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Abstract. The purpose of this paper is to answer, in the negative, an open question of
Ruskey on whether all solutions of Hofstadter’s Q function have quasi-period 3. We solve this
problem by presenting for each positive integer e initial conditions for the Q function such
that the resulting sequence satisfying the recursion and initial conditions has quasi-period e.

1. Background

Several authors have studied nested recursions, that is, recursions, where at least one of
the arguments of at least one occurrence of the recursive function in the defining recursion,
references that recursive function. Nested recursions are also called self-referencing functions;
the sequences satisfying a nested recursion are also called meta-Fibonacci. The following
examples, some of which omit initial conditions, illustrate this concept.

Example 1.1. Conolly’s recursion [3] is defined by

F (n) = F (n− F (n− 1)) + F (n− 1− F (n− 2)), (1.1)

with initial conditions,
F (1) = 0, F (2) = 1. (1.2)

Note that Conolly actually defined four functions, H,F,C,K.

Example 1.2. Hostadter’s Q-function [7] is defined by

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2)). (1.3)

The Q function is sometimes called the U function.
Depending on initial conditions, the Q function may fail to be well-defined for all n. In

fact, it is an open question whether it is well-defined for all positive n with initial conditions
Q(1) = Q(2) = 1. It is an open question to describe the behavior of the Q function for large
n (e.g. [16]). Researchers still actively study variants of the Q function (e.g. [1]).

In the next section, we will present the two known solutions where the Q function is defined
for all n. Both of them have quasi-period 3. This led Ruskey to ask whether all known solutions
have quasi-period 3. A main result of this paper is a negative answer to this question. More
specifically, we produce for every positive integer e a solution of the Q function with quasi-
period e.

Example 1.3. The V function, [1], a variant of Hostadter’s Q-function, is defined by

V (n) = V (n− V (n− 1)) + V (n− V (n − 4)),

with initial conditions
V (1) = V (2) = V (3) = V (4) = 1.
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Although the V function is too complicated to study in this paper, we completely solve a
similar complex sequence, (1.3) with initial conditions Q(1) = 1, Q(2) = 5, Q(3) = 3. Under
these initial conditions, the resulting infinite sequence {Q(i)}i≥1, naturally divides into blocks,
similar to the generations of the V sequence. The lengths of the blocks are growing and these
lengths are governed by a recursion. The blocks themselves have specific periodicities which
we identify.

The solutions to nested recursions are sometimes quasi-periodic. To explain this, we need to
develop some compact notation and introduce terminology, which we do in the next section.

2. Notation and Terminology

Golumb [5] presented the first solved case of the Hofstadter Q function.

Assume initial conditions, Q(1) = 3, Q(2) = 2, Q(3) = 1;

then by (1.3), Q(3k − 2) = 3, Q(3k − 1) = 3k − 1, Q(3k) = 3k − 2, k ≥ 1. (2.1)

Ruskey [17] provides a further solution to the Hostadter Q function.

Assume initial conditions, Q(0) = Q(3) = 3, Q(1) = Q(4) = 6, Q(2) = 5, Q(5) = 8;

then by (1.3), Q(3k) = 3, Q(3k + 1) = 6, Q(3k + 2) = Fk+5, k ≥ 0, (2.2)

where Fk are the Fibonacci numbers.
In the sequel, it will be convenient to state equations like (2.1) using a more compact

notation which we now introduce and explain.

Q1:3 = 〈3, 2, 1〉 −→ Q1:∞ = 〈3, 3k − 1, 3k − 2〉∞. (2.3)

The correspondence between (2.1) and (2.3) should be clear. We make the following clarifying
remarks:

• Sequences (in contrast to sets) are indicated by angle brackets.
• Vector notation vi:j = 〈w(i), . . . , w(j)〉 compactly summarizes the j − i + 1 equations
v(k) = w(k), i ≤ k ≤ j.

• A right arrow indicates how assumed initial conditions stated on the left of the right
arrow yield the results stated on the right side of the right arrow.

