RAMANUJAN'S LAST PROBLEM

MICHAEL D. HIRSCHHORN

1. Introduction

In his first letter to Hardy, Ramanujan [1] made a claim that turned out to be among the last of his claims to be settled. With some poetic licence, I dub this claim "Ramanujan's Last Problem".

Before I state this claim, I would like to set the scene. Consider the series

$$
e^{n}=1+\frac{n}{1!}+\frac{n^{2}}{2!}+\cdots+\frac{n^{n-1}}{(n-1)!}+\frac{n^{n}}{n!}+\cdots .
$$

The terms increase in size, then decrease. There are two equally large, largest terms, namely

$$
\frac{n^{n-1}}{(n-1)!}=\frac{n^{n}}{n!}=M
$$

We can split the series into two "halves", the terms up to and including $\frac{n^{n-1}}{(n-1)!}$, and the terms from $\frac{n^{n}}{n!}$ onwards. In terms of M, the "left-hand half" can be written

$$
A=M\left\{1+\left(1-\frac{1}{n}\right)+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\left(1-\frac{3}{n}\right)+\cdots\right\}
$$

while the "right-hand half" can be written
$B=M\left\{1+1 /\left(1+\frac{1}{n}\right)+1 /\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)+1 /\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}\right)+\cdots\right\}$.
It is easy to see that $B>A$: for $k=1, \cdots, n-1$, the k th term in B is greater than the k th term in A,

$$
1 /\left(1+\frac{1}{n}\right) \cdots\left(1+\frac{k}{n}\right)>\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k}{n}\right)
$$

and there are more terms in B, all positive.
Now let us define θ by

$$
B-A=2 \theta M
$$

If we transfer θM from B to A, the two quantities $A+\theta M$ and $B-\theta M$ are equal, and

$$
A+\theta M=B-\theta M=\frac{e^{n}}{2}
$$

That is,

$$
1+\frac{n}{1!}+\frac{n^{2}}{2!}+\cdots+\frac{n^{n-1}}{(n-1)!}+\frac{n^{n}}{n!} \theta=\frac{e^{n}}{2}
$$

where

$$
\begin{aligned}
2 \theta= & \left\{1 /\left(1+\frac{1}{n}\right)+1 /\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)+\cdots\right\} \\
& -\left\{\left(1-\frac{1}{n}\right)+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots\right\} .
\end{aligned}
$$

The claim that Ramanujan made in his letter to Hardy was that

$$
\theta=\frac{1}{3}+\frac{4}{135(n+k)} \text { where } \frac{2}{21}<k<\frac{8}{45} .
$$

Ramanujan's claim has only recently been proved [2]. The proof required considerable ingenuity.

What is surprising, amazing even, is that θ has a limit as $n \rightarrow \infty$, and indeed that

$$
\begin{equation*}
\theta \rightarrow \frac{1}{3} \text { as } n \rightarrow \infty . \tag{1.1}
\end{equation*}
$$

Ramanujan [3] later indicated that

$$
\theta=\frac{1}{3}+\frac{4}{135 n}-\frac{8}{2835 n^{2}}-\frac{16}{8505 n^{3}}+\cdots \text { as } n \rightarrow \infty .
$$

The object of this note is to take a naive approach and prove (1.1).

$$
\text { 2. In Which We Show That } \theta \rightarrow \frac{1}{3} \text { as } n \rightarrow \infty
$$

We start by writing

$$
\theta=\sum_{k=1}^{\infty} \theta_{k}
$$

where

$$
2 \theta_{k}=\prod_{l=1}^{k}\left(1+\frac{l}{n}\right)^{-1}-\prod_{l=1}^{k}\left(1-\frac{l}{n}\right) .
$$

If we choose large values of n, and plot θ_{k} against k, up to say, $k=n$, we obtain graphs of the same shape, with a maximum which appears to occur at $k=\sqrt{3 n}$. This gives us a clue as to how we might proceed: we graph θ_{k} against $x=\frac{k}{\sqrt{n}}$. But because of this fore-shortening by a factor of \sqrt{n}, we correspondingly increase the height by a factor of \sqrt{n}, and plot $\theta_{k} \sqrt{n}=f_{n}(x)$ against x.

If we do this, we find that the curves for various values of n are virtually identical! And of course θ is essentially equal to the area under this curve, whatever it may be. So we wish to determine the equation of this curve, which has a maximum at $x=\sqrt{3}$, and which is to all intents and purposes equal to 0 for $x>5$.

