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1. Introduction

In his first letter to Hardy, Ramanujan [1] made a claim that turned out to be among the
last of his claims to be settled. With some poetic licence, I dub this claim “Ramanujan’s Last
Problem”.

Before I state this claim, I would like to set the scene. Consider the series
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while the “right-hand half” can be written
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It is easy to see that B > A: for k = 1, · · · , n− 1, the kth term in B is greater than the kth
term in A,
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and there are more terms in B, all positive.
Now let us define θ by

B −A = 2θM.

If we transfer θM from B to A, the two quantities A+ θM and B − θM are equal, and
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where
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The claim that Ramanujan made in his letter to Hardy was that
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.

Ramanujan’s claim has only recently been proved [2]. The proof required considerable
ingenuity.

What is surprising, amazing even, is that θ has a limit as n → ∞, and indeed that

θ →
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3
as n → ∞. (1.1)

Ramanujan [3] later indicated that
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The object of this note is to take a naive approach and prove (1.1).

2. In Which We Show That θ → 1
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We start by writing
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If we choose large values of n, and plot θk against k, up to say, k = n, we obtain graphs of the
same shape, with a maximum which appears to occur at k =

√
3n. This gives us a clue as to

how we might proceed: we graph θk against x =
k
√
n
. But because of this fore-shortening by a

factor of
√
n, we correspondingly increase the height by a factor of
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n, and plot θk
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If we do this, we find that the curves for various values of n are virtually identical! And of

course θ is essentially equal to the area under this curve, whatever it may be. So we wish to
determine the equation of this curve, which has a maximum at x =

√
3, and which is to all

intents and purposes equal to 0 for x > 5.
We have
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We use Stirling’s formula, in the form
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Thus (2.1) becomes
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So we see that the limiting curve is
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Figure 1. The case n = 75. θk for k = 0, · · · , n.

Figure 2. The case n = 75. fn(x) and the limiting curve plotted together.
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