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Abstract. We give a short proof of Belaga’s result on bounds to perigees of (3x+ d)-cycles
of a given oddlength. We also reformulate the Collatz cycle conjecture which is rather an
algorithmic problem into a purely arithmetic problem.

1. Introduction

The Collatz function C : N → N is defined by

C(a) :=

{
a/2, if a ≡ 0 (mod 2);
3a+ 1, if a ≡ 1 (mod 2),

for all a ∈ N,

where N is the set of positive integers. For every a ∈ N, the infinite sequence (Cn(a))∞n=0

obtained by iterating C is called a Collatz sequence. The Collatz conjecture asserts that every
Collatz sequence starting with a positive integer contains 1. Note that once the term 1 appears
in a Collatz sequence, then the further terms are repetitions of the cycle 1 → 4 → 2 → 1.
The Collatz conjecture is also known as the 3x + 1 problem. The reader is referred to [9] for
a survey of this topic, and [11] and [12] for an annotated bibliography. It is clear that the
conjecture is true if and only if both of the following assertions hold:

• 1 → 4 → 2 → 1 is the only cycle (Cycle Conjecture);
• all Collatz sequences are bounded (Boundedness Conjecture).

In this paper, we do not discuss the boundedness conjecture.
Although 1 → 4 → 2 → 1 is the only known cycle with positive terms, if one extends the

domain of C to Z, then four more cycles are known: 0 → 0, −1 → −2 → −1, −5 → −14 →
−7 → −20 → −10 → −5, and −17 → −50 → −25 → −74 → −37 → −110 → −55 → −164 →
−82 → −41 → −122 → −61 → −182 → −91 → −272 → −136 → −68 → −34 → −17. The
generalized cycle conjecture asserts that the above five cycles are the only cycles associated
with the Collatz function C with domain Z.

More generally, for each fixed odd integer d, one can define a function Cd : Z → Z by

Cd(a) :=

{
a/2, if a ≡ 0 (mod 2);
3a+ d, if a ≡ 1 (mod 2),

for all a ∈ Z,

and consider the sequence (Cn
d (a))

∞

n=0. It is, however, more convenient for us to deal with
only odd terms defining a “shortcut” of the function Cd. Let us denote by 2Z − 1 the set of
odd integers and define fd : 2Z− 1 → 2Z− 1 for each d ∈ 2Z− 1 by

fd(a) :=
3a+ d

2n
, for all a ∈ 2Z − 1,

This paper is a revision and an enlargement of the author’s manuscript titled “Bounds for Collatz Cycles”
which had been circulated since October 29, 2010.
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where n is the multiplicity of the factor 2 in the integer 3a+ d. Then fd is a function from
2Z − 1 onto the set {a ∈ Z | a ≡ 1 (mod 6) or a ≡ −1 (mod 6)} (respectively, {a ∈ Z | a ≡
3 (mod 6)}) if d ≡ 1 (mod 6) or d ≡ −1 (mod 6) (respectively, if d ≡ 3 (mod 6)), but it is not
one-to-one. If a ∈ 2Z− 1 and k is the minimum natural number with the property fk

d (a) = a,

then we call the finite sequence (f i
d(a))

k−1
i=0 the (3x+ d)-cycle with oddlength k starting

with a. For instance, 1 is the oddlength of the (3x+ 1)-cycle containing the number 1, which
is the only known (3x + 1)-cycle, and 7 is the oddlength of the (3x + 1)-cycle containing the
number −17. A (3x+ 1)-cycle is also called a Collatz cycle. It is conjectured (the (3x+ d)-
cycle conjecture) that there are only finitely many (3x+ d)-cycles with positive terms for each
integer d with d ≡ 1 (mod 6) or d ≡ −1 (mod 6) [10] at least in the case d ≥ −1 [3]. Note that
the case d ≡ 3 (mod 6) can always be reduced to the case d ≡ 1 (mod 6) or the case d ≡ −1
(mod 6), so it is not of interest (Remark 2.2 (2)).

