\theta n+k}{n} = H \cdot \binom{n}{\theta n+k}^2 \binom{n+\theta n+k}{n} / \binom{n}{\theta n}^2 \binom{n+\theta n}{n}$$
$$= H \cdot \frac{n!(n+\theta n+k)!}{(\theta n+k)!^3(n-\theta n-k)!^2} / \frac{n!(n+\theta n)!}{(\theta n)!^3(n-\theta n)!^2}$$
$$= H \cdot \frac{(n+\theta n+1)\cdots(n+\theta n+k)(n-\theta n)^2\cdots(n-\theta n-k+1)^2}{(\theta n+1)^3(\theta n+2)^3\cdots(\theta n+k)^3}$$

FEBRUARY 2015

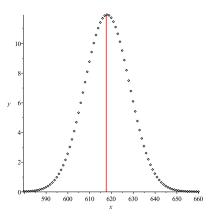


FIGURE 1. The case n = 1000, showing the points $(k, {\binom{n}{k}}^2 {\binom{n+k}{n}})$ for $580 \le k \le 660$, together with the vertical $x = \frac{n}{\phi}$, $0 \le y \le \frac{\phi^{5n+4}}{(2\pi n)^{\frac{3}{2}}}$.

$$= H \cdot \frac{\left(1 + \frac{1}{(1+\theta)n}\right) \cdots \left(1 + \frac{k}{(1+\theta)n}\right) \left(1 - \frac{1}{(1-\theta)n}\right)^2 \cdots \left(1 - \frac{k-1}{(1-\theta)n}\right)^2}{\left(1 + \frac{1}{\theta n}\right)^3 \cdots \left(1 + \frac{k}{\theta n}\right)^3}$$
$$\approx H \exp\left\{\frac{1}{(1+\theta)n}(1 + \dots + k) - \frac{2}{(1-\theta)n}(1 + \dots + (k-1)) - \frac{3}{\theta n}(1 + \dots + k)\right\}$$
$$\approx H \exp\left\{-\frac{k^2}{2n}\left(\frac{2}{1-\theta} + \frac{3}{\theta} - \frac{1}{1+\theta}\right)\right\}$$
$$= H \exp\left\{-\frac{k^2}{2n}\phi^3\sqrt{5}\right\}$$

since

$$\frac{(1+\theta)^k(1-\theta)^{2k}}{\theta^{3k}} = \frac{(\theta^2)^{2k}}{\theta^k \cdot \theta^{3k}} = 1$$

and

$$\frac{2}{1-\theta} + \frac{3}{\theta} - \frac{1}{1+\theta} = \frac{2}{\theta^2} + \frac{3}{\theta} - \theta = \frac{2+3\theta-\theta^3}{\theta^2} = \frac{2+3\theta-\theta(1-\theta)}{\theta^2}$$
$$= \frac{2+2\theta+\theta^2}{\theta^2} = (2+2\theta+\theta^2)\phi^2 = 2\phi^2 + 2\phi + 1 = 4\phi + 3$$
$$= 4\left(\frac{\sqrt{5}+1}{2}\right) + 3 = 2\sqrt{5} + 5 = (2+\sqrt{5})\sqrt{5} = \phi^3\sqrt{5}.$$

A CONNECTION BETWEEN π AND ϕ

Thus, the terms are essentially distributed normally, with $\sigma^2 = \frac{n}{\phi^3 \sqrt{5}}$, and the sum is given by

$$\begin{split} \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{n} &\approx H \int_{-\infty}^{\infty} \exp\left\{-\frac{x^{2}}{2\sigma^{2}}\right\} \, dx = H \cdot \sigma \sqrt{2\pi} \\ &\approx \frac{\phi^{5n+4}}{(2\pi n)^{\frac{3}{2}}} \cdot \frac{\sqrt{n}}{\phi^{\frac{3}{2}}\sqrt[4]{5}} \sqrt{2\pi} \\ &= \frac{\phi^{5n+\frac{5}{2}}}{2\pi n\sqrt[4]{5}}, \end{split}$$

as claimed (see Figure 2.).

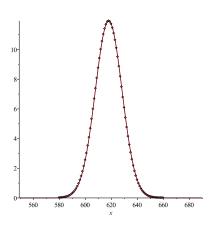


FIGURE 2. The case n = 1000, showing the points $\left(k, \binom{n}{k}^{2} \binom{n+k}{n}\right)$ for $550 \leq k \leq 690$, together with the approximating normal, $y = \frac{\phi^{5n+4}}{(2\pi n)^{\frac{3}{2}}} \exp\left\{-\frac{\phi^{3}\sqrt{5}}{2n}\left(x-\frac{n}{\phi}\right)^{2}\right\}.$

3. The Correction Term

Let $s_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{n}$. It was stated by Apéry [1] and proved by A. van der Poorten (see Section 4) that s_n satisfies the recurrence

$$(n+1)^2 s_{n+1} - (11n^2 + 11n + 3)s_n - n^2 s_{n-1} = 0,$$

or

$$\left(1+\frac{1}{n}\right)^2 s_{n+1} - \left(11+\frac{11}{n}+\frac{3}{n^2}\right)s_n - s_{n-1} = 0.$$

