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Abstract. We obtain here two results associated with the Jacobsthal numbers. The first
concerns a convolution while the second is in connection with systems of complete residues.
Each of these results raises a further question.

1. Introduction

The nth Jacobsthal number Jn may be obtained in a recursive manner by way of the
recurrence relation

Jn = Jn−1 + 2Jn−2, (1.1)

where J0 = 0 and J1 = 1. An explicit form for Jn is given by the Binet-type formula

Jn =
2n − (−1)n

3
. (1.2)

The sequence of Jacobsthal numbers arises in a number of combinatorial situations. For
example, Jn gives, for n ≥ 2, the number of ways of tiling a 3 × (n − 1) rectangle with 1 × 1
and 2×2 square tiles. See the entry for sequence A001045 in [4], and the many references cited
there, for further information, including several alternative combinatorial interpretations.

In this paper we obtain two results associated with the Jacobsthal numbers, each of which
leads naturally on to a further question. The first result is the evaluation of a convolution
involving the Lucas and Jacobsthal numbers, while the second is associated with complete
residue systems.

2. A Convolution

We consider here the sequence {c(n)}n≥0 given by the following convolution comprising the
Lucas and the Jacobsthal numbers:

c(n) =

n
∑

k=0

LkJn−k.

It is straightforward to show that the ordinary generating functions for {Ln}n≥0 and {Jn}n≥0
are given by

G(x) =
2− x

1− x− x2
and H(x) =

x

1− x− 2x2
,

respectively. By the method of partial fractions we then obtain

G(x) =
1

1− αx
+

1

1− βx
,

where

α =
1 +

√
5

2
and β = − 1

α
=

1−
√
5

2
.
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Similarly,

H(x) =
1

3(1− 2x)
− 1

3(1 + x)
.

From the above it follows that

3G(x)H(x) =
1

(1− αx)(1 − 2x)
− 1

(1 − αx)(1 + x)
+

1

(1− βx)(1 − 2x)
− 1

(1− βx)(1 + x)
,

which, after further use of partial fractions and a considerable amount of simplification, gives

G(x)H(x) =
2

1− 2x
− 1

1 + x
− α

1− αx
− β

1− βx
.

Then, since c(n) is the coefficient of xn in G(x)H(x), we have

c(n) = 2 · 2n − (−1)n − α · αn − β · βn

= 2n+1 − (−1)n − αn+1 − βn+1

= 2n+1 + (−1)n+1 − Ln+1.

Note that this may also be written as

c(n) = 3Jn+1 + 2(−1)n+1 − Ln+1

or

c(n) = jn+1 − Ln+1,

where jn is the nth Jacobsthal-Lucas number [5]. Since the convolution takes such a simple
form, we ask whether it is possible to obtain a purely combinatorial proof of this result.
Incidentally, {c(n)}n≥0 does not appear in [4].

3. Complete Residue Systems

Next, suppose that {an}n≥0 is a sequence of non-negative integers. This sequence is said

to possess a complete system of residues modulo m if, for each i ∈ {0, 1, 2, . . . m − 1}, there
exists some j such that aj ≡ i (mod m). Burr [2] classified the moduli for which the Fibonacci
numbers contain a complete system of residues, while Avila and Chen [1] obtained the cor-
responding classification for the Lucas numbers. We show here that m = 2 and m = 3k for
each k ≥ 0 are the only moduli for which the sequence of Jacobsthal numbers has a complete
system of residues. For the sake of clarity, a number of lemmas will be utilized in order to
prove our main result. If the Jacobsthal sequence possesses a complete system of residues
modulo m, then we say that m is J-complete.

Lemma 3.1. The only J-complete even positive integer is 2.

Proof. The sequence {Jn}n≥0 contains 0 and 1, so m is indeed J-complete when m = 2. Now

suppose that m is an even integer such that m ≥ 4. Using (1.1) in conjunction with the initial
conditions J0 = 0 and J1 = 1, it is straightforward to show by induction that Jn is odd for
each n ∈ N. It is therefore the case that none of the even numbers from 2 to m− 2 inclusive
appear in the residue system for the Jacobsthal numbers modulo m. The truth of the lemma
follows from this. �

Lemma 3.2. No prime p > 3 is J-complete.

148 VOLUME 53, NUMBER 2



THE JACOBSTHAL NUMBERS: TWO RESULTS AND TWO QUESTIONS

Proof. Let p be a prime such that p > 3. Using (1.2) we have

Jn+p−1 − Jn =
2n+p−1 − (−1)n+p−1

3
− 2n − (−1)n

3

=
2n

(

2p−1 − 1
)

− (−1)n
(

(−1)p−1 − 1
)

3

=
2n

(

2p−1 − 1
)

3
, (3.1)

on noting that (−1)p−1 = 1 since p is an odd prime. Since Jn+p−1 − Jn is an integer, and
3 - 2n, it follows from (3.1) that 3 |

(

2p−1 − 1
)

. However, by Fermat’s Little Theorem [3], we
have

2p−1 ≡ 1 (mod p).