If d > 0 (respectively, d < 0), and if a > 0 (respectively, a < 0), then f i
d(a) > 0, for all i ∈ N

(respectively, f i
d(a) < 0, for all i ∈ N). This tells us that positive integers and negative

integers cannot be mixed in a cycle. We call a (3x+d)-cycle positive (respectively, negative)
if one of the terms is (hence, all terms are) positive (respectively, negative).

Noting that considering a sequence (fn
d (a))

∞

n=0 is “equivalent” to considering a sequence
(fn

−d(−a))∞n=0, it suffices to consider only positive (3x + d)-cycles allowing d to take negative
values. So we assume this in Section 2 for the convenience of expressions.

Let us title and summarize the conjectures which we will discuss.

• (Collatz Cycle Conjecture) The sequence (1) is the only Collatz cycle with positive
terms.

• (Generalized Collatz Cycle Conjecture) The sequences (1), (−1), (−5,−7), and
(−17,−25,−37,−55,−41,−61,−91) are the only Collatz cycles.

• ((3x+ d)-Cycle Conjecture) For each d ∈ Z with d ≡ 1 (mod 6) or d ≡ −1 (mod
6), the number of (3x+ d)-cycles is finite.

In this paper, we make two remarks on (3x+d)-cycles. The first remark, which is Section 2,
is to give a short proof of Belaga’s result on bounds to the minimum element (perigee) of
a (3x + d)-cycle in terms of its oddlength. The second remark, which is Section 3, is to
reformulate the (generalized) Collatz cycle conjecture and the (3x+ d)-cycle conjecture which
are rather algorithmic problems into purely arithmetic problems.

Historical remarks. A result showing finiteness of Collatz cycles of fixed length was first
obtained in [5] which also discusses bounds for Collatz cycles. Stronger bounds were obtained
in [7] and [8]. Bounds for “shortcut” cycles which only count odd numbers as the present
paper were discussed in [3] and [2].

2. Bounds for Elements of (3x+ d)-Cycles

We consider positive (3x + d)-cycles allowing d to take negative values. The following
theorem gives bounds to the minimum element (perigee) of a positive (3x+ d)-cycle in terms
of its oddlength. This tells us that if a positive (3x+d)-cycle of oddlength k (≥ 2) exists, then it
is enough to apply the function fd k-times to the natural numbers less than min{|d|k3k , |d|kC}
to witness such a cycle. Part (b) of this theorem is due to E. G. Belaga, and we give the
author’s short proof of this result as well as Part (a).

Theorem 2.1. Let d ∈ 2Z−1. If amin is the minimum element of a (3x+d)-cycle of oddlength
k ∈ N, then the following estimates hold.

(a) amin ≤ |d|k3k.
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(b) (Belaga [2]) amin < |d|kC (k ≥ 2), where C > 0 is an effectively computable constant.

Proof. Let Γ := (a1, . . . , ak) be the (3x+d)-cycle of oddlength k starting with a1 ∈ N. Without
loss of generality, we may assume that amin = ak =: a is the minimum element in the cycle.
For i ∈ N, f i

d(a) is explicitly written as

f i
d(a) =

3ia+ d(3i−1 + 3i−2 · 2n1 + · · · + 3 · 2n1+···+ni−2 + 2n1+···+ni−1)

2n1+···+ni
, (2.1)

where nj (j ∈ {1, . . . , i}) is the multiplicity of the factor 2 in the number 3f j−1
d (a)+d. Setting

fk
d (a) = a yields that

a = d
3k−1 + 3k−2 · 2n1 + 3k−3 · 2n1+n2 + · · ·+ 3 · 2n1+···+nk−2 + 2n1+···+nk−1

2n1+···+nk − 3k
. (2.2)

Case d > 0: The restriction fd|Γ of fd to the cycle Γ is a one-to-one function onto itself, so
one can consider its inverse gd := (fd|Γ)

−1. Since ai−1 = gd(ai) = (2niai − d)/3, for all i ∈
{1, . . . , k} with a0 := a, noting the fact that a (= ak) is the minimum element of Γ it is easy
to observe that for i ∈ {1, . . . , k},

a ≤ gid(a)

= 2nk−i+1+···+nka−d(2nk−i+1+···+nk−1+3·2nk−i+1+···+nk−2+···+3i−3
·2nk−i+1+nk−i+2+3i−2

·2nk−i+1+3i−1)
3i

< 2nk−i+1+···+nk

3i
a.