• The vector-function notation 〈v(f1(k)), . . . , v(fm(k))〉k∈S where the fi, 1 ≤ i ≤ m are
functions and S = 〈s1, s2, . . .〉 is a possibly infinite sequence of integers, is compact
shorthand for the sequence

〈v(f1(s1)), . . . , v(fm(s1)), v(f1(s2)), . . . , v(fm(s2)), . . . 〉.

• Similarly, the word exponent notation 〈v(f1(k)), . . . , v(fm(k))〉n indicates the sequence

〈v(f1(1)), . . . , v(fm(1)), v(f1(2)), . . . , v(fm(2)), . . . , v(f1(n), . . . , v(fm(n)〉.

We allow n to be infinite.
• We will abuse notation and use unions of sequences.

For purposes of notational clarity, in the sequel, we may use the notation Q(x) interchange-
ably with Qx, especially when x is a long expression.

The following examples further clarify the notation.

Example 2.1. Equation (2.2) can be restated as follows:

Q0:5 = 〈3, 6, 5, 3, 6, 8〉 −→ Q0:∞ = 〈3, 6, Fk〉k≥5. (2.4)
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Example 2.2. The expression

〈4〉∪

(

〈6k, 2〉2 ∪ 〈6k, 6〉

)∞

, (2.5)

indicates the sequence, 〈4, 6, 2, 6, 2, 6, 6, 12, 2, 12, 2, 12, 6, 18, 2, 18, 2, 18, 6, . . .〉. Note how we use
parentheses to indicate order. First we evaluate 〈6k, 2〉2 and 〈6k, 6〉 at k = 1; then we evaluate
them at k = 2, etc.

Heuristically, we would like to say that (2.5) is quasi-periodic, a concept first introduced by
Golumb. There are a variety of ways to define this heuristic. We find the following definition
not too restrictive and not too broad.

Definition 2.3. A sequence {an}n≥1 is quasi-periodic if there exists some positive integer
k ≥ 1, the quasi-period, a non-negative integer n0 and a collection of functions gi, 1 ≤ i ≤ k,

such that (i) for all non-negative integer m and for 1 ≤ i ≤ k, an0+i+mk = gi(m), and (ii) at
least one of the gi, 1 ≤ i ≤ k, is identically constant. By analogy with decimal representations
of fractions, if n0 = 0 the sequence is called purely quasi-periodic; otherwise the sequence is
called eventually quasi-periodic.

Example 2.4. Equation (2.5) is eventually quasi-periodic with quasi-period 6. This can be
seen by letting n0 = 1, g2(m) = g4(m) = 2, g6(m) = 6, g1(m) = g3(m) = g5(m) = 6m+ 6, and
applying the definition just given.

Example 2.5. Equation (2.3) is purely quasi-periodic with quasi-period 3. This can be seen
by letting n0 = 0, g1(m) = 3, g2(m) = 3m+ 2, g3(m) = 3m+ 1.

Example 2.6. Equation (2.4) is purely quasi-periodic with quasi-period 3. This can be seen
by letting n0 = −1, g1(m) = 3, g2(m) = 6, g3(m) = F5+m. Notice the minor adjustment in the
definition to account for the fact that (2.4) starts at index 0.

Example 2.7. (Traditional periodicity.) A sequence {an}n≥1 is periodic if it is quasi-periodic
and all gi, 1 ≤ i ≤ k, are the constant function.

Certain subtleties about and problems with Definition 2.2 are as follows.

• The definition does not require that the gi be linear functions.
• For any sequence {an}n≥1, we can define g1(m) = am. So without the requirement
that at least one of the gi be constant, all sequences would be quasi-periodic of quasi-
period 1. This is clearly not desirable. Consequently, the requirement that at least
one of the gi be constant is needed.

• Definition 2.2 excludes the sequence 1, 2, 1, 2, 1, 1, 2, 1, 1, 1 . . . from being classified as
quasi periodic. The point here is that quasi-periodic is not a synonym for pattern. For
this reason, we require quasi-periods to be constants.

• For the reals, periodicity implies rationality; similarly, with continued fractions, peri-
odicity implies quadratic irrationality; thus for the reals and continued fractions there
is a need to be precise in the use of the word periodic since it implies other properties.
However, with nested recursions, quasi-periodicity does not predict any other property.
For this reason, we have restricted quasi-periodicity to situations where some constant
is repeating periodically.