Thus, since gcd(3, p) = 1, we know that for some k ∈ N it is the case that 2p−1 − 1 = 3kp,
which in turn implies that

2n
(

2p−1 − 1
)

3
≡ 0 (mod p),

and hence that Jn+p−1 − Jn ≡ 0 (mod p). Therefore the sequence of residues given by
{Jn (mod p)}n≥0 has a period that is a factor of p− 1. From this it follows that no more than
p− 1 distinct residues can appear. �

Lemma 3.3. For each k ≥ 0,

43
k ≡ 3k+1 + 1 (mod 3k+2).

Proof. We proceed by induction. First, when k = 0, we have

43
k

= 41 = 4 and 3k+1 + 1 = 31 + 1 = 4,

so the statement of the lemma is certainly true in this case. Next, let us assume that it is true
for some k ≥ 0. We then have

43
k

= i · 3k+2 + 3k+1 + 1

for some i ∈ N. Thus,

43
k+1

=
(

43
k)3

=
(

i · 3k+2 + 3k+1 + 1
)3

= i333(k+2) + 3i232(k+2)
(

3k+1 + 1
)

+ 3i · 3k+2
(

3k+1 + 1
)2

+
(

3k+1 + 1
)3

= i333(k+2) + i232k+5
(

3k+1 + 1
)

+ i · 3k+3
(

3k+1 + 1
)2

+
(

3k+1 + 1
)3

= j · 3k+3 +
(

3k+1 + 1
)3

for some j ∈ N. It now follows that

43
k+1 ≡

(

3k+1 + 1
)3

(mod 3k+3)

≡ 33(k+1) + 32k+3 + 3k+2 + 1 (mod 3k+3)

≡ 3k+2 + 1 (mod 3k+3),

where the final congruence holds since 3k+3 divides both 33(k+1) and 32k+3, as required. �
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Lemma 3.4. Let n be a non-negative even integer. Then

Jn+2·3k ≡ Jn + 3k (mod 3k+1).

Proof. First, it is straightforward to show, by induction, that 2n ≡ 1 (mod 3) when n is even.
Then, using the result of Lemma 3.3 and the Binet-type formula (1.2), we obtain

2n ≡ 1 (mod 3) =⇒ 2n · 3k+1 ≡ 3k+1 (mod 3k+2)

=⇒ 2n
(

43
k − 1

)

≡ 3k+1 (mod 3k+2)

=⇒ 2n+2·3k − (−1)n+2·3k ≡ 2n − (−1)n + 3k+1 (mod 3k+2)

=⇒ 3Jn+2·3k ≡ 3Jn + 3k+1 (mod 3k+2)

=⇒ Jn+2·3k ≡ Jn + 3k (mod 3k+1).

�

Theorem 3.5. The J-complete numbers are given by m = 2 and m = 3k for each k ≥ 0.

Proof. We showed in Lemma 3.1 that 2 is the only J-complete even positive integer. Further-
more, since if m is not J-complete then neither is any positive multiple of m, it follows from
Lemma 3.2 that, in order to prove the theorem, it just remains to prove that all integers of
the form 3k, k ≥ 0, are J-complete. We will do this by showing that the set

Sk =
{

J0, J2, J4, . . . , J2(3k−1)

}

is a complete residue system modulo 3k for each k ≥ 0. Proceeding by induction on k, it is
clear that this is true for k = 0, so let us suppose now that it is true for some k ≥ 0.

By the inductive hypothesis, for any element x ∈
{

0, 1, 2, . . . , 3k − 1
}

there exists a unique

element J2j ∈ Sk such that x ≡ J2j (mod 3k). It follows from Lemma 3.4 that J2j , J2j+2·3k

and J2j+4·3k are congruent modulo 3k+1 to x, x+3k and x+2 · 3k, respectively. It is the case,
therefore, that J2j , J2j+2·3k and J2j+4·3k provide us with three distinct residues modulo 3k+1.

Repeating this for each x ∈
{

0, 1, 2, . . . , 3k − 1
}

allows us to exhibit all of the 3k+1 required

residues, noting first that exactly 3k+1 distinct residues modulo 3k+1 will indeed be generated
via this process, and second that the set thus obtained is Sk+1. �

Let F , L and J denote the sets of Fibonacci-, Lucas- and Jacobsthal-complete moduli,
respectively. From [2] and [1], the elements of F and L take the forms

5k, 2 · 5k, 4 · 5k, 3j5k, 6 · 5k, 7 · 5k, 14 · 5k

for j ≥ 1 and k ≥ 0, and

2, 4, 6, 7, 14, 3k

for k ≥ 0, respectively. It is interesting to note the following chain of strict inclusions:

J ( L ( F .

A mathematical explanation for the right-hand inclusion was given in [1], and we ask here for
a corresponding one for the left-hand inclusion.
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