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Abstract. We systematically derive congruences for the sums
∑bkp/Mc

j=1 1/j2 modulo p and

for the sums
∑bkp/Mc

j=1 1/j modulo p2, for all integers M ≥ 1 that divide 24 and integers k

with 1 ≤ k ≤ M and gcd(M,k) = 1. While many of these congruences are well-known,
others are new in the forms given. The congruences involve Fermat quotients, Euler numbers,
Bernoulli polynomials, and some particular classes of generalized Bernoulli numbers belonging
to quadratic characters.

1. Introduction

Congruences for sums of reciprocals of consecutive integers have been studied extensively,
beginning with a paper of Eisenstein in 1850. Let us first consider the easiest such congruence.
Noting that {1, 1/2, . . . , 1/(p − 1)} forms a reduced residue system modulo an odd prime p
since {1, 2, . . . , p− 1} does, we immediately get

p−1
∑

j=1

1

j
≡ 0 (mod p). (1.1)

Now an obvious question to ask is what can be said about partial sums of reciprocals. In [10],
Eisenstein proved what amounts to the congruence

p−1
2

∑

j=1

1

j
≡ −2 qp(2) (mod p), (1.2)

where qp(a), for an odd prime p and an integer a ≥ 2 with p - a, is the Fermat quotient to base

a defined by

qp(a) :=
ap−1 − 1

p
; (1.3)

by Fermat’s Little Theorem this is an integer. The congruence (1.2) can be, and has been,
generalized in various directions; see the final section for further details.

Historically, these sums and congruences were of interest in connection with the classical
theory of Fermat’s Last Theorem; see, e.g., [16, p. 358ff.], [17, p. 155ff.], or [9]. More recent
applications of such congruences include extensions of the binomial coefficient theorems of
Gauss and Jacobi to higher (especially mod p3) congruences; see [6].

It is the purpose of this paper to derive some new congruences for sums of reciprocals that
are required for proving other congruences modulo p3 for binomial coefficients; see [1]. In the
process we give a systematic treatment of congruences for the sums
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bkp/Mc
∑

j=1

1

jr
(mod ps), r = 1, 2, s = 3− r, (1.4)

where M ≥ 1 is a divisor of 24 and k is an integer with 1 ≤ k ≤ M and gcd(k,m) = 1. This
last condition presents no loss of generality since other pairs (k,M) can be clearly reduced to
this case. Also, sums over intervals other than those beginning with j = 1 can be obtained by
subtracting appropriate sums of the type (1.4) from each other.

The cases M = 1, 2, 3, 4, and 6 are well-known for r = 1 and 2 and modulo (at least)
p2, or are easy to derive from known cases. The relevant congruences will be collected in
Section 2. Recent work of Kuzumaki and Urbanowicz (see [12, 14, 15]) dealt with all M that
are divisors of 24, thus giving the new cases M = 8, 12, and 24. This was done in a very general
setting, with the drawback that the congruences obtained are rather cumbersome and difficult
to use. In this paper we extract the most important special cases and supplement them with
congruences for other parameters k with gcd(k,M) = 1. This will be done in Sections 4 and 5,
after some background on generalized Bernoulli numbers is given in Section 3.

To achieve the greatest possible clarity and usefulness of our results, we made the conscious
decision to restrict our attention to what we consider the most important cases, namely con-
gruences modulo p2 when r = 1 and modulo p when r = 2. Some references to more general
cases will be given in the final Section 7, which follows the brief Section 6 on double sums.

2. The Cases M = 1, 2, 3, 4, and 6

The theory of sums of reciprocals is closely related to Bernoulli numbers and polynomials,
as well as to Euler numbers. This connection can be explicitly seen, e.g., in the beginning of
Emma Lehmer’s seminal paper [16]. Here we will only give some basic definitions, beginning
with the Bernoulli polynomials Bn(x), n ≥ 0, which can be defined by the generating function

tetx

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
(|t| < 2π). (2.1)

Similarly, the Euler numbers En, n ≥ 0, can be defined by

2

et + e−t
=

∞
∑

n=0

En

n!
tn (|t| < π). (2.2)

The first few Euler numbers are 1, 0,−1, 0, 5, 0,−61, 0, 1385. We also require the Legendre
symbol

(p

3

)

=

{

1 if p ≡ 1 (mod 3),

−1 if p ≡ 2 (mod 3).