In the sequel, it will suffice to state that a sequence is (eventually or purely) quasi-periodic
without going into details about application of the definition.
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In Example 1.2 we have already noted that, depending on the initial conditions, the Q

sequence may not be well defined for all positive n.
Ruskey [17] notes that “One way to make the Q sequence well-defined is to simply specify

the initial values of Q for all n < 1.” Consequently, throughout this paper, we assume the
following.

Q(n) = 0, if n ≤ 0. (2.6)

Ruskey himself did not require Q(0) = 0. There however is no loss of generality in so assuming.

3. Ruskey’s Open Problem

In the last section of his paper, Ruskey lists open problems including the following: “Both of
the known quasi-periodic solutions to the Hofstadter recurrence ((2.3) and (2.4)) have quasi-
period 3. Are other quasi-periods possible?”

We answer this open problem in the negative with the following theorem.

Theorem 3.1.

(a) For positive odd integer o and positive even integer e with o > e we have

Q1:3 = 〈e, o, 2〉 −→ Q1:∞ = 〈e〉 ∪ 〈o, 2〉
o−1

2 ∪

(

〈o+ ek, 2〉
e

2

)∞

,

a sequence with eventual quasi-period e.

(b) For two positive even integers e2 and e1 with e2 > e1 we have

Q1:3 = 〈e1, e2, 2〉 −→ Q1:∞ = 〈e1〉 ∪

(

〈ke2, 2〉
e2−2

2 ∪ 〈ke2, e1 + 2〉

)∞

,

a sequence with eventual quasi-period e2.

Graphical illustrations of Theorem 3.1(a) and (b) for specific values of e and o are presented
in Figures 1 and 2, respectively.

Corollary 3.2. For every positive even integer e there is a Q-sequence with eventual quasi-
period e.

4. Proof of Theorem 3.1

In the introductory section, we presented several nested recursions. Some of these recursions
have been solved or partially solved while others remain open problems.

When solutions exist, the proof methods vary. Some popular techniques are use of ceiling
functions [5, 9], treatment of slow growing functions [4, 12, 13, 14], or a combinatoric approach
using labeled tree methods [1, 4, 8, 10, 11, 13, 14, 15, 18].

A classical approach is proof by nested inductions. In a nested inductive proof, the induction
step or the base step of an induction argument requires an inductive proof. Some authors refer
to these as multi-statement induction proofs. For examples, see [6, 2, 19].

In this paper, we exclusively focus on proofs by nested inductions. We note that very often
nested inductive arguments naturally combine with alternative methods such as labeled-tree
methods. Thus the methods of this paper have wider applicability.

In this section, we prove Theorem 3.1. We only prove Theorem 3.1(a), the proof of Theorem
3.1(b) being similar and hence omitted. We first prove three propositions.
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Figure 1. Graph of Q(n) with Q1:3 = 〈4, 49, 2〉. The graph illustrates The-
orem 3.1(a). After the initial 4, there is an initial flat segment of a repeating
〈49, 2〉 followed by linearly ascending segments of period 4,
〈53, 2, 53, 2〉, 〈57, 2, 57, 2〉, . . ..

Figure 2. Graph of Q(n) with Q1:3 = 〈4, 10, 2〉. The graph illustrates Theo-
rem 3.1(b). After the initial 4, there are segments with period 10 consisting of
4 repeating pairs 〈10k, 2〉 followed by a terminal pair 〈10k, 6〉.
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Proposition 4.1. Q2:o = 〈o, 2〉
o−1

2 .

Proof. To prove Proposition 4.1, it suffices to show that for

1 ≤ K ≤
o− 1

2
,

that
Q2:2K+1 = 〈o, 2〉K . (4.1)

The initial conditions for Theorem 3.1(a), Q1:3 = 〈e, o, 2〉, imply that (4.1) is satisfied for
K = 1. This forms the base step for an induction argument.

