RAMANUJAN’S LAST PROBLEM

MICHAEL D. HIRSCHHORN

1. INTRODUCTION

In his first letter to Hardy, Ramanujan [1] made a claim that turned out to be among the
last of his claims to be settled. With some poetic licence, I dub this claim “Ramanujan’s Last
Problem”.

Before I state this claim, I would like to set the scene. Consider the series

e"—1+2+n_2+...+£+n_n+...
2! (n—1)!  nl!
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We can split the series into two “halves”, the terms up to and including m, and the
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terms from — onwards. In terms of M, the “left-hand half” can be written
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while the “right-hand half” can be written
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It is easy to see that B > A: for k =1,--- ,n—1, the kth term in B is greater than the kth

| 1/<1+%>~.<1+§>>(1—%)..(1—%),

and there are more terms in B, all positive.
Now let us define 6 by
B—A=20M.
If we transfer OM from B to A, the two quantities A + 6 M and B — M are equal, and
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That is,
2 n—1 n el

n
g
+n! 2’

I+t
TP (n—1)!

48 VOLUME 53, NUMBER 1



RAMANUJAN’S LAST PROBLEM

-y (o () 2) )
(e 00D}

The claim that Ramanujan made in his letter to Hardy was that

where
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Ramanujan’s claim has only recently been proved [2]. The proof required considerable

ingenuity.
What is surprising, amazing even, is that 6 has a limit as n — 0o, and indeed that

1
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Ramanujan [3] later indicated that

pg_l, 4 8 16
~ 3 " 1350 28352 850513

The object of this note is to take a naive approach and prove (1.1).

- as n — oo.

2. IN WHICH WE SHOW THAT 6 — £ AS n — 00

We start by writing

6= iek
k=1
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If we choose large values of n, and plot 6, against k, up to say, k = n, we obtain graphs of the
same shape, with a maximum which appears to occur at £k = v/3n. This gives us a clue as to

where

how we might proceed: we graph 6 against x = % But because of this fore-shortening by a
factor of \/n, we correspondingly increase the height by a factor of y/n, and plot xv/n = fn(x)
against x.

If we do this, we find that the curves for various values of n are virtually identical! And of
course 0 is essentially equal to the area under this curve, whatever it may be. So we wish to
determine the equation of this curve, which has a maximum at z = /3, and which is to all
intents and purposes equal to 0 for x > 5.

We have
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We use Stirling’s formula, in the form
1 1 1
logT'(z+1) = (x—i— 5) logx —x + §log27r+0 <—> as T — 00.
x
The first term on the right of (2.1) is
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while the second term on the right of (2.1) is
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Thus (2.1) becomes
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and hence,
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So we see that the limiting curve is
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FIGURE 1. The case n = 75. 0y for k=0,--- ,n.
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FIGURE 2. The case n = 75. f,(x) and the limiting curve plotted together.
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