We are now ready to state the main results of this section.
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Proposition 1 (M = 1, 2, 3, 4 and r = 2). For all primes p ≥ 5 we have

p−1
∑

j=1

1

j2
≡ 0 (mod p), (2.3)

(p−1)/2
∑

j=1

1

j2
≡ 0 (mod p), (2.4)

bp/3c
∑

j=1

1

j2
≡

1

2

(p

3

)

Bp−2(
1
3) (mod p), (2.5)

b2p/3c
∑

j=1

1

j2
≡ −

1

2

(p

3

)

Bp−2

(

1
3

)

(mod p), (2.6)

bp/4c
∑

j=1

1

j2
≡ 4(−1)

p−1
2 Ep−3 (mod p), (2.7)

b3p/4c
∑

j=1

1

j2
≡ −4(−1)

p−1
2 Ep−3 (mod p). (2.8)

The congruence (2.3) is a special case of a more general one in [16, p. 353], and (2.4) is a
special case of a congruence in [19, p. 296]. Equation (2.5) can be found in [19, p. 302] and
(2.7) is a special case of Corollary 3.8 in [19, p. 296]. Finally, the congruences (2.6) and (2.8)
are obtained by subtracting (2.5) and (2.7), respectively, from (2.3).

Proposition 2 (M = 1, 2, 3, 4 and r = 1). For all primes p ≥ 5 we have

p−1
∑

j=1

1

j
≡ 0 (mod p2), (2.9)

(p−1)/2
∑

j=1

1

j
≡ −2qp(2) + pqp(2)

2 (mod p2), (2.10)

bp/3c
∑

j=1

1

j
≡ −

3

2
qp(3) + p

(

3

4
qp(3)

2 −
1

6

(p

3

)

Bp−2(
1
3)

)

(mod p2), (2.11)

b2p/3c
∑

j=1

1

j
≡ −

3

2
qp(3) + p

(

3

4
qp(3)

2 +
1

3

(p

3

)

Bp−2(
1
3)

)

(mod p2), (2.12)

bp/4c
∑

j=1

1

j
≡ −3qp(2) + p

(

3

2
qp(2)

2 + (−1)
p+1
2 Ep−3

)

(mod p2), (2.13)

b3p/4c
∑

j=1

1

j
≡ −3qp(2) +

(

3

2
qp(2)

2 + 3(−1)
p−1
2 Ep−3

)

(mod p2). (2.14)

Proof. The congruence (2.9) is a special case of a congruence in [16, p. 353], while (2.10) and
(2.13) follow from congruences in [19, p. 290]. Equation (2.11) follows from Theorem 3.9(iii)
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in [19, p. 301], using the congruence

Bp−2(
1
6 ) ≡ 5Bp−2(

1
3) (mod p); (2.15)

see, e.g., [17, p. 158] or [19, p. 302]. Next, for integers M ≥ 2 and 1 ≤ k < M , gcd(k,M) = 1,
we have

b
(M−k)p

M
c

∑

j=1

1

j
=

p−1
∑

j=1

1

j
−

bkp/Mc
∑

j=1

1

p− j
≡ −

bkp/Mc
∑

j=1

1

p− j
(mod p2), (2.16)

where we have used (2.9). Using the congruence

1

j − p
≡

1

j
+

p

j2
(mod p2) (2.17)

(see [16, p. 359]), we get with (2.16),

b
(M−k)p

M
c

∑

j=1

1

j
≡

bkp/Mc
∑

j=1

1

j
+ p

bkp/Mc
∑

j=1

1

j2
(mod p2). (2.18)

Applying this to M = 3 and k = 1, we immediately get (2.12) from (2.11) and (2.5). Similarly,
with M = 4 and k = 1 we get (2.14) from (2.13) and (2.7). This completes the proof of
Proposition 2. �

Proposition 3 (M = 6 and r = 2). For all primes p ≥ 5 we have

bp/6c
∑

j=1

1

j2
≡

5

2

(p

3

)

Bp−2(
1
3) (mod p), (2.19)

b5p/6c
∑

j=1

1

j2
≡ −

5

2

(p

3

)

Bp−2(
1
3) (mod p). (2.20)

The congruence (2.19) follows from Theorem 3.9(i) in [19, p. 301] together with (2.15), and
then (2.20) is obtained by subtracting (2.19) from (2.3).