For an induction step, we assume that for some K satisfying

1 ≤ K ≤
o− 3

2
(4.2)

that (4.1) holds. We proceed to show that (4.1) holds with K replaced by K+1. To do so, we
must show that Q(2K+2) = o andQ(2K+3) = 2. We suffice with showing that Q(2K+1) = o,
the proof that Q(2K + 3) = 2 being similar. Note that our induction assumption that (4.1)
holds for K satisfying (4.2) implies

Q(2K) = o, Q(2K + 1) = 2. (4.3)

Q(2K + 2) = Q(2K + 2−Q(2K + 1)) +Q(2K + 2−Q(2K)), by (1.3),

= Q(2K) +Q(2K + 2− o), by (4.3),

= o, by (4.3), (4.2) and (2.6).

�

Proposition 4.2. For K ≥ 0,

Qo+eK−1:o+eK = 〈o+ eK, 2〉 −→ Qo+eK+1:o+eK+2 = 〈o+ eK + e, 2〉.

Proof. By the hypothesis of Theorem 3.1(a), we have

Q(1) = e. (4.4)

Assume for some K ≥ 0, that

Qo+eK−1:o+eK = 〈o+ eK, 2〉. (4.5)

We proceed to prove Qo+eK+1:o+eK+2 = 〈o+eK+e, 2〉. To do so requires proving Q(o+eK+
1) = o+ eK + e and Q(o+ eK +2) = 2. We suffice with proving Q(o+ eK +1) = o+ eK + e,
the proof of the other equality being similar.

Q(o+ eK + 1) = Q(o+ eK + 1−Q(o+ eK)) +Q(o+ eK + 1−Q(o+ eK − 1)), by (1.3),

= Q(o+ eK − 1) +Q(1), by (4.5),

= o+ eK + e, by (4.5) and (4.4).

�

Proposition 4.3. For e ≥ 4, if

Qo+ek+1:o+ek+2 = 〈o+ ek + e, 2〉, (4.6)

then
Qo+ek+1:o+ek+e = 〈o+ ek + e, 2〉

e

2 . (4.7)
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Proof. To prove Proposition 4.3, it suffices to show that if (4.6) holds, then for

1 ≤ l ≤
e

2
,

that

Qo+ek+1:o+ek+2l = 〈o+ ek + e, 2〉l. (4.8)

Equation (4.6) implies that (4.8) holds for l = 1. This forms the base step for an induction
argument.

For an induction step, we assume that for some l satisfying

1 ≤ l ≤
e− 2

2
, (4.9)

that (4.8) holds. We proceed to show that (4.8) holds with l replaced by l + 1. To do so, we
must show that Q(o+ ek + 2l + 1) = o+ ek + e and Q(o+ ek + 2l + 2) = 2. We suffice with
showing that Q(o + ek + 2l + 1) = o + ek + e, the proof of the other equality being similar.
Note that our induction assumption that (4.8) holds for l satisfying (4.9) implies

Q(o+ ek + 2l − 1) = o+ ek + e, Q(o+ ek + 2l) = 2. (4.10)

Qo+ek+2l+1 = Q(o+ ek + 2l + 1−Q(o+ ek + 2l)) +Q(o+ ek + 2l

+ 1−Q(o+ ek + 2l − 1)), by (1.3),

= Q(o+ ek + 2l − 1) +Q(2l + 1− e), by (4.10),

= o+ ek + e, by (4.10), (4.9) and (2.6).

�

We can now complete the proof of Theorem 3.1(a).

Proof. For a base step of an induction argument, assume that for some non-negative integer
n that

Q2:o+en = 〈o, 2〉
o−1

2 ∪

(

〈o+ ek, 2〉
e

2

)n

, (4.11)

the case n = 0, justified by Proposition 4.1. We proceed to prove (4.11) with n replaced by
n+ 1.

First, by (4.11) and Proposition 4.2, we have

Q2:o+en+2 = 〈o, 2〉
o−1

2 ∪

(

〈o+ ek, 2〉
e

2

)n

∪ 〈o+ en+ e, 2〉. (4.12)

If e = 2, then (4.12) completes the proof that (4.11) holds with n replaced by n+ 1.
If e ≥ 4, then Proposition 4.3 shows

Qo+en+1:o+en+e = 〈o+ en+ e, 2〉
e

2 ,

completing the proof that (4.11) holds with n replaced by n+1. The proof of Theorem 3.1(a)
is completed by letting n go to infinity in (4.11). �
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5. An Advanced Example

The example presented in this section is a nested recursion with several unusual features
resembling the V sequence.