We have

$$
\begin{align*}
2 \theta_{k} & =\frac{n^{k} n!}{(n+k)!}-\frac{(n-1)!}{n^{k}(n-k-1)!} \\
& =\frac{n^{x \sqrt{n}} n!}{(n+x \sqrt{n})!}-\frac{(n-1)!}{n^{x \sqrt{n}}(n-x \sqrt{n}-1)!} \\
& =\frac{n^{x \sqrt{n}} \Gamma(n+1)}{\Gamma(n+x \sqrt{n}+1)}-\frac{\Gamma(n)}{n^{x \sqrt{n}} \Gamma(n-x \sqrt{n})} . \tag{2.1}
\end{align*}
$$

THE FIBONACCI QUARTERLY

We use Stirling's formula, in the form

$$
\log \Gamma(x+1)=\left(x+\frac{1}{2}\right) \log x-x+\frac{1}{2} \log 2 \pi+\mathrm{O}\left(\frac{1}{x}\right) \quad \text { as } x \rightarrow \infty .
$$

The first term on the right of (2.1) is

$$
\begin{aligned}
\exp \{ & x \sqrt{n} \log n+\left(n+\frac{1}{2}\right) \log n-n \\
& \left.-\left(n+x \sqrt{n}+\frac{1}{2}\right)\left(\log n+\log \left(1+\frac{x}{\sqrt{n}}\right)\right)+(n+x \sqrt{n})+\mathrm{O}\left(\frac{1}{n}\right)\right\} \\
& =\exp \left\{-\frac{x^{2}}{2}+\frac{x^{3}-3 x}{6 \sqrt{n}}+\mathrm{O}\left(\frac{1}{n}\right)\right\} \\
& =e^{-x^{2} / 2}\left\{1+\frac{x^{3}-3 x}{6 \sqrt{n}}+\mathrm{O}\left(\frac{1}{n}\right)\right\}
\end{aligned}
$$

while the second term on the right of (2.1) is

$$
\begin{aligned}
\exp \{ & \left(n-\frac{1}{2}\right)\left(\log n+\log \left(1-\frac{1}{n}\right)\right)-(n-1)-x \sqrt{n} \log n \\
& -\left(n-x \sqrt{n}-\frac{1}{2}\right)\left(\log n+\log \left(1-\frac{x \sqrt{n}+1}{n}\right)\right) \\
& \left.+(n-x \sqrt{n}-1)+\mathrm{O}\left(\frac{1}{n}\right)\right\} \\
= & \exp \left\{-\frac{x^{2}}{2}-\frac{x^{3}+3 x}{6 \sqrt{n}}+\mathrm{O}\left(\frac{1}{n}\right)\right\} \\
= & e^{-x^{2} / 2}\left\{1-\frac{x^{3}+3 x}{6 \sqrt{n}}+\mathrm{O}\left(\frac{1}{n}\right)\right\} .
\end{aligned}
$$

Thus (2.1) becomes

$$
2 \theta_{k}=e^{-x^{2} / 2}\left\{\frac{x^{3}}{3 \sqrt{n}}+\mathrm{O}\left(\frac{1}{n}\right)\right\}
$$

and hence,

$$
f_{n}(x)=\theta_{k} \sqrt{n}=\frac{x^{3} e^{-x^{2} / 2}}{6}+\mathrm{O}\left(\frac{1}{\sqrt{n}}\right) .
$$

So we see that the limiting curve is

$$
\frac{x^{3} e^{-x^{2} / 2}}{6}
$$

and

$$
\lim _{n \rightarrow \infty} \theta=\int_{0}^{\infty} \frac{x^{3} e^{-x^{2} / 2}}{6} d x=\frac{1}{3}
$$

Figure 1. The case $n=75 . \theta_{k}$ for $k=0, \cdots, n$.

Figure 2. The case $n=75 . f_{n}(x)$ and the limiting curve plotted together.

References

[1] B. C. Berndt and R. A. Rankin, Ramanujan Letters and Commentary, History of Mathematics, American Mathematical Society, Providence, RI, London Mathematical Scoeity, London, 1995.
[2] P. Flajolet, P. J. Grabner, P. Kirschenhofer, H. Prodinger, On Ramanujan's Q-function, Journal of Computational and Applied Mathematics, 58 (1995), 103-116.
[3] S. Ramanujan, Collected Papers, AMS Chelsea Publ., (1999).

THE FIBONACCI QUARTERLY
MSC2010: 41A60, 97 I 50
School of Mathematics and Statistics, UNSW, Sydney, Australia 2052
E-mail address: m.hirschhorn@unsw.edu.au