We now suppose that

$$s_n = C n^{-1} \Phi^n \left(1 + \frac{a_1}{n} + \frac{a_2}{n^2} + \frac{a_3}{n^3} + \cdots \right),$$

FEBRUARY 2015

THE FIBONACCI QUARTERLY

where
$$C = \frac{\phi^{\frac{5}{2}}}{2\pi\sqrt[4]{5}}$$
 and $\Phi = \phi^5$, and substitute into the recurrence, to obtain
 $\left(1 + \frac{1}{n}\right)^2 C(n+1)^{-1} \Phi^{n+1} \left(1 + \frac{a_1}{n+1} + \frac{a_2}{(n+1)^2} + \frac{a_3}{(n+1)^3} + \cdots\right)$
 $- \left(11 + \frac{11}{n} + \frac{3}{n^2}\right) Cn^{-1} \Phi^n \left(1 + \frac{a_1}{n} + \frac{a_2}{n^2} + \frac{a_3}{n^3} + \cdots\right)$
 $- C(n-1)^{-1} \Phi^{n-1} \left(1 + \frac{a_1}{n-1} + \frac{a_2}{(n-1)^2} + \frac{a_3}{(n-1)^3} + \cdots\right) = 0.$

If we now divide by $C\Phi^n$, and multiply by n, we find

$$\left(1+\frac{1}{n}\right)\Phi\left(1+\frac{a_1}{n+1}+\frac{a_2}{(n+1)^2}+\frac{a_3}{(n+1)^3}+\cdots\right)$$
$$-\left(11+\frac{11}{n}+\frac{3}{n^2}\right)\left(1+\frac{a_1}{n}+\frac{a_2}{n^2}+\frac{a_3}{n^3}+\cdots\right)$$
$$-\left(1-\frac{1}{n}\right)^{-1}\Phi^{-1}\left(1+\frac{a_1}{n-1}+\frac{a_2}{(n-1)^2}+\frac{a_3}{(n-1)^3}+\cdots\right)=0.$$

If we set $\frac{1}{n} = u$, $\frac{1}{n+1} = \frac{u}{1+u}$, $\frac{1}{n-1} = \frac{u}{1-u}$, and expand in powers of u, we find $\Phi(1+u)(1+a_1u+(a_2-a_1)u^2+(a_3-2a_2+a_1)u^3+\cdots)$ $-(11+11u+3u^2)(1+a_1u+a_2u^2+a_3u^3+\cdots)$ $-\Phi^{-1}(1+u+u^2+u^3+\cdots)(1+a_1u+(a_2+a_1)u^2+(a_3+2a_2+a_1)u^3+\cdots)$ = 0.

We now set the coefficients of the powers of u equal to zero, and solve for a_1 , a_2 , a_3 and so on. The constant term and the coefficient of u are automatically zero, because we had Φ correct and the factor n^{-1} correct. The coefficient of u^2 is

$$\Phi a_2 - (11a_2 + 11a_1 + 3) - \Phi^{-1}(a_2 + 2a_1 + 1) = 0,$$

or

$$-(11+2\Phi^{-1})a_1 - (3+\Phi^{-1}) = 0.$$

We find

$$a_1 = -\frac{3 + \Phi^{-1}}{11 + 2\Phi^{-1}} = -\frac{3 + \left(\frac{5\sqrt{5} - 11}{2}\right)}{11 + 2\left(\frac{5\sqrt{5} - 11}{2}\right)} = -\frac{5\sqrt{5} - 5}{10\sqrt{5}} = -\frac{5 - \sqrt{5}}{10}$$

If we continue in the same way, we find

$$a_2 = \frac{13 - 5\sqrt{5}}{50}, \quad a_3 = -\frac{175 - 83\sqrt{5}}{1250}, \quad a_4 = \frac{437 - 205\sqrt{5}}{6250},$$

and so on.

This completes the proof.

4. The Recurrence

A. van der Poorten's proof [5] goes as follows. If we define

 $f(k) = \left(k^2 + (6n+3)k - (11n^2 + 9n + 2)\right) \binom{n}{k}^2 \binom{n+k}{n}$

and

$$g(n) = \binom{n}{k}^2 \binom{n+k}{n}$$

then it is easy to verify that

$$f(k) - f(k-1) = (n+1)^2 g(n+1) - (11n^2 + 11n + 3)g(n) - n^2 g(n-1).$$

The recurrence follows on summing over k from 0 to n + 1.

Following the work of Sister Celine Fasenmyer and Petrovsek, Wilf and Zeilberger [4], the discovery of such identities is routine.

References

[1] R. Apéry, Irrationalité de $\zeta(2)$, $\zeta(3)$, Astérisque, **61** (1979), 11–13.

[2] M. D. Hirschhorn, Estimating the Apéry numbers, The Fibonacci Quarterly, 50.2 (2012), 129–131.

[3] M. D. Hirschhorn, Estimating the Apéry numbers II, The Fibonacci Quarterly, 51.3 (2013), 215–217.

[4] M. Petrovsek, H. Wilf and D. Zeilberger, A = B, A. K. Peters Ltd., Wellesley, MA, 1996.

[5] A. J. van der Poorten, A proof that Euler missed, Mathematical Intelligencer, 1 (1979), 195–203.

MSC2010: 41A60

School of Mathematics and Statistics, UNSW, Sydney, Australia 2052