Thus we have
3i

2nk−i+1+···+nk
< 1, for all i ∈ {1, . . . , k}. (2.3)

In particular, i = k yields that 3k + 1 ≤ 2n1+···+nk , i.e.,

1−
3k

2n1+···+nk
≥

1

3k + 1
. (2.4)

Equation (2.2) can be written as

a =
d
(

3k

2n1+···+nk
+ 3k−1

2n2+···+nk
+ 3k−2

2n3+···+nk
+ · · ·+ 33

2nk−2+nk−1+nk
+ 32

2nk−1+nk
+ 3

2nk

)

3
(

1− 3k

2n1+···+nk

) . (2.5)

Applying inequality (2.3) to the numerator and inequality (2.4) to the denominator of the
right-hand side of equation (2.5) yields a, dk(3k + 1)/3, and hence the desired inequality (a)
follows.

For (b), instead of inequality (2.4), using the following estimate:1

1−
3k

2n1+···+nk
> k−C , (2.6)

where C > 0 is an effectively computable constant, equation (2.5) yields a < dkC+1/3. Re-
placing the value of C by a slightly larger value, we obtain the desired estimate.

Case d < 0: Since a is the minimum element in the cycle Γ and d < 0, it follows from
equation (2.1) that

a ≤ f i
d(a) <

3i

2n1+···+ni
a, for all i ∈ {1, . . . , k}. (2.7)

1The author is in debt to J. C. Lagarias for the clarification of this estimate which is a conclusion of Baker’s
Theorem ([1] Theorem 3.1) for which A. Baker received the Fields Medal.
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Thus we have
2n1+···+ni

3i
< 1, for all i ∈ {1, . . . , k}. (2.8)

In particular, i = k yields 3k ≥ 2n1+···+nk + 1, i.e.,

1−
2n1+···+nk

3k
≥

1

3k
. (2.9)

Equation (2.2) can be rewritten as

a = |d|
1 + 2n1

3 + 2n1+n2

32
+ · · ·+ 2n1+···+nk−3

3k−3 + 2n1+···+nk−2

3k−2 + 2n1+···+nk−1

3k−1

3
(

1− 2n1+···+nk

3k

) . (2.10)

Applying inequality (2.8) to the numerator and inequality (2.9) to the denominator of the
right-hand side of equation (2.10) yields a < |d|k3k−1, hence inequality (a) follows.

For (b), instead of inequality (2.9), using the following estimate:2

1−
2n1+···+nk

3k
> k−C ,

where C is an effectively computable constant, equation (2.10) yields that a < |d|kC+1/3.
Replacing the value of C by a larger value, we obtain the desired estimate. �

Remark 2.2. (1) As seen in the proof above, the estimate is sensitive to the denominator
of equation (2.5) or (2.10), that is, the precision of the estimate is highly dependent on
the accuracy of Diophantine approximations of linear combinations of log 2 and log 3.

(2) The case d ≡ 3 (mod 6) can always be reduced to the case d ≡ 1 (mod 6) or the case
d ≡ −1 (mod 6). To see this, write d as d = 3md′, where m is the multiplicity of the
factor 3 in d and hence d′ ≡ 1 (mod 6) or d′ ≡ −1 (mod 6). Since 3 and 2n1+···+nk −3k

are relatively prime, observation of equation (2.2) concludes that there is a one-to-one
correspondence between (3d+ 1)-cycles and (3d′ + 1)-cycles.

Corollary 2.3. For each d ∈ 2Z−1 and each k ∈ N, the number of (3x+d)-cycles of oddlength
k is finite.

Corollary 2.4. Let d ∈ 2Z − 1. If amax is the maximum element of a (3x + d)-cycle of
oddlength k ∈ N, then the following estimates hold.