We use the Q function, (1.3), with initial conditions

Q1:3 = 〈1, 5, 3〉. (5.1)

We easily compute that Q4:14 is simply a sequence of numbers without a pattern and that

Q15:373 = S0S1S2S3S4, with

S0 = Q15:25 = 〈23, 2, . . . , 23, 2, 23, 3, 7〉,

S1 = Q26:48 = 〈46, 2, . . . , 46, 2, 46, 3, 7〉,

S2 = Q49:95 = 〈92, 2, . . . , 92, 2, 93, 3, 7〉,

S3 = Q96:188 = 〈185, 2, . . . , 185, 2, 186, 3, 7〉,

S4 = Q189:373 = 〈371, 2, . . . , 371, 2, 371, 3, 7〉.

(5.2)

We observe the following similarities with the V sequence:

• The blocks of Si resemble the generations of the V sequence.
• The blocks have varying length. In fact, their length seems to be growing roughly as
a power of 2.

• The blocks are not quasi-periodic in any sense of the word; however, although their
length is going to infinity they can be described with a bounded number of symbols.

• As we will see in the main theorem of this section, the patterns in the blocks are
governed by period 4 just as the patterns in the generations of the V sequence are
governed by periods.

The following theorem precisely formulates the above observations.

Theorem 5.1. We have

Q15:∞ = S0S1 . . . , (5.3)

with

Si = Qbi:bi+1−1 = 〈xi, 2〉
li−3

2 〈xi + ε′i, 3, 7〉, (5.4)

with

b0 = 15, bi+1 = bi + li,

with li the length of Si and

l0 = 11, li+1 = 2li + εi, (5.5)

x0 = 23, xi+1 = 2xi + ε′i, (5.6)

with

ε0:3 = 〈1, 1,−1,−1〉, εi+4 = εi, (5.7)

and

ε′0,3 = 〈0, 0, 1, 1〉, ε′i+4 = ε′i. (5.8)

Comment 5.2. Equation (5.2) shows (5.3)–(5.8) satisfied for 0 ≤ i ≤ 4.

To prove the theorem, we will need the following preliminary proposition.

MAY 2015 119



THE FIBONACCI QUARTERLY

Proposition 5.3. We have
2ε′i + εi = ε′i−1 + ε′i+1. (5.9)

Q(ε′i) = ε′i. (5.10)

li = xi−1 + ε′i. (5.11)

bi+1 = xi + ε′i + 3. (5.12)

Proof. Equations (5.9) and (5.10) are proven by direct verification using (5.7) and (5.8) (there
are only 4 cases to check).

Equation (5.11) is proven by induction. The base case, when i = 1, is verified by (5.5)–(5.7).
Then, assuming by induction that (5.11) holds for some i we can prove (5.11) with i replaced
by i+ 1.

li+1 = 2li + εi, by (5.5),

= 2(xi−1 + ε′i) + εi, by an induction assumption,

= 2xi−1 + 2ε′i + εi,

= 2xi−1 + ε′i−1 + ε′i+1, by (5.9),

= xi + ε′i+1, by (5.6).

Equation (5.12) is similarly proven by a routine induction argument and is omitted. �

The following corollary is repeatedly used in the proof of Theorem 5.1.

Corollary 5.4. We have

bi+1 − xi+1 = 3− xi, bi+1 − xi = 3 + ε′i. (5.13)

Proof. By (5.6) and (5.12). �

To prove Theorem 5.1 we first prove two propositions.

Proposition 5.5. If
Qbi+1−7:bi+1−4 = 〈xi, 2〉

2 (5.14)

then
Qbi+1−3:bi+1−1 = 〈xi + ε′i, 3, 7〉, (5.15)

and
Qbi+1:bi+1+1 = 〈xi+1, 2〉, (5.16)

Proof. To prove (5.15) requires proving three assertions. We suffice with proving

Q(bi+1 − 3) = xi + ε′i, (5.17)

the proof of the other two assertions being similar and hence omitted.