Proposition 4 (M = 6 and r = 1). For all primes p ≥ 5 we have

bp/6c
∑

j=1

1

j
≡ −2qp(2)−

3

2
qp(3) + p

(

qp(2)
2 +

3

4
qp(3)

2 −
5

12

(p

3

)

Bp−2(
1
3)

)

(mod p2), (2.21)

b5p/6c
∑

j=1

1

j
≡ −2qp(2)−

3

2
qp(3) + p

(

qp(2)
2 +

3

4
qp(3)

2 +
25

12

(p

3

)

Bp−2(
1
3)

)

(mod p2). (2.22)

Similarly to the above, (2.21) follows from Theorem 3.9(ii) in [19, p. 301] together with
(2.15), and (2.22) is obtained from (2.21) and (2.11), with (2.18).

3. Generalized Bernoulli Numbers

The results for M = 8, 12, and 24 in the next section involve certain generalized Bernoulli
numbers belonging to residue class characters. In this section we will give some basic defini-
tions, results, and tables. For further details see, e.g., [11] or [20].

MAY 2015 101



THE FIBONACCI QUARTERLY

Let χ be a primitive residue class character with conductor f = fχ. The complex numbers
Bn

χ, n ≥ 0, defined by the generating function

f
∑

a=1

χ(a)teat

eft − 1
=

∞
∑

n=0

Bn
χ

tn

n!
, (3.1)

are called generalized Bernoulli numbers belonging to the character χ. If f = 1, i.e., if χ is the
principal character (χ(a) = 1 for all a), then Bn

χ = Bn, the ordinary Bernoulli number, for

all n 6= 1, while B1
χ = 1

2 = −B1. The Bn
χ are elements of the smallest algebraic number field

containing all χ(a). In particular, if χ is a quadratic character, i.e., if χ(a)2 = 1 whenever
gcd(a, f) = 1, then Bn

χ ∈ Q for all n.
To be able to state a few more elementary properties, we define δ = δχ to be 0 or 1 according

as χ is even (i.e., χ(−1) = 1) or odd (i.e., χ(−1) = −1). Then we have

Bn
χ = 0 if n 6≡ δ (mod 2),

and also B0
χ = 0 for all non-principal characters χ. Furthermore, when χ is a quadratic

character, then the Bn
χ with n ≡ δ (mod 2) are nonzero and their signs are determined by

(−1)1+(n−δ)/2Bn
χ > 0 (n ≡ δ (mod 2)).

The entries in Table 2 below may serve as examples for these properties.
With the notation of [15], Table 1 shows the characters that occur in Sections 4 and 5.

χ−3 and χ−4 are the unique quadratic characters with f = 3 and f = 4, respectively, while
χ−8 and χ8 are the two quadratic characters with f = 8. Only half of the values of the
product characters χ−3χ8 and χ−3χ−8 are shown; the remaining values are clear from the first
character being odd and the second character being even.

Table 1: The characters occurring in Sections 4 and 5.

a parity f 1 2 3 4 5 6 7 8 9 10 11 12
χ−3(a) odd 3 1 −1 0
χ−4(a) odd 4 1 0 −1 0
χ−8(a) odd 8 1 0 1 0 −1 0 −1 0
χ8(a) even 8 1 0 −1 0 −1 0 1 0

χ−3χ−4(a) even 12 1 0 0 0 −1 0 −1 0 0 0 1 0
χ−3χ8(a) odd 24 1 0 0 0 1 0 1 0 0 0 1 0
χ−3χ−8(a) even 24 1 0 0 0 1 0 −1 0 0 0 −1 0

Using these character values and (3.1), we can write down explicit generating functions; for
instance,

−tet

e2t + 1
=

∞
∑

n=0

Bn
χ−4

tn

n!
. (3.2)

With the help of a computer algebra system, these generating functions can be used to compute
the corresponding generalized Bernoulli numbers; see Table 2 for the first few values for each
of the characters in question.

For the computation of further values it is convenient to use the following well-known
recurrence relation:

n−1
∑

j=0

(

n

j

)

fn−jBj
χ = n

f
∑

a=1

χ(a)an−1. (3.3)
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Table 2: The first few values of generalized Bernoulli numbers.

n 1 2 3 4 5 6 7 8
3Bn

χ−3
−1 0 2 0 −10 0 98 0

2Bn
χ−4

−1 0 3 0 −25 0 427 0

Bn
χ−8

−1 0 9 0 −285 0 19 341 0

Bn
χ8

0 2 0 −44 0 2 166 0 −196 888
Bn

χ−3χ−4
0 4 0 −184 0 20 172 0 −4 120 688

Bn
χ−3χ8

−2 0 138 0 −39 850 0 24 410 722 0

Bn
χ−3χ−8

0 6 0 −2 088 0 912 996 0 −745 928 016

When f > 1, this immediately gives

B0
χ = 0, B1

χ =
1

f

f
∑

a=1

χ(a)a,

which is consistent with Table 2.
Note that all nonzero numbers in the first row of Table 2 have denominator 3 and those

in the second row have denominator 2, while all others are integers. This is an instance of
the character analogue of the theorem of von Staudt and Clausen; see, e.g., [5]. While this
theorem will not be needed in what follows, the character analogue of the equally well-known
and important Kummer congruence in its basic form will be useful in the next sections. We
quote a special case; see, e.g., [5].