(a) amax < |d|k(9/2)k .
(b) (Belaga-Mignotte [3]) amax < |d|kC(3/2)k (k ≥ 2), where C > 0 is the same constant

as in Theorem 2.1 (b).

Proof. We use the same notation as in the proof of Theorem 2.1. Let i ∈ {1, . . . , k − 1} be
such that amax = ai = f i

d(a).
Case d > 0: Note that the “possible” maximum value of amax is obtained by setting

n1 = · · · = ni = 1. Thus by equation (2.1),

amax = f i
d(a) ≤

3ia+ d(3i−1 + 3i−2 · 2 + · · · + 3 · 2i−2 + 2i−1)

2i
=

(
3

2

)i

a+ d

[(
3

2

)i

− 1

]

≤

(
3

2

)k−1

a+ d

[(
3

2

)k−1

− 1

]

< dk

(
9

2

)k

,

2Similarly to equation (2.6), this also follows from Baker’s Theorem ([1] Theorem 3.1).
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where we used a ≤ dk3k from Theorem 2.1 (a) in the last inequality. If we use a < dkC from
Theorem 2.1 (b) instead, then we obtain that amax < dkC(3/2)k (k ≥ 2).

Case d < 0: Since d < 0, f i
d(a) < (3/2)ia from equation (2.1). Thus, amax = f i

d(a) <

(3/2)ia ≤ (3/2)k−1a < |d|k(9/2)k , where we used a ≤ dk3k from Theorem 2.1 (a) in the last
inequality. If we use a < dkC from Theorem 2.1 (b) instead, then we obtain that amax <
|d|kC(3/2)k−1 (k ≥ 2). �

3. An Arithmetic Reformulation of the Collatz Cycle Conjecture

In this section, we reformulate the Collatz cycle conjecture, the generalized Collatz cycle con-
jecture, and the (3x+ d)-cycle conjecture, which are rather algorithmic problems, into purely
arithmetic problems. This will give another approach to the cycle conjectures. Through-
out this section, we assume that d ∈ 2Z − 1 with d ≡ 1 (mod 6) or d ≡ −1 (mod 6) (see
Remark 2.2 (2)), and we consider both positive and negative (3x+ d)-cycles.

By equation (2.2), any element a in a (3x+ d)-cycle of oddlength k (∈ N) must satisfy

a = d
Ak(n1, . . . , nk−1)

2n1+···+nk − 3k
, (3.1)

for some n1, . . . , nk−1 ∈ N, where

Ak(n1, . . . , nk−1) :=

{
1, if k = 1;

3k−1 +
∑k

i=2 3
k−i2n1+···+ni−1 , if k ≥ 2.

3

Conversely, if an integer a satisfies equation (3.1) for some k, n1, . . . , nk ∈ N, then a is an
element of some (3x+ d)-cycle with an oddlength which divides k. To see this, suppose that
a ∈ Z satisfies equation (3.1). Then a must be odd, since dAk(n1, . . . , nk−1) is odd. A simple
calculation shows that

3a+ d = d
3Ak(n1, . . . , nk−1)

2n1+···+nk − 3k
+ d = d

2n1Ak(n2, . . . , nk)

2n1+···+nk − 3k
,

which tells us that dAk(n2, . . . , nk) is divisible by 2n1+···+nk −3k and that n1 is the multiplicity
of the factor 2 in 3a+ d. Thus we obtain an odd number

d
Ak(n2, . . . , nk)

2n1+···+nk − 3k
=

3a+ d

2n1
= fd(a),

where fd is defined in Section 1. Repeating this argument k times yields that fk
d (a) = a,

so that a is an element of some (3x + d)-cycle with an oddlengh which divides k. Hence
expression (3.1) gives rise to the following question.

Question 3.1. Given k, n ∈ N, which (k − 1)-tuple (n1, . . . , nk−1) ∈

(k−1) times
︷ ︸︸ ︷

N× · · · × N makes
dAk(n1, . . . , nk−1) divisible by 2n − 3k?

Indeed, the above observation shows that an integer a is an element of some (3x+ d)-cycle
if and only if a is of the form of equation (3.1) for some k, n1, . . . , nk ∈ N. Hence, the Collatz
Cycle Conjecture is equivalent to the following conjecture.