Q(bi+1 − 3) = Q(bi+1 − 3−Q(bi+1 − 4)) +Q(bi+1 − 3−Q(bi+1 − 5)), by (1.3),

= Q(bi+1 − 5)) +Q(ε′i)), by (5.14) and (5.13),

= xi + ε′i, by (5.14) and (5.10).

This completes the proof of (5.15).
To prove (5.16) requires proving two assertions. We suffice with proving

Q(bi+1) = xi+1, (5.18)
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the proof of the other assertion being similar and hence omitted.

Q(bi+1) = Q(bi+1 −Q(bi+1 − 1)) +Q(bi+1 −Q(bi+1 − 2)), by (1.3),

= Q(bi+1 − 7) +Q(bi+1 − 3), by (5.15),

= xi + xi + ε′i, by (5.14) and (5.15),

= xi+1, by (5.6).

This completes the proof of (5.16) and Proposition 5.5. �

Proposition 5.6. If
Qbi+1:bi+1+1 = 〈xi+1, 2〉 (5.19)

then

Qbi+1:bi+2−4 = 〈xi+1, 2〉
li+1−3

2 . (5.20)

Proof. To prove (5.20), it suffices to show that for

1 ≤ K ≤
li+1 − 3

2
,

that
Qbi+1:bi+1+2K−1 = 〈xi+1, 2〉

K . (5.21)

Equation (5.19) shows that (5.21) is satisfied for K = 1. This forms the base step for an
induction argument.

For an induction step, we assume that for some K satisfying

1 ≤ K ≤
li+1 − 5

2
(5.22)

that (5.21) holds. We proceed to show that (5.21) holds with K replaced by K + 1. To do
so, we must show that Q(bi+1 + 2K) = xi+1 and Q(bi+1 + 2K + 1) = 2. We suffice with
showing that Q(bi+1 + 2K) = xi+1, the proof that Q(bi+1 + 2K + 1) = 2 being similar and
hence omitted. Note that our induction assumption that (5.21) holds for K satisfying (5.22)
implies

Q(bi+1 + 2K − 2) = xi+1, Q(bi+1 + 2K − 1) = 2. (5.23)

Q(bi+1 + 2K) = Q(bi+1 + 2K −Q(bi+1 + 2K − 1)) +Q(bi+1

+ 2K −Q(bi+1 + 2K − 2)), by (1.3),

= Q(bi+1 + 2K − 2) +Q(3 + 2K − xi), by (5.23) and (5.13),

= xi+1, by (5.23) and (5.22), (5.11), (5.8) and (2.6).

�

We now can complete the proof of (5.3).

Proof. The proof of (5.3) is equivalent to proving that

Qb0:bi+1−1 = S0S1 . . . Si, (5.24)

for all non-negative i.
The proof is by induction. Equations (5.2) shows (5.24) true for i ≤ 4. This forms the base

step for an induction argument.
For an induction step, we assume (5.24) holds for some i ≥ 4 and proceed to prove (5.24)

with i replaced by i+ 1.
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First, the induction assumption and (5.4) shows that (5.14) and (5.15) are satisfied, implying
that (5.16) holds, and that therefore,

Qb0:bi+1+1 = S0S1 . . . Si ∪ 〈xi+1, 2〉.

But (5.16) is identical with (5.19), implying that (5.20) holds, and consequently

Qb0:bi+2−3 = S0S1 . . . Si ∪ 〈xi+1, 2〉
li+1−3

2 .

But (5.20) is (5.14) with i replaced by i+ 1, and therefore by (5.15) and (5.4),

Qb0:bi+2−1 = S0S1 . . . Si+1.

We conclude that (5.24) holds with i replaced by i+ 1. This completes the proof of Theorem
5.1. �

6. Conclusion

This paper answers an open problem in [17] by presenting Q sequences which have exact
quasi-periods, e, for any positive even integer.

We also introduced new notation methods by using vectors and word notation.
We believe this will prove useful in future studies of the Q function and other nested

recursions.
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