Let p be an odd prime and χ a character whose conductor f is not a power of p. If w ∈ N
is such that p− 1 | w, then

Bn+w
χ

n+ w
≡

Bn
χ

n
(mod p) (n ≥ 2). (3.4)

To conclude this section, we mention some connections between the generalized Bernoulli
numbers and the Euler numbers and Bernoulli polynomials. First, by comparing the generating
functions (2.2) and (3.2), we immediately get

En =
−2

n+ 1
Bn+1

χ−4
(n ≥ 0), (3.5)

and consequently, for odd primes p,

Bp−2
χ−4

≡ Ep−3 (mod p). (3.6)

Next, comparing the generating functions (2.1) and (3.1), we get the identity

Bn
χ = fn−1

f
∑

a=1

χ(a)Bn(
a
f ). (3.7)

For χ = χ−3 we immediately get

Bn
χ−3

= 3n−1
(

Bn(
1
3)−Bn(

2
3)
)

,

and then the well-known reflection formula Bn(1− x) = (−1)nBn(x) yields

Bn
χ−3

= 2 · 3n−1Bn(
1
3 ) (n odd). (3.8)

When p ≥ 5 is a prime then, since 3p−1 ≡ 1 (mod p), we have

Bp−2
χ−3

≡
2

9
Bp−2(

1
3 ) (mod p). (3.9)
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The identities (3.5), (3.8) and the congruences (3.6), (3.9) will be useful in the next section.

4. The Cases M = 8 and 12

In this section we will derive the relevant congruences for M = 8 and 12 and present them
in the same order and format as we did in Section 2.

Proposition 5 (M = 8 and r = 2). For all primes p ≥ 5 we have

bp/8c
∑

j=1

1

j2
≡ 8

(

(−1)
p−1
2 Ep−3 + (−1)

(p−1)(p+5)
8 Bp−2

χ−8

)

(mod p), (4.1)

b3p/8c
∑

j=1

1

j2
≡ 8

(

−(−1)
p−1
2 Ep−3 + (−1)

(p−1)(p+5)
8 Bp−2

χ−8

)

(mod p), (4.2)

b5p/8c
∑

j=1

1

j2
≡ 8

(

(−1)
p−1
2 Ep−3 − (−1)

(p−1)(p+5)
8 Bp−2

χ−8

)

(mod p), (4.3)

b7p/8c
∑

j=1

1

j2
≡ 8

(

−(−1)
p−1
2 Ep−3 − (−1)

(p−1)(p+5)
8 Bp−2

χ−8

)

(mod p). (4.4)

Proof. (4.1) is obtained by specializing the second congruence in Theorem 2.1(v) in [15] and
then using (3.6). To obtain (4.2), we note that more generally we have, for integers M ≥ 2
and 1 ≤ k ≤ M − 1, not divisible by the odd prime p and with gcd(k,M) = 1,

b
(M−k)p

2M
c

∑

j=1

1

j2
=

p−1
2

∑

j=1

1

j2
−

p−1
2

∑

j=b (M−k)p
2M

c+1

1

j2
≡ 0−

b kp
2M

c
∑

j=1

1

(p+1
2 − j)2

(mod p)

≡ −4

b kp
2M

c
∑

j=1

1

(2j − 1)2
= −4







bkp
M

c
∑

j=1

1

j2
−

b kp
2M

c
∑

j=1

1

(2j)2






(mod p),

where we have used (2.4). Hence we have

b (M−k)p
2M

c
∑

j=1

1

j2
≡

b kp
2M

c
∑

j=1

1

j2
− 4

bkp
M

c
∑

j=1

1

j2
(mod p). (4.5)

We use this with M = 4, k = 1 and see that (4.1) together with (2.7) yields (4.2). The
congruences (4.3) and (4.4) now follow from subtracting (4.2) and (4.1), respectively, from
(2.3). �

Proposition 6 (M = 8 and r = 1). For all primes p ≥ 5 we have

bp/8c
∑

j=1

1

j
≡ −4qp(2) + 2(−1)

p2−1
8

Bp2−p
χ8

p2 − p
+ 2pqp(2)

2

− p(−1)
p−1
2 Ep−3 − p(−1)

(p−1)(p+5)
8 Bp−2

χ−8
(mod p2), (4.6)
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b3p/8c
∑

j=1

1

j
≡ −4qp(2)− 2(−1)

p2−1
8

Bp2−p
χ8

p2 − p
+ 2pqp(2)

2

+ 3p(−1)
p−1
2 Ep−3 − 3p(−1)

(p−1)(p+5)
8 Bp−2

χ−8
(mod p2), (4.7)

b5p/8c
∑

j=1

1

j
≡ −4qp(2)− 2(−1)

p2−1
8

Bp2−p
χ8

p2 − p
+ 2pqp(2)

2

− 5p(−1)
p−1
2 Ep−3 + 5p(−1)

(p−1)(p+5)
8 Bp−2

χ−8
(mod p2), (4.8)

b7p/8c
∑

j=1

1

j
≡ −4qp(2) + 2(−1)

p2−1
8

Bp2−p
χ8

p2 − p
+ 2pqp(2)

2

+ 7p(−1)
p−1
2 Ep−3 + 7p(−1)

(p−1)(p+5)
8 Bp−2

χ−8
(mod p2). (4.9)

Proof. The congruence (4.6) is obtained by specializing the first congruence of Theorem 2.1(v)
in [15] to modulus p2 and then using (3.6) and the Kummer congruence (3.4).

To obtain (4.7), we begin by proving a more general auxiliary result. If M ≥ 2 is an integer,
then

b (M−1)p
2M

c
∑

j=1

1

j
=

(p−1)/2
∑

j=1

1

j
−

(p−1)/2
∑

j=b
(M−1)p

2M
c+1

1

j
≡ −2qp(2)+pqp(2)

2−

b p
2M

c
∑

j=1

1
p+1
2 − j

(mod p2), (4.10)

where we have used (2.10). Applying (2.17) with j replaced by 2j − 1, we get

−

b p
2M

c
∑

j=1

1
p+1
2 − j

≡ 2

b p
2M

c
∑

j=1

1

2j − 1
+ 2p

b p
2M

c
∑

j=1

1

(2j − 1)2
(mod p2).

Writing each of the two sums on the right as a difference of the corresponding sum over all
integers, minus those over only the even integers, we get with (4.10),

b (M−1)p
2M

c
∑

j=1

1

j
≡ −2qp(2) + 2

b p
M

c
∑

j=1

1

j
−

b p
2M

c
∑

j=1

1

j
+ p



qp(2)
2 + 2

b p
M

c
∑

j=1

1

j2
−

1

2

b p
2M

c
∑

j=1

1

j2



 (mod p2).

(4.11)
We apply this with M = 4 and use (2.13), (4.6), (2.7), and (4.1). Combining everything and
simplifying, we obtain (4.7).

Next, (4.8) is obtained by applying (2.18) with M = 8 and k = 3, and using (4.7) and (4.2).
Similarly, we get (4.9) from (2.18) with M = 8 and k = 1, and using (4.6) and (4.1). �

Proposition 7 (M = 12 and r = 2). For all primes p ≥ 5 we have

bp/12c
∑

j=1

1

j2
≡ 5

(p

3

)

Bp−2(
1
3 ) + 20(−1)

p−1
2 Ep−3 (mod p), (4.12)

b5p/12c
∑

j=1

1

j2
≡ −5

(p

3

)

Bp−2(
1
3 ) + 20(−1)

p−1
2 Ep−3 (mod p), (4.13)
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b7p/12c
∑

j=1

1

j2
≡ 5

(p

3

)

Bp−2(
1
3 )− 20(−1)

p−1
2 Ep−3 (mod p), (4.14)

b11p/12c
∑

j=1

1

j2
≡ −5

(p

3

)

Bp−2(
1
3)− 20(−1)

p−1
2 Ep−3 (mod p). (4.15)

Proof. Specializing the second congruence in Theorem 2.1(vi) in [15] and applying (3.6) and
(3.9), we get (4.12). The congruence (4.13) follows from (4.5) with M = 6 and k = 1, using
(4.12) and (2.19). Finally, (4.14) and (4.15) are obtained by subtracting (4.13) and (4.12),
respectively, from (2.3). �

Proposition 8 (M = 12 and r = 1). For all primes p ≥ 5 we have

bp/12c
∑

j=1

1

j
≡ −3qp(2)−

3

2
qp(3) + 3(−1)

p−1
2

(p

3

) Bp2−p
χ−3χ−4

p2 − p
+ p

(

3

2
qp(2)

2

+
3

4
qp(3)

2 −
5

12

(p

3

)

Bp−2(
1
3)−

5

3
(−1)

p−1
2 Ep−3

)

(mod p2), (4.16)

b5p/12c
∑

j=1

1

j
≡ −3qp(2)−

3

2
qp(3)− 3(−1)

p−1
2

(p

3

) Bp2−p
χ−3χ−4

p2 − p
+ p

(

3

2
qp(2)

2

+
3

4
qp(3)

2 +
25

12

(p

3

)

Bp−2(
1
3)−

25

3
(−1)

p−1
2 Ep−3

)

(mod p2), (4.17)

b7p/12c
∑

j=1

1

j
≡ −3qp(2)−

3

2
qp(3)− 3(−1)

p−1
2

(p

3

) Bp2−p
χ−3χ−4

p2 − p
+ p

(

3

2
qp(2)

2

+
3

4
qp(3)

2 −
35

12

(p

3

)

Bp−2(
1
3) +

35

3
(−1)

p−1
2 Ep−3

)

(mod p2), (4.18)

b11p/12c
∑

j=1

1

j
≡ −3qp(2)−

3

2
qp(3) + 3(−1)

p−1
2

(p

3

) Bp2−p
χ−3χ−4

p2 − p
+ p

(

3

2
qp(2)

2

+
3

4
qp(3)

2 +
55

12

(p

3

)

Bp−2(
1
3) +

55

3
(−1)

p−1
2 Ep−3

)

(mod p2). (4.19)

Proof. We proceed as in the proof of Theorem 6. The congruence (4.16) is obtained by taking
the first congruence of Theorem 2.1(vi) in [15] modulo p2 and then using (3.4), (3.6), and
(3.9). The congruence (4.17) follows from (4.11) with M = 6, by using (2.21), (4.16), (2.19),
and (4.12). Next, (4.18) is obtained by applying (2.18) with M = 12 and k = 5 and using
(4.17) and (4.13); finally, we get (4.19) from (2.18) with M = 12 and k = 1, and using (4.16)
and (4.12). �

5. The Case M = 24

Because of the increasing complexity of the results in the case M = 24, we will not explicity
state all the congruences for the various possible parameters k. We begin, as before, with
r = 2.
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Proposition 9 (M = 24 and r = 2). For all primes p ≥ 5 we have

bp/24c
∑

j=1

1

j2
≡ 10

(p

3

)

Bp−2(
1
3 ) + 40(−1)

p−1
2 Ep−3

+ 32(−1)
(p−1)(p+5)

8 Bp−2
χ−8

+ 36
(p

3

)

(−1)
p2−1

8 Bp−2
χ−3χ8

(mod p), (5.1)

b11p/24c
∑

j=1

1

j2
≡ −10

(p

3

)

Bp−2(
1
3 )− 40(−1)

p−1
2 Ep−3

+ 32(−1)
(p−1)(p+5)

8 Bp−2
χ−8

+ 36
(p

3

)

(−1)
p2−1

8 Bp−2
χ−3χ8

(mod p). (5.2)

Furthermore,
∑b13p/24c

j=1 1/j2 and
∑b23p/24c

j=1 1/j2 are congruent (mod p) to negative the right-

hand sides of (5.2) and (5.1), respectively.

Proof. Similarly to earlier proofs, (5.1) is obtained by taking the second congruence of Theo-
rem 2.1(vii) modulo p and applying (3.6) and (3.9). The congruence (5.2) follows from (4.5),
(4.12) and (5.1), and the final statement follows from (2.16). �

The sums for k = 5 and k = 7 (and by extension k = 17 and 19) require a somewhat
different treatment. We use the generalized Bernoulli polynomials which, in analogy to (3.1),
are defined by the generating function

f
∑

a=1

χ(a)te(a+x)t

eft − 1
=

∞
∑

n=0

Bn
χ(x)

tn

n!
, (5.3)

with χ and f as in Section 3. Among the most basic properties (see, e.g., [2] or [20] for more
details) are the identities

Bn
χ(x) =

n
∑

j=0

(

n

j

)

Bj
χx

n−j, (5.4)

Bn
χ(−x) = (−1)n−δBn

χ(x), (5.5)

Bn
χ(x+N)−Bn

χ(x) = n

N
∑

j=1

χ(j)(x + j)n−1, (5.6)

where N is a multiple of f , and δ = 0 or 1 for χ even, respectively odd. We note in passing
that with x = 0 and N = f , (5.6) and (5.4) immediately give (3.3).