Conjecture 3.2. Let k, n ∈ N such that 2n − 3k > 0. If 2n − 3k divides Ak(n1, . . . , nk−1),
then precisely one of the following holds:

3In [4], the set of positive integers of the form Ak(n1, . . . , nk−1) with n1+ · · ·+nk−1 < ` is called the Collatz
corona corresponding to the pair (k, `), where k ∈ N and ` ≥ dk log2 3e.
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(1) n1 + · · · + nk−1 ≥ n;
(2) n = 2k and n1 = · · · = nk−1 = 2.

Note that in order for a in expression (3.1) to make sense as an element of a Collatz cycle,
n1 + · · ·+ nk−1 < n (i.e., the negation of item (1)) must hold.

The Generalized Collatz Cycle Conjecture is equivalent to the following conjecture.

Conjecture 3.3. Let k, n ∈ N. If 2n − 3k divides A(n1, . . . , nk−1), then precisely one of the
following holds:

(1) n1 + · · · + nk−1 ≥ n;
(2) n = 2k and n1 = · · · = nk−1 = 2;
(3) n = k and n1 = · · · = nk−1 = 1;
(4) n = 3k/2 and either (n1, . . . , nk−1) = (1, 2, 1, 2, . . . , 1, 2, 1) or (n1, . . . , nk−1) =

(2, 1, 2, 1, . . . , 2, 1, 2);

(5) n = 11k/7 and (n1, . . . , nk−1) = Pk−1

(

(σ(1, 1, 1, 2, 1, 1, 4))n/11
)

, where σ is some

cyclic permutation, and the power n/11 means the concatenation, and Pk−1 is the
truncation of the last digit.

The (3x+ d)-Cycle Conjecture is equivalent to the following conjecture.

Conjecture 3.4. Let d ∈ Z with d ≡ 1 (mod 6) or d ≡ −1 (mod 6). Then there exist
m ∈ N and relatively prime ordered pairs (pj, qj) ∈ N × N for j = 1, . . . ,m (may not be

distinct) and sequences
(

a
(j)
1 , . . . , a

(j)
qj

)

for j = 1, . . . ,m such that if k, n, n1, . . . , nk−1 ∈ N and

if n1+ · · ·+nk−1 < n and if 2n−3k divides dAk(n1, . . . , nk−1), then there exists j ∈ {1, . . . ,m}

such that n = kpj/qj and (n1, . . . , nk−1) = Pk−1

((

σ
(

a
(j)
1 , . . . , a

(j)
qj

))n/pj
)

, where σ is some

cyclic permutation, and the power n/pj means the concatenation, and Pk−1 is the truncation
of the last digit.

Note that if (a1, . . . , ak−1) is a Collatz cycle, then (da1, . . . , dak−1) is a (3x+ d)-cycle. But
there might be a nontrivial common factor between d and 2n − 3k, which gives 2n − 3k more
chance to divide dAk(n1, . . . , nk−1). So in general there are “more” (3x+d)-cycles than Collatz
cycles. For the primitive cycles defined in [10], d must divide 2n − 3k, but not all cycles with
d dividing 2n − 3k correspond to primitive cycles, since 2n − 3k may still contain a nontrivial
factor of d after being divided by d.

4. Closing Remarks

The results of this paper suggest two possible approaches to solve the (3x + d)-cycle con-
jecture or the (generalized) Collatz cycle conjecture affirmatively.

The first approach is, in connection with Section 2, to find a “lower” bound Lk for amax

which grows up with respect to k faster than an upper bound Uk for amin. Showing that
Lk − Uk exceeds the possible distance between amax and amin for large k proves the (3x+ d)-
cycle conjecture.

The second approach is the arithmetic argument using the reformulation done in Section 3.
This reformulation may give a way to reduce the problem to well-known solved problems or
conjectures such as the abc conjecture. The author attempted, without success, to see if there
is any implication from a generalized abc conjecture (the n-terms abc conjecture for integers)
proposed by J. Browkin and J. Brzezinski [6] without success.
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