Now we set χ = χ−4, so that f = 4, and we let x = 0 and n = p − 2. Then with (5.6),
Fermat’s Little Theorem, and with (3.6) we get

Bp−2
χ−4(N)− Ep−3 ≡ −2

N
∑

j=1

χ−4(j)

j2
(mod p). (5.7)

We are now ready to state and prove a result that complements Proposition 9. For the sake
of simplicity we restrict ourselves to the case p ≡ 1 (mod 24), which is of particular interest
for the applications in [1].
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Proposition 10 (M = 24 and r = 2, continued). For all primes p ≡ 1 (mod 24) we have

b5p/24c
∑

j=1

1

j2
≡ −10Bp−2(

1
3 ) + 40Ep−3 + 4Bp−2

χ−4(
1
6) (mod p), (5.8)

b5p/24c
∑

j=1

1

j2
≡ 10Bp−2(

1
3)− 40Ep−3 + 4Bp−2

χ−4(
1
6 ) (mod p). (5.9)

Furthermore,
∑b17p/24c

j=1 1/j2 and
∑b19p/24c

j=1 1/j2 are congruent (mod p) to negative the right-

hand sides of (5.9) and (5.8), respectively.

Proof. If p ≡ 1 (mod 24), then

b 5p
24

c
∑

j=1

1

j2
=

p−1
4

∑

j=1

1

j2
−

p−1
2

∑

j=b 5p
24

c+1

1

j2
≡ 4Ep−3 −

p−1
24
∑

j=1

1

(p−1
4 + 1− j)2

(mod p)

≡ 4Ep−3 − 16

p−1
24
∑

j=1

1

(4j − 3)2
(mod p), (5.10)

having used (2.7). To determine the right-most sum in (5.10), we first note that

p−1
24
∑

j=1

1

(4j − 3)2
+

p−1
24
∑

j=1

1

(4j − 1)2
=

p−1
12
∑

j=1

1

(2j − 1)2
=

p−1
6

∑

j=1

1

j2
−

1

4

p−1
12
∑

j=1

1

j2

≡
5

4
Bp−2(

1
3 )− 5Ep−3 (mod p), (5.11)

where we have used (2.19) and (4.12), keeping in mind that p ≡ 1 (mod 24). On the other
hand we have, by (5.7) with N = (p − 1)/6,

p−1
24
∑

j=1

1

(4j − 3)2
−

p−1
24
∑

j=1

1

(4j − 1)2
=

p−1
6

∑

j=1

χ−4(j)

j2
≡

1

2

(

Ep−3 −Bp−2
χ−4(

p−1
6 )

)

(mod p). (5.12)

With (5.4) and (5.5) we see that

Bp−2
χ−4(

p−1
6 ) ≡ Bp−2

χ−4(
−1
6 ) = Bp−2

χ−4(
1
6 ) (mod p),

and upon adding (5.11) and (5.12) we therefore get

2

p−1
24
∑

j=1

1

(4j − 3)2
≡

5

4
Bp−2(

1
3)−

9
2Ep−3 −

1
2B

p−2
χ−4(

1
6 ) (mod p).

This, with (5.10), immediately gives (5.8).
The congruence (5.9) then follows from (4.5) with M = 12 and k = 5 and using (5.8) and

(4.13). The final statement follows once again from (2.16). �
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Proposition 11 (M = 24 and r = 1). For all primes p ≥ 5 we have

bp/24c
∑

j=1

1

j
≡ −4qp(2) −

3

2
qp(3) + 3(−1)

p−1
2

(p

3

) Bp2−p
χ−3χ−4

p2 − p

+ 4(−1)
p2−1

8
Bp2−p

χ8

p2 − p
+ 3(−1)

(p−1)(p+5)
8

(p

3

) Bp2−p
χ−3χ−8

p2 − p

+ p

(

2qp(2)
2 +

3

4
qp(3)

2 −
5

12

(p

3

)

Bp−2(
1
3 )−

5

3
(−1)

p−1
2 Ep−3

−
3

2

(p

3

)

(−1)
p2−1

8 Bp−2
χ−3χ8

−
4

3
(−1)

(p−1)(p+5)
8 Bp−2

χ8

)

(mod p2). (5.13)

This last congruence is obtained completely analogously to (4.16). Given the complexity of
this result, we skip the other cases, namely the sums to bkp/24c for k = 5, 7, 11, 13, 17, 19
and 23.

6. Double Sums

In the applications of interest to us, in particular in [1] and [6], we also require certain
double sums of reciprocals. These are very easy to derive; in fact, for any fixed integer N ≥ 1
we have

∑

1≤j<k≤N

1

jk
=

1

2





N
∑

j=1

1

j





2

−
1

2

N
∑

j=1

1

j2
, (6.1)

which is easy to verify. Using appropriate results in Section 2, we immediately obtain the
following list of congruences.

Proposition 12. For all primes p ≥ 5 we have

∑

1≤j<k≤p−1

1

jk
≡ 0 (mod p), (6.2)

∑

1≤j<k≤ p−1
2

1

jk
≡ 2qp(2)

2 (mod p), (6.3)

∑

1≤j<k≤bap
3
c

1

jk
≡

9

8
qp(3)

2 + ε3
1

4

(p

3

)

Bp−2(
1
3 ) (mod p), (6.4)

where ε3 = −1 when a = 1 and ε3 = 1 when a = 2,

∑

1≤j<k≤bap
4
c

1

jk
≡

9

2
qp(2)

2 + ε42(−1)
p−1
2 Ep−3 (mod p), (6.5)

where ε4 = −1 when a = 1 and ε4 = 1 when a = 3,

∑

1≤j<k≤bap
6
c

1

jk
≡

1

2

(

2qp(2) +
3

2
qp(3)

)2

+ ε6
5

4

(p

3

)

Bp−2(
1
3) (mod p), (6.6)

where ε6 = −1 when a = 1 and ε6 = 1 when a = 5.
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For M = 8 and M = 12 we only give the first of the four possible congruences in each
case, leaving the remaining ones to the reader. In deriving these identities we note that by
the Kummer congruence (3.4) we have

Bp2−p
χ

p2 − p
≡

Bp−1
χ

p− 1
≡ −Bp−1

χ (mod p), (6.7)

for χ = χ8 and χ = χ−3χ−4, respectively.

Proposition 13. For all primes p ≥ 5 we have

∑

1≤j<k≤b p
8
c

1

jk
≡ 2

(

2qp(2) + (−1)
p2−1

8 Bp−1
χ8

)2

− 4(−1)
p−1
2 Ep−3

− 4(−1)
(p−1)(p+5)

8 Bp−2
χ−8

(mod p), (6.8)

∑

1≤j<k≤b p
12

c

1

jk
≡

1

2

(

3qp(2) +
3

2
qp(3) + 3(−1)

p−1
2

(p

3

)

Bp−1
χ−3χ−4

)2

−
5

2

(p

3

)

Bp−2(
1
3 )− 10(−1)

p−1
2 Ep−3 (mod p). (6.9)

As far as M = 24 is concerned, we refrain from giving even the first case explicitly. It is now
clear that by using (6.1), the desired congruence can be obtained from (5.1) and the modulo
p specialization of (5.3), where (6.7) should be used for three different characters.

7. Further Remarks

We mentioned in the Introduction that the congruence (1.2) has been generalized in various
directions; these are, in particular,

(1) different intervals over which the sum is taken,
(2) higher powers of the prime modulus,
(3) higher powers of j in the denominator,
(4) double or multiple sums,
(5) sums over certain arithmetical progressions, and
(6) composite moduli other than prime powers.

In this paper we have only dealt with (1)–(4), and for the sake of clarity and brevity not in
the greatest possible generality. As far as (2) and (3) are concerned, numerous results modulo
higher powers of p, or with higher powers of j in the denominator, were obtained by Z.-H. Sun
[18], [19]. Similarly, the results of Kuzumaki and Urbanowicz [15] are, in the notation of (1.4),
for r = 1, 2, 3 and s = 4−r, but only for k = 1. Numerous congruences for sums of the type (4)
and (5) can be found in [19]. A large number of congruences of type (6) were recently obtained
in [15], [12] and [14]; for some special cases related to (2.7), see [3], [7] and [13]. Finally, for
congruences for sums of type (5) and (6) combined, see [14] and also [3], [4] and [8]. As most of
these authors have acknowledged, much of this work goes back to Emma Lehmer’s important
1938 paper [